libabigail
abg-diff-utils.h
Go to the documentation of this file.
1 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
2 // -*- Mode: C++ -*-
3 //
4 // Copyright (C) 2013-2023 Red Hat, Inc.
5 
6 /// @file
7 ///
8 /// This file declares types and operations implementing the "O(ND)
9 /// Difference Algorithm" (aka diff2) from Eugene W. Myers, to compute
10 /// the difference between two sequences.
11 ///
12 /// To understand what is going on here, one must read the paper at
13 /// http://www.xmailserver.org/diff2.pdf. Throughout this file, that
14 /// paper is referred to as "the paper".
15 ///
16 /// The implementations goes as far as calculating the shortest edit
17 /// script (the set of insertions and deletions) for transforming a
18 /// sequence into another. The main entry point for that is the
19 /// compute_diff() function.
20 
21 #ifndef __ABG_DIFF_UTILS_H__
22 #define __ABG_DIFF_UTILS_H__
23 
24 #include <cassert>
25 #include <cstdlib>
26 #include <memory>
27 #include <ostream>
28 #include <sstream>
29 #include <stdexcept>
30 #include <string>
31 #include <vector>
32 #include "abg-fwd.h"
33 
34 namespace abigail
35 {
36 
37 /// @brief Libabigail's core diffing algorithms
38 ///
39 /// This is the namespace defining the core diffing algorithm used by
40 /// libabigail @ref comparison tools. This based on the diff
41 /// algorithm from Eugene Myers.
42 namespace diff_utils
43 {
44 
45 using std::shared_ptr;
46 
47 // Inject the names from std:: below into this namespace
48 using std::string;
49 using std::ostream;
50 using std::vector;
51 using std::abs;
52 using std::ostringstream;
53 
54 /// A class representing a vertex in an edit graph, as explained in
55 /// the paper. A vertex is a basically a pair of coordinates
56 /// (abscissa and ordinate).
57 class point
58 {
59  int x_;
60  int y_;
61  bool empty_;
62 
63 public:
64 
65  point()
66  : x_(-1), y_(-1),empty_(true)
67  {}
68 
69  point(int x, int y)
70  : x_(x), y_(y), empty_(false)
71  {}
72 
73  point(const point& p)
74  : x_(p.x()), y_(p.y()), empty_(p.is_empty())
75  {}
76 
77  int
78  x() const
79  {return x_;}
80 
81  void
82  x(int x)
83  {
84  x_ = x;
85  empty_ = false;
86  }
87 
88  int
89  y() const
90  {return y_;}
91 
92  void
93  y(int y)
94  {
95  y_ = y;
96  empty_ = false;
97  }
98 
99  void
100  set(int x, int y)
101  {
102  x_ = x;
103  y_ = y;
104  empty_ = false;
105  }
106 
107  void
108  set(int x, int y, bool empty)
109  {
110  x_ = x;
111  y_ = y;
112  empty_ = empty;
113  }
114 
115  void
116  add(int ax, int ay)
117  {set (x() + ax, y() + ay);}
118 
119  bool
120  operator!=(const point& o) const
121  {return (x() != o.x() || y() != o.y() || is_empty() != o.is_empty());}
122 
123  bool
124  operator==(const point& o) const
125  {return !(operator!=(o));}
126 
127  bool
128  operator<(const point& o) const
129  {return (x() < o.x() && y() < o.y());}
130 
131  bool
132  operator>(const point& o) const
133  {return (x() > o.x() && y() > o.y());}
134 
135  bool
136  operator<=(const point& o) const
137  {return (x() <= o.x() && y() <= o.y());}
138 
139  bool
140  operator>=(const point& o) const
141  {return (x() >= o.x() && y() >= o.y());}
142 
143  point
144  operator+(int val) const
145  {return point(x() + val, y() + val);}
146 
147  point
148  operator-(int val) const
149  {return point(x() - val, y() - val);}
150 
151  point&
152  operator+= (int val)
153  {
154  set(x_ + val, y_ + val);
155  return *this;
156  }
157 
158  point&
159  operator-= (int val)
160  {return (*this) += (-val);}
161 
162  point&
163  operator--()
164  {return (*this) -= 1;}
165 
166  point&
167  operator++()
168  {return (*this) += 1;}
169 
170  point
171  operator--(int)
172  {
173  point tmp(*this);
174  --(*this);
175  return tmp;
176  }
177 
178  point
179  operator++(int)
180  {
181  point tmp(*this);
182  ++(*this);
183  return tmp;
184  }
185 
186  point&
187  operator=(int val)
188  {
189  set(val, val);
190  return *this;
191  }
192 
193  point&
194  operator=(const point& p)
195  {
196  set(p.x(), p.y(), p.is_empty());
197  return *this;
198  }
199 
200  bool
201  is_empty() const
202  {return empty_;}
203 
204  operator bool () const
205  {return !is_empty();}
206 
207  bool
208  operator!() const
209  {return is_empty();}
210 
211  void
212  clear()
213  {
214  x_ = -1;
215  y_ = -1;
216  empty_ = true;
217  }
218 };// end point
219 
220 /// The abstraction of the Snake concept, from the paper.
221 ///
222 /// In a given path from the edit graph, a snake is a non-diagonal
223 /// edge followed by zero or more diagonal edges.
224 ///
225 /// The starting poing of the non-diagonal edge is the beginning of
226 /// the snake. This is given by the snake::begin() method. This point
227 /// is not explicitely referenced in the paper, but we need it for
228 /// some grunt implementation details of the algorithm.
229 ///
230 /// The end point of the non-diagonal edge is the intermediate point
231 /// of the snake; it's given by the snake::intermediate() method.
232 /// This point is what is referred to as "the begining of the snake"
233 /// in the paper.
234 ///
235 /// The end point of the first diagonal edge is given by the
236 /// snake::diagonal_start() method.
237 ///
238 /// The end point of the last diagonal edge is given by the
239 /// snake::end() method. Note that when the snake contains no
240 /// diagonal edge, snake::intermediate(), and snake::end() return the
241 /// same point; snake::diagonal_start() contains an empty point (i.e,
242 /// a point for which point::is_empty() returns true).
243 class snake
244 {
245  point begin_, intermediate_, diagonal_start_, end_;
246  bool forward_;
247 
248 public:
249 
250  /// Default constructor for snake.
252  : forward_(false)
253  {}
254 
255  /// Constructor from the beginning, intermediate and end points.
256  ///
257  /// @param b the beginning point of the snake. That is, the
258  /// starting point of the non-diagonal edge.
259  ///
260  /// @param i the intermediate point of the snake. That is, the end
261  /// point of the non-diagonal edge.
262  ///
263  /// @param e the end point of the snake. That is the end point of
264  /// the last diagonal edge.
265  snake(const point& b,
266  const point& i,
267  const point& e)
268  : begin_(b), intermediate_(i),
269  end_(e), forward_(false)
270  {}
271 
272  /// Constructor from the beginning, intermediate and end points.
273  ///
274  /// @param b the beginning point of the snake. That is, the
275  /// starting point of the non-diagonal edge.
276  ///
277  /// @param i the intermediate point of the snake. That is, the end
278  /// point of the non-diagonal edge.
279  ///
280  /// @param d the beginning of the diagonal edge. That is the end of
281  /// the first diagonal edge of the snake.
282  ///
283  /// @param e the end point of the snake. That is the end point of
284  /// the last diagonal edge.
285  snake(const point& b,
286  const point& i,
287  const point& d,
288  const point& e)
289  : begin_(b), intermediate_(i),
290  diagonal_start_(d), end_(e),
291  forward_(false)
292  {}
293 
294  /// Getter for the starting point of the non-diagonal edge of the
295  /// snake.
296  ///
297  /// @return the starting point of the non-diagonal edge of the snake
298  const point&
299  begin() const
300  {return begin_;}
301 
302  /// Getter for the starting point of the non-diagonal edge of the
303  /// snake, aka begin point.
304  ///
305  ///@param p the new begin point.
306  void
307  begin(const point& p)
308  {begin_ = p;}
309 
310  /// Getter for the end point of the non-diagonal edge of the snake.
311  ///
312  /// @return the end point of the non-diagonal edge of the snake
313  const point&
314  intermediate() const
315  {return intermediate_;}
316 
317  /// Setter for the end point of the non-diagonal edge of the snake,
318  /// aka intermediate point.
319  ///
320  /// @param p the new intermediate point.
321  void
322  intermediate(const point& p)
323  {intermediate_ = p;}
324 
325  /// Getter for the end point of the first diagonal edge, aka
326  /// diagonal start point. Note that if the snake has no diagonal
327  /// edge, this point is empty.
328  ///
329  /// @return the end point of the first diagonal edge.
330  const point&
332  {return diagonal_start_;}
333 
334  /// Setter for the end point of the first diagonal edge, aka
335  /// diagonal start point.
336  ///
337  /// @param p the new diagonal start.d
338  void
340  {diagonal_start_ = p;}
341 
342  /// Getter for the end point of the last diagonal edge, aka snake
343  /// end point. Note that if the snake has no diagonal edge, this
344  /// point is equal to the intermediate point.
345  ///
346  /// @return the end point of the last diagonal edge
347  const point&
348  end() const
349  {return end_;}
350 
351  /// Setter for the end point of the last diagonal edge, aka snake
352  /// end point. Note that if the snake has no diagonal edge, this
353  /// point is equal to the intermediate point.
354  void
355  end(const point& p)
356  {end_ = p;}
357 
358  /// Setter for the begin, intermediate and end points of the snake.
359  ///
360  /// @param b the new snake begin point
361  ///
362  /// @param i the new snake intermediate point
363  ///
364  /// @param e the new snake end point
365  void
366  set(const point& b, const point&i, const point&e)
367  {
368  begin(b);
369  intermediate(i);
370  end(e);
371  }
372 
373  /// Setter for the begin, intermediate, diagonal start and end points
374  /// of the snake.
375  ///
376  /// @param b the new snake begin point
377  ///
378  /// @param i the new snake intermediate point
379  ///
380  /// @param d the new diagonal start point
381  ///
382  /// @param e the new snake end point
383  void
384  set(const point& b, const point&i, const point& d, const point&e)
385  {
386  begin(b);
387  intermediate(i);
388  diagonal_start(d);
389  end(e);
390  }
391 
392  /// @return true iff the snake is a forward snake. That is, if it
393  /// was built while walking the edit graph going forward (from the
394  /// top left corner to the right bottom corner.
395  bool
396  is_forward() const
397  {return forward_;}
398 
399  /// Set to true if the snake is a forward snake; that is, if it was
400  /// built while walking the edit graph going forward (from the top
401  /// left corner to the right bottom corner. Set to false otherwise.
402  ///
403  /// @param f whether the snake is a forward snake or not.
404  void
405  set_forward(bool f)
406  {forward_ = f;}
407 
408  /// Add an offset to the abscissas of the points of the snake, and
409  /// add another offset to the ordinates of these same points.
410  ///
411  /// @param x_offset the offset to add to the abscissas of all the
412  /// points of the snake.
413  ///
414  /// @param y_offset the offset to add to the ordinates of all the
415  /// points of the snake.
416  void
417  add(int x_offset, int y_offset)
418  {
419  if (is_empty())
420  return;
421 
422  begin_.add(x_offset, y_offset);
423  intermediate_.add(x_offset, y_offset);
424  if (diagonal_start_)
425  diagonal_start_.add(x_offset, y_offset);
426  end_.add(x_offset, y_offset);
427  }
428 
429  /// @return true iff the snake has at least one diagonal edge.
430  bool
432  {return !diagonal_start().is_empty();}
433 
434  /// @return true iff the non-diagonal edge is horizontal.
435  bool
437  {return (begin().y() == intermediate().y());}
438 
439  /// @return true iff the non-diagonal edge is vertical.
440  bool
442  {return (begin().x() == intermediate().x());}
443 
444  /// @return true iff the snake is empty, that is, if all the points
445  /// it contains are empty.
446  bool is_empty() const
447  {return begin().is_empty() && intermediate().is_empty() && end().is_empty();}
448 };// end class snake
449 
450 /// The array containing the furthest D-path end-points, for each value
451 /// of K. MAX_D is the maximum value of the D-Path. That is, M+N if
452 /// M is the size of the first input string, and N is the size of the
453 /// second.
454 class d_path_vec : public std::vector<int>
455 {
456 private:
457 
458  unsigned a_size_;
459  unsigned b_size_;
460 
461  /// Forbid vector size modifications
462  void
463  push_back(const vector<int>::value_type&);
464 
465  /// Forbid default constructor.
466  d_path_vec();
467 
468  bool
469  over_bounds(long long index) const
470  {return (index + offset()) >= (long long) size();}
471 
472  void
473  check_index_against_bound(int index) const
474  {
475  if (over_bounds(index))
476  {
477  ostringstream o;
478  o << "index '" << index
479  << "' out of range [-" << max_d() << ", " << max_d() << "]";
480  throw std::out_of_range(o.str());
481  }
482  }
483 
484 public:
485 
486  /// Constructor of the d_path_vec.
487  ///
488  /// For forward vectors, the underlying vector allocates 2 *
489  /// [MAX_D+1].
490  /// space, so that one can address elements in the index range
491  /// [-MAX_D, MAX_D]. And MAX_D is the sum of the two sequence
492  /// sizes. delta is the difference.
493  ///
494  /// For reverse vectors, note that we need to be able to address
495  /// [-MAX_D - delta, MAX_D + delta], with delta being the (signed)
496  /// difference between the size of the two sequences. We consider
497  /// delta being bounded by MAX_D itself; so we say we need to be
498  /// able to address [-2MAX_D, 2MAX_D].
499  ///
500  /// @param size1 the size of the first sequence we are interested
501  /// in.
502  ///
503  /// @param size2 the size of the second sequence we are interested
504  /// in.
505  d_path_vec(unsigned size1, unsigned size2)
506  : vector<int>(2 * (size1 + size2 + 1 + (size1 + size2)) + 1, 0),
507  a_size_(size1), b_size_(size2)
508  {
509  }
510 
511  std::vector<int>::const_reference
512  operator[](int index) const
513  {return at(index);}
514 
515  std::vector<int>::reference
516  operator[](int index)
517  {return at(index);}
518 
519  std::vector<int>::reference
520  at(long long index)
521  {
522  //check_index_against_bound(index);
523  long long i = index + offset();
524  return vector<int>::operator[](i);
525  }
526 
527  std::vector<int>::const_reference
528  at(long long index) const
529  {
530  check_index_against_bound(index);
531  long long i = offset() + index;
532  return static_cast<const vector<int>* >(this)->at(i);
533  }
534 
535  unsigned
536  a_size() const
537  {return a_size_;}
538 
539  unsigned
540  b_size() const
541  {return b_size_;}
542 
543  unsigned
544  max_d() const
545  {return a_size_ + b_size_;}
546 
547  unsigned
548  offset() const
549  {return max_d() + abs((long long) a_size() - (long long) b_size());}
550 }; // end class d_path_vec
551 
552 /// The abstration of an insertion of elements of a sequence B into a
553 /// sequence A. This is used to represent the edit script for
554 /// transforming a sequence A into a sequence B.
555 ///
556 /// And insertion mainly encapsulates two components:
557 ///
558 /// - An insertion point: this is the index (starting at 0) of the
559 /// element of the sequence A after which the insertion occurs.
560 ///
561 /// - Inserted elements: this is a vector of indexes of elements of
562 /// sequence B (starting at 0) that got inserted into sequence A,
563 /// after the insertion point.
565 {
566  int insertion_point_;
567  vector<unsigned> inserted_;
568 
569 public:
570 
571  insertion(int insertion_point,
572  const vector<unsigned>& inserted_indexes)
573  : insertion_point_(insertion_point),
574  inserted_(inserted_indexes)
575  {}
576 
577  insertion(int insertion_point = 0)
578  : insertion_point_(insertion_point)
579  {}
580 
581  int
582  insertion_point_index() const
583  {return insertion_point_;}
584 
585  void
586  insertion_point_index(int i)
587  {insertion_point_ = i;}
588 
589  const vector<unsigned>&
590  inserted_indexes() const
591  {return inserted_;}
592 
593  vector<unsigned>&
594  inserted_indexes()
595  {return inserted_;}
596 };// end class insertion
597 
598 /// The abstraction of the deletion of one element of a sequence A.
599 ///
600 /// This encapsulates the index of the element A that got deleted.
601 class deletion
602 {
603  int index_;
604 
605 public:
606 
607  deletion(int i)
608  : index_(i)
609  {}
610 
611  int
612  index() const
613  {return index_;}
614 
615  void
616  index(int i)
617  {index_ = i;}
618 };// end class deletion
619 
620 /// The abstraction of an edit script for transforming a sequence A
621 /// into a sequence B.
622 ///
623 /// It encapsulates the insertions and deletions for transforming A
624 /// into B.
626 {
627  vector<insertion> insertions_;
628  vector<deletion> deletions_;
629 
630 public:
631 
632  edit_script()
633  {}
634 
635  const vector<insertion>&
636  insertions() const
637  {return insertions_;}
638 
639  vector<insertion>&
640  insertions()
641  {return insertions_;}
642 
643  const vector<deletion>&
644  deletions() const
645  {return deletions_;}
646 
647  vector<deletion>&
648  deletions()
649  {return deletions_;}
650 
651  void
652  append(const edit_script& es)
653  {
654  insertions().insert(insertions().end(),
655  es.insertions().begin(),
656  es.insertions().end());
657  deletions().insert(deletions().end(),
658  es.deletions().begin(),
659  es.deletions().end());
660  }
661 
662  void
663  prepend(const edit_script& es)
664  {
665  insertions().insert(insertions().begin(),
666  es.insertions().begin(),
667  es.insertions().end());
668  deletions().insert(deletions().begin(),
669  es.deletions().begin(),
670  es.deletions().end());
671  }
672 
673  void
674  clear()
675  {
676  insertions().clear();
677  deletions().clear();
678  }
679 
680  bool
681  is_empty() const
682  {return insertions().empty() && deletions().empty();}
683 
684  operator bool() const
685  {return !is_empty();}
686 
687  int
688  num_insertions() const
689  {
690  int l = 0;
691  for (vector<insertion>::const_iterator i = insertions().begin();
692  i != insertions().end();
693  ++i)
694  l += i->inserted_indexes().size();
695  return l;
696  }
697 
698  int
699  num_deletions() const
700  {return deletions().size();}
701 
702  int
703  length() const
704  {return num_insertions() + num_deletions();}
705 };//end class edit_script
706 
707 bool
709  unsigned a_size,
710  unsigned b_size);
711 
712 bool
713 ends_of_furthest_d_paths_overlap(const point& forward_d_path_end,
714  const point& reverse_d_path_end);
715 
716 /// The default equality functor used by the core diffing algorithms.
718 {
719  /// This equality operator uses the default "==" to compare its
720  /// arguments.
721  ///
722  /// @param a the first comparison argument.
723  ///
724  /// @param b the second comparison argument.
725  ///
726  /// @return true if the two arguments are equal, false otherwise.
727  template<typename T>
728  bool
729  operator()(const T a, const T b) const
730  {return a == b;}
731 };
732 
733 
734 /// An equality functor to deeply compare pointers.
736 {
737  /// This equality operator compares pointers by comparing the
738  /// pointed-to objects.
739  ///
740  /// @param first the first comparison argument.
741  ///
742  /// @param second the second comparison argument.
743  ///
744  /// @return true if the objects pointed to by the pointers are
745  /// equal, false otherwise.
746  template<typename T>
747  bool
748  operator()(const T* first,
749  const T* second) const
750  {
751  if (!!first != !!second)
752  return false;
753 
754  if (!first)
755  return true;
756 
757  return *first == *second;
758  }
759 
760  /// This equality operator compares pointers by comparing the
761  /// pointed-to objects.
762  ///
763  /// @param first the first comparison argument.
764  ///
765  /// @param second the second comparison argument.
766  ///
767  /// @return true if the objects pointed to by the pointers are
768  /// equal, false otherwise.
769  template<typename T>
770  bool
771  operator()(const shared_ptr<T> first,
772  const shared_ptr<T> second) const
773  {return operator()(first.get(), second.get());}
774 
775  /// This equality operator compares pointers by comparing the
776  /// pointed-to objects.
777  ///
778  /// @param first the first comparison argument.
779  ///
780  /// @param second the second comparison argument.
781  ///
782  /// @return true if the objects pointed to by the pointers are
783  /// equal, false otherwise.
784  template<typename T>
785  bool
786  operator()(const weak_ptr<T> first,
787  const weak_ptr<T> second) const
788  {return operator()(shared_ptr<T>(first), shared_ptr<T>(second));}
789 }; // end struct deep_ptr_eq_functor
790 
791 /// Find the end of the furthest reaching d-path on diagonal k, for
792 /// two sequences. In the paper This is referred to as "the basic
793 /// algorithm".
794 ///
795 /// Unlike in the paper, the coordinates of the edit graph start at
796 /// (-1,-1), rather than (0,0), and they end at (M-1, N-1), rather
797 /// than (M,N).
798 ///
799 /// @tparm RandomAccessOutputIterator the type of iterators passed to
800 /// this function. It must be a random access output iterator kind.
801 ///
802 /// @tparm EqualityFunctor this must be a class that declares a public
803 /// call operator member returning a boolean and taking two arguments
804 /// that must be of the same type as the one pointed to by the @ref
805 /// RandomAccessOutputIterator template parameter. This functor is
806 /// used to compare the elements referred to by the iterators passed in
807 /// argument to this function.
808 ///
809 /// @param k the number of the diagonal on which we want to find the
810 /// end of the furthest reaching D-path.
811 ///
812 /// @param d the D in D-Path. That's the number of insertions/deletions
813 /// (the number of changes, in other words) in the changeset. That is
814 /// also the number of non-diagonals in the D-Path.
815 ///
816 /// @param a_begin an iterator to the beginning of the first sequence
817 ///
818 /// @param a_end an iterator that points right after the last element
819 /// of the second sequence to consider.
820 ///
821 /// @param b_begin an iterator to the beginning of the second sequence.
822 ///
823 /// @param b_end an iterator that points right after the last element
824 /// of the second sequence to consider.
825 ///
826 /// @param v the vector of furthest end points of d_paths, at (d-1).
827 /// It contains the abscissas of the furthest end points for different
828 /// values of k, at (d-1). That is, for k in [-D + 1, -D + 3, -D + 5,
829 /// ..., D - 1], v[k] is the abscissa of the end of the furthest
830 /// reaching (D-1)-path on diagonal k.
831 ///
832 /// @param snak the last snake of the furthest path found. The end
833 /// point of the snake is the end point of the furthest path.
834 ///
835 /// @return true if the end of the furthest reaching path that was
836 /// found was inside the boundaries of the edit graph, false
837 /// otherwise.
838 template<typename RandomAccessOutputIterator,
839  typename EqualityFunctor>
840 bool
842  RandomAccessOutputIterator a_begin,
843  RandomAccessOutputIterator a_end,
844  RandomAccessOutputIterator b_start,
845  RandomAccessOutputIterator b_end,
846  d_path_vec& v, snake& snak)
847 {
848  int x = -1, y = -1;
849  point begin, intermediate, diag_start, end;
850  snake s;
851  EqualityFunctor eq;
852 
853  // Let's pick the end point of the furthest reaching
854  // (D-1)-path. It's either v[k-1] or v[k+1]; the word
855  // "furthest" means we choose the one which abscissa is the
856  // greatest (that is, furthest from abscissa zero).
857  if (k == -d || ((k != d) && (v[k-1] < v[k + 1])))
858  // So, the abscissa of the end point of the furthest
859  // reaching (D-1)-path is v[k+1]. That is a diagonal that
860  // is above the current (k) diagonal, and on the right.
861  // To move to the current k diagonal, one has to move
862  // "down" from the diagonal k+1. So the abscissa won't
863  // change. Only the ordinate will. It will be given by y
864  // = x - k (a bit below); as k has changed from k - 1 (it
865  // has increased), y is going to be the new y that is
866  // 'down' from the previous y in k - 1.
867  {
868  x = v[k+1];
869  begin.set(x, x - (k + 1));
870  }
871  else
872  {
873  // So the abscissa of the end point of the furthest
874  // (D-1)-path is v[k-1]. That is on the left of the
875  // current k diagonal. To move to the current k diagonal,
876  // one has to move "right" from diagonal k - 1. That is,
877  // the y stays constant and x is incremented.
878  x = v[k-1];
879  begin.set(x, x - (k - 1));
880  ++x;
881  }
882 
883  // Now get the value of y from the equation k = x -y.
884  // This is the point where we first touch K, when we move
885  // from the end of the furthest reaching (D-1)-path.
886  y = x - k;
887 
888  intermediate.x(x);
889  intermediate.y(y);
890 
891  int last_x_index = a_end - a_begin - 1;
892  int last_y_index = b_end - b_start - 1;
893  // Now, follow the snake (aka, zero or more consecutive
894  // diagonals). Note that we stay on the k diagonal when we
895  // do this.
896  while ((x < last_x_index) && (y < last_y_index))
897  if (eq(a_begin[x + 1], b_start[y + 1]))
898  {
899  x = x + 1;
900  y = y + 1;
901  if (!diag_start)
902  diag_start.set(x, y);
903  }
904  else
905  break;
906 
907  end.x(x);
908  end.y(y);
909 
910  // Note the point that we store in v here might be outside the
911  // bounds of the edit graph. But we store it at this step (for a
912  // given D) anyway, because out of bound or not, we need this value
913  // at this step to be able to compute the value of the point on the
914  // "next" diagonal for the next D.
915  v[k] = x;
916 
917  if (x >= (int) v.a_size()
918  || y >= (int) v.b_size()
919  || x < -1 || y < -1)
920  return false;
921 
922  s.set(begin, intermediate, diag_start, end);
923  s.set_forward(true);
924  snak = s;
925 
926  return true;
927 }
928 
929 /// Find the end of the furthest reaching reverse d-path on diagonal k
930 /// + delta. Delta is abs(M - N), with M being the size of a and N
931 /// being the size of b. This is the "basic algorithm", run backward.
932 /// That is, starting from the point (M,N) of the edit graph.
933 ///
934 /// Unlike in the paper, the coordinates of the edit graph start at
935 /// (-1,-1), rather than (0,0), and they end at (M-1, N-1), rather
936 /// than (M,N).
937 ///
938 /// @tparm RandomAccessOutputIterator the type of iterators passed to
939 /// this function. It must be a random access output iterator kind.
940 ///
941 /// @tparm EqualityFunctor this must be a class that declares a public
942 /// call operator member returning a boolean and taking two arguments
943 /// that must be of the same type as the one pointed to by the @ref
944 /// RandomAccessOutputIterator template parameter. This functor is
945 /// used to compare the elements referred to by the iterators passed in
946 /// argument to this function.
947 ///
948 /// @param k the number of the diagonal on which we want to find the
949 /// end of the furthest reaching reverse D-path. Actually, we want to
950 /// find the end of the furthest reaching reverse D-path on diagonal (k
951 /// - delta).
952 ///
953 /// @param d the D in D-path. That's the number of insertions/deletions
954 /// (the number of changes, in other words) in the changeset. That is
955 /// also the number of non-diagonals in the D-Path.
956 ///
957 /// @param a_begin an iterator to the beginning of the first sequence
958 ///
959 /// @param a_end an iterator that points right after the last element
960 /// of the second sequence to consider.
961 ///
962 /// @param b_begin an iterator to the beginning of the second sequence.
963 ///
964 /// @param b_end an iterator that points right after the last element
965 /// of the second sequence to consider.
966 ///
967 /// @param v the vector of furthest end points of d_paths, at (d-1).
968 /// It contains the abscissae of the furthest end points for different
969 /// values of k - delta, at (d-1). That is, for k in [-D + 1, -D + 3,
970 /// -D + 5, ..., D - 1], v[k - delta] is the abscissa of the end of the
971 /// furthest reaching (D-1)-path on diagonal k - delta.
972 ///
973 /// @param snak the last snake of the furthest path found. The end
974 /// point of the snake is the end point of the furthest path.
975 ///
976 /// @return true iff the end of the furthest reaching path that was
977 /// found was inside the boundaries of the edit graph, false
978 /// otherwise.
979 template<typename RandomAccessOutputIterator,
980  typename EqualityFunctor>
981 bool
983  RandomAccessOutputIterator a_begin,
984  RandomAccessOutputIterator a_end,
985  RandomAccessOutputIterator b_begin,
986  RandomAccessOutputIterator b_end,
987  d_path_vec& v, snake& snak)
988 {
989  int a_size = a_end - a_begin;
990  int b_size = b_end - b_begin;
991  int delta = a_size - b_size;
992  int k_plus_delta = k + delta;
993  int x = -1, y = -1;
994  point begin, intermediate, diag_start, end;
995  snake s;
996  EqualityFunctor eq;
997 
998  // Let's pick the end point of the furthest reaching (D-1)-path and
999  // move from there to reach the current k_plus_delta-line. That end
1000  // point of the furthest reaching (D-1)-path is either on
1001  // v[k_plus_delta-1] or on v[k_plus_delta+1]; the word "furthest"
1002  // means we choose the one which abscissa is the lowest (that is,
1003  // furthest from abscissa M).
1004  if (k_plus_delta == -d + delta
1005  || ((k_plus_delta != d + delta)
1006  && (v[k_plus_delta + 1] <= v[k_plus_delta - 1])))
1007  {
1008  // We move left, that means ordinate won't change ...
1009  x = v[k_plus_delta + 1];
1010  y = x - (k_plus_delta + 1);
1011  begin.set(x, y);
1012  // ... and abscissa decreases.
1013  x = x - 1;
1014  }
1015  else
1016  {
1017  // So the furthest end point is on the k_plus_delta - 1
1018  // diagonal. That is a diagonal that is 'below' the
1019  // k_plus_delta current diagonal. So to join the current
1020  // diagonal from the k_plus_delta - 1 one, we need to move up.
1021 
1022  // So moving up means abscissa won't change ...
1023  x = v[k_plus_delta - 1];
1024  begin.set(x, x - (k_plus_delta - 1));
1025  // ... and that ordinate decreases.
1026  y = x - (k_plus_delta - 1) - 1;
1027  }
1028 
1029  intermediate.set(x, y);
1030 
1031  // Now, follow the snake. Note that we stay on the k_plus_delta
1032  // diagonal when we do this.
1033  while (x >= 0 && y >= 0)
1034  if (eq(a_begin[x], b_begin[y]))
1035  {
1036  if (!diag_start)
1037  diag_start.set(x, y);
1038  x = x - 1;
1039  y = y - 1;
1040  }
1041  else
1042  break;
1043 
1044  end.set(x, y);
1045 
1046  // Note the point that we store in v here might be outside the
1047  // bounds of the edit graph. But we store it at this step (for a
1048  // given D) anyway, because out of bound or not, we need this value
1049  // at this step to be able to compute the value of the point on the
1050  // "next" diagonal for the next D.
1051  v[k_plus_delta] = x;
1052 
1053  if (x == -1 && y == -1)
1054  ;
1055  else if (x < -1 || y < -1)
1056  return false;
1057 
1058  s.set(begin, intermediate, diag_start, end);
1059  s.set_forward(false);
1060  snak = s;
1061 
1062  return true;
1063 }
1064 
1065 /// Tests if a given point is a match point in an edit graph.
1066 ///
1067 /// @param a_begin the begin iterator of the first input sequence of
1068 /// the edit graph.
1069 ///
1070 /// @param a_end the end iterator of the first input sequence of the
1071 /// edit graph. This points to one element passed the end of the
1072 /// sequence.
1073 ///
1074 /// @param b_begin the begin iterator of the second input sequence of
1075 /// the edit graph.
1076 ///
1077 /// @param b_end the end iterator of the second input sequence of the
1078 /// edit graph. This points the one element passed the end of the
1079 /// sequence.
1080 ///
1081 /// @param point the point to test for being a match point.
1082 ///
1083 /// @return true iff \a point is a match point.
1084 template<typename RandomAccessOutputIterator>
1085 bool
1086 is_match_point(RandomAccessOutputIterator a_begin,
1087  RandomAccessOutputIterator a_end,
1088  RandomAccessOutputIterator b_begin,
1089  RandomAccessOutputIterator b_end,
1090  const point& point)
1091 {
1092  int a_size = a_end - a_begin, b_size = b_end - b_begin;
1093 
1094  if (point.x() < 0
1095  || point.x () >= a_size
1096  || point.y() < 0
1097  || point.y() >= b_size)
1098  return false;
1099 
1100  return (a_begin[point.x()] == b_begin[point.y()]);
1101 }
1102 
1103 /// Returns the middle snake of two sequences A and B, as well as the
1104 /// length of their shortest editing script.
1105 ///
1106 /// This uses the "linear space refinement" algorithm presented in
1107 /// section 4b in the paper. As the paper says, "The idea for doing
1108 /// so is to simultaneously run the basic algorithm in both the
1109 /// forward and reverse directions until furthest reaching forward and
1110 /// reverse paths starting at opposing corners 'overlap'."
1111 ///
1112 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1113 /// this function. It must be a random access output iterator kind.
1114 ///
1115 /// @tparm EqualityFunctor this must be a class that declares a public
1116 /// call operator member returning a boolean and taking two arguments
1117 /// that must be of the same type as the one pointed to by the @ref
1118 /// RandomAccessOutputIterator template parameter. This functor is
1119 /// used to compare the elements referred to by the iterators passed in
1120 /// argument to this function.
1121 ///
1122 /// @param a_begin an iterator pointing to the begining of sequence A.
1123 ///
1124 /// @param a_end an iterator pointing to the end of sequence A. Note
1125 /// that this points right /after/ the end of vector A.
1126 ///
1127 /// @param b_begin an iterator pointing to the begining of sequence B.
1128 ///
1129 /// @param b_end an iterator pointing to the end of sequence B. Note
1130 /// that this points right /after/ the end of vector B
1131 ///
1132 /// @param snak out parameter. This is the snake current when the two
1133 /// paths overlapped. This is set iff the function returns true;
1134 /// otherwise, this is not touched.
1135 ///
1136 /// @return true is the snake was found, false otherwise.
1137 template<typename RandomAccessOutputIterator,
1138  typename EqualityFunctor>
1139 bool
1140 compute_middle_snake(RandomAccessOutputIterator a_begin,
1141  RandomAccessOutputIterator a_end,
1142  RandomAccessOutputIterator b_begin,
1143  RandomAccessOutputIterator b_end,
1144  snake& snak, int& ses_len)
1145 {
1146  int a_size = a_end - a_begin;
1147  int N = a_size;
1148  int b_size = b_end - b_begin;
1149  int M = b_size;
1150  int delta = N - M;
1151  d_path_vec forward_d_paths(a_size, b_size);
1152  d_path_vec reverse_d_paths(a_size, b_size);
1153  // These points below are the top leftmost point and bottom
1154  // right-most points of the edit graph.
1155  point first_point(-1, -1), last_point(a_size -1, b_size -1), point_zero(0, 0);
1156 
1157  // We want the initial step (D = 0, k = 0 in the paper) to find a
1158  // furthest reaching point on diagonal k == 0; For that, we need the
1159  // value of x for k == 1; So let's set that value to -1; that is for
1160  // k == 1 (diagonal 1), the point in the edit graph is (-1,-2).
1161  // That way, to get the furthest reaching point on diagonal 0 (k ==
1162  // 0), we go down from (-1,-2) on diagonal 1 and we hit diagonal 0
1163  // on (-1,-1); that is the starting value that the algorithm expects
1164  // for k == 0.
1165  forward_d_paths[1] = -1;
1166 
1167  // Similarly for the reverse paths, for diagonal delta + 1 (note
1168  // that diagonals are centered on delta, unlike for forward paths
1169  // where they are centered on zero), we set the initial point to
1170  // (a_size, b_size - 1). That way, at step D == 0 and k == delta,
1171  // to reach diagonal delta from the point (a_size, b_size - 1) on
1172  // diagonal delta + 1, we just have to move left, and we hit
1173  // diagonal delta on (a_size - 1, b_size -1); that is the starting
1174  // point value the algorithm expects for k == 0 in the reverse case.
1175  reverse_d_paths[delta + 1] = a_size;
1176 
1177  int d_max = (M + N) / 2 + 1;
1178  for (int d = 0; d <= d_max; ++d)
1179  {
1180  // First build forward paths.
1181  for (int k = -d; k <= d; k += 2)
1182  {
1183  snake s;
1184  bool found =
1185  end_of_fr_d_path_in_k<RandomAccessOutputIterator,
1186  EqualityFunctor>(k, d,
1187  a_begin, a_end,
1188  b_begin, b_end,
1189  forward_d_paths, s);
1190  if (!found)
1191  continue;
1192 
1193  // As the paper says in 4b while explaining the middle snake
1194  // algorithm:
1195  //
1196  // "Thus when delta is odd, check for overlap only while
1197  // extending forward paths ..."
1198  if ((delta % 2)
1199  && (k >= (delta - (d - 1))) && (k <= (delta + (d - 1))))
1200  {
1201  point reverse_end;
1202  reverse_end.x(reverse_d_paths[k]);
1203  reverse_end.y(reverse_end.x() - k);
1204  if (ends_of_furthest_d_paths_overlap(s.end(), reverse_end))
1205  {
1206  ses_len = 2 * d - 1;
1207  snak = s;
1208  return true;
1209  }
1210  }
1211  }
1212 
1213  // Now build reverse paths.
1214  for (int k = -d; k <= d; k += 2)
1215  {
1216  snake s;
1217  bool found =
1218  end_of_frr_d_path_in_k_plus_delta<RandomAccessOutputIterator,
1219  EqualityFunctor>(k, d,
1220  a_begin, a_end,
1221  b_begin, b_end,
1222  reverse_d_paths,
1223  s);
1224 
1225  if (!found)
1226  continue;
1227 
1228  // And the paper continues by saying:
1229  //
1230  // "... and when delta is even, check for overlap only while
1231  // extending reverse paths."
1232  int k_plus_delta = k + delta;
1233  if (!(delta % 2)
1234  && (k_plus_delta >= -d) && (k_plus_delta <= d))
1235  {
1236  point forward_end;
1237  forward_end.x(forward_d_paths[k_plus_delta]);
1238  forward_end.y(forward_end.x() - k_plus_delta);
1239  if (ends_of_furthest_d_paths_overlap(forward_end, s.end()))
1240  {
1241  ses_len = 2 * d;
1242  snak = s;
1243  return true;
1244  }
1245  }
1246  }
1247  }
1248  return false;
1249 }
1250 
1251 bool
1252 compute_middle_snake(const char* str1, const char* str2,
1253  snake& s, int& ses_len);
1254 
1255 /// This prints the middle snake of two strings.
1256 ///
1257 /// @param a_begin the beginning of the first string.
1258 ///
1259 /// @param b_begin the beginning of the second string.
1260 ///
1261 /// @param s the snake to print.
1262 ///
1263 /// @param out the output stream to print the snake to.
1264 template<typename RandomAccessOutputIterator>
1265 void
1266 print_snake(RandomAccessOutputIterator a_begin,
1267  RandomAccessOutputIterator b_begin,
1268  const snake &s, ostream& out)
1269 {
1270  if (s.is_empty())
1271  return;
1272 
1273  out << "snake start: ";
1274  out << "(" << s.begin().x() << ", " << s.end().y() << ")\n";
1275 
1276  out << "snake intermediate: ";
1277  out << "(" << s.intermediate().x() << ", " << s.intermediate().y() << ")\n";
1278 
1279  out << "diagonal point(s): ";
1280  if (s.has_diagonal_edge())
1281  for (int x = s.intermediate().x(), y = s.intermediate().y();
1282  x <= s.end().x() && y <= s.end().y();
1283  ++x, ++y)
1284  {
1285  ABG_ASSERT(a_begin[x] == b_begin[y]);
1286  out << "(" << x << "," << y << ") ";
1287  }
1288  out << "\n";
1289 
1290  out << "snake end: ";
1291  out << "(" << s.end().x() << ", " << s.end().y() << ")\n";
1292 }
1293 
1294 /// Compute the length of the shortest edit script for two sequences a
1295 /// and b. This is done using the "Greedy LCS/SES" of figure 2 in the
1296 /// paper. It can walk the edit graph either foward (when reverse is
1297 /// false) or backward starting from the end (when reverse is true).
1298 ///
1299 /// Here, note that the real content of a and b should start at index
1300 /// 1, for this implementatikon algorithm to match the paper's
1301 /// algorithm in a straightforward manner. So pleast make sure that
1302 /// at index 0, we just get some non-used value.
1303 ///
1304 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1305 /// this function. It must be a random access output iterator kind.
1306 ///
1307 /// @tparm EqualityFunctor this must be a class that declares a public
1308 /// call operator member returning a boolean and taking two arguments
1309 /// that must be of the same type as the one pointed to by the @ref
1310 /// RandomAccessOutputIterator template parameter. This functor is
1311 /// used to compare the elements referred to by the iterators passed in
1312 /// argument to this function.
1313 ///
1314 /// @param a the first sequence we care about.
1315 ///
1316 /// @param b the second sequence we care about.
1317 ///
1318 /// @param v the vector that contains the end points of the furthest
1319 /// reaching d-path and (d-1)-path.
1320 template<typename RandomAccessOutputIterator,
1321  typename EqualityFunctor>
1322 int
1323 ses_len(RandomAccessOutputIterator a_begin,
1324  RandomAccessOutputIterator a_end,
1325  RandomAccessOutputIterator b_begin,
1326  RandomAccessOutputIterator b_end,
1327  d_path_vec& v, bool reverse)
1328 {
1329  unsigned a_size = a_end - a_begin;
1330  unsigned b_size = b_end - b_begin;
1331  snake snak;
1332 
1333  ABG_ASSERT(v.max_d() == a_size + b_size);
1334 
1335  int delta = a_size - b_size;
1336 
1337  if (reverse)
1338  // Set a fictitious (M, N-1) into v[1], to find the furthest
1339  // reaching reverse 0-path (i.e, when we are at d == 0 and k == 0).
1340  v[delta + 1] = a_size - 1;
1341  else
1342  // Set a fictitious (-1,-2) point into v[1], to find the furthest
1343  // reaching forward 0-path (i.e, when we are at d == 0 and k == 0).
1344  v[1] = -1;
1345 
1346  for (unsigned d = 0; d <= v.max_d(); ++d)
1347  {
1348  for (int k = -d; k <= (int) d; k += 2)
1349  {
1350  point end;
1351  if (reverse)
1352  {
1353  bool found =
1354  end_of_frr_d_path_in_k_plus_delta<RandomAccessOutputIterator,
1355  EqualityFunctor>(k, d,
1356  a_begin, a_end,
1357  b_begin, b_end,
1358  v, snak);
1359  // If we reached the upper left corner of the edit graph then
1360  // we are done.
1361  if (found && snak.end().x() == -1 && snak.end().y() == -1)
1362  return d;
1363  }
1364  else
1365  {
1366  end_of_fr_d_path_in_k<RandomAccessOutputIterator,
1367  EqualityFunctor>(k, d,
1368  a_begin, a_end,
1369  b_begin, b_end,
1370  v, snak);
1371  // If we reached the lower right corner of the edit
1372  // graph then we are done.
1373  if ((snak.end().x() == (int) a_size - 1)
1374  && (snak.end().y() == (int) b_size - 1))
1375  return d;
1376  }
1377  }
1378  }
1379  return 0;
1380 }
1381 
1382 /// Compute the length of the shortest edit script for two sequences a
1383 /// and b. This is done using the "Greedy LCS/SES" of figure 2 in the
1384 /// paper. It can walk the edit graph either foward (when reverse is
1385 /// false) or backward starting from the end (when reverse is true).
1386 ///
1387 /// Here, note that the real content of a and b should start at index
1388 /// 1, for this implementatikon algorithm to match the paper's
1389 /// algorithm in a straightforward manner. So pleast make sure that
1390 /// at index 0, we just get some non-used value.
1391 ///
1392 /// Note that the equality operator used to compare the elements
1393 /// passed in argument to this function is the default "==" operator.
1394 ///
1395 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1396 /// this function. It must be a random access output iterator kind.
1397 ///
1398 /// @param a the first sequence we care about.
1399 ///
1400 /// @param b the second sequence we care about.
1401 ///
1402 /// @param v the vector that contains the end points of the furthest
1403 /// reaching d-path and (d-1)-path.
1404 template<typename RandomAccessOutputIterator>
1405 int
1406 ses_len(RandomAccessOutputIterator a_begin,
1407  RandomAccessOutputIterator a_end,
1408  RandomAccessOutputIterator b_begin,
1409  RandomAccessOutputIterator b_end,
1410  d_path_vec& v, bool reverse)
1411 {
1412  return ses_len<RandomAccessOutputIterator, default_eq_functor>(a_begin, a_end,
1413  b_begin, b_end,
1414  v, reverse);
1415 }
1416 
1417 int
1418 ses_len(const char* str1,
1419  const char* str2,
1420  bool reverse = false);
1421 
1422 bool
1423 snake_end_points(const snake& s, point&, point&);
1424 
1425 /// Compute the longest common subsequence of two (sub-regions of)
1426 /// sequences as well as the shortest edit script from transforming
1427 /// the first (sub-region of) sequence into the second (sub-region of)
1428 /// sequence.
1429 ///
1430 /// A sequence is determined by a base, a beginning offset and an end
1431 /// offset. The base always points to the container that contains the
1432 /// sequence to consider. The beginning offset is an iterator that
1433 /// points the beginning of the sub-region of the sequence that we
1434 /// actually want to consider. The end offset is an iterator that
1435 /// points to the end of the sub-region of the sequence that we
1436 /// actually want to consider.
1437 ///
1438 /// This uses the LCS algorithm of the paper at section 4b.
1439 ///
1440 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1441 /// this function. It must be a random access output iterator kind.
1442 ///
1443 /// @tparm EqualityFunctor this must be a class that declares a public
1444 /// call operator member returning a boolean and taking two arguments
1445 /// that must be of the same type as the one pointed to by the @ref
1446 /// RandomAccessOutputIterator template parameter. This functor is
1447 /// used to compare the elements referred to by the iterators passed in
1448 /// argument to this function.
1449 ///
1450 /// @param a_base the iterator to the base of the first sequence.
1451 ///
1452 /// @param a_start an iterator to the beginning of the sub-region
1453 /// of the first sequence to actually consider.
1454 ///
1455 /// @param a_end an iterator to the end of the sub-region of the first
1456 /// sequence to consider.
1457 ///
1458 ///@param b_base an iterator to the base of the second sequence to
1459 ///consider.
1460 ///
1461 /// @param b_start an iterator to the beginning of the sub-region
1462 /// of the second sequence to actually consider.
1463 ///
1464 /// @param b_end an iterator to the end of the sub-region of the
1465 /// second sequence to actually consider.
1466 ///
1467 /// @param lcs the resulting lcs. This is set iff the function
1468 /// returns true.
1469 ///
1470 /// @param ses the resulting shortest editing script.
1471 ///
1472 /// @param ses_len the length of the ses above. Normally this can be
1473 /// retrieved from ses.length(), but this parameter is here for sanity
1474 /// check purposes. The function computes the length of the ses in
1475 /// two redundant ways and ensures that both methods lead to the same
1476 /// result.
1477 ///
1478 /// @return true upon successful completion, false otherwise.
1479 template<typename RandomAccessOutputIterator,
1480  typename EqualityFunctor>
1481 void
1482 compute_diff(RandomAccessOutputIterator a_base,
1483  RandomAccessOutputIterator a_begin,
1484  RandomAccessOutputIterator a_end,
1485  RandomAccessOutputIterator b_base,
1486  RandomAccessOutputIterator b_begin,
1487  RandomAccessOutputIterator b_end,
1488  vector<point>& lcs,
1489  edit_script& ses,
1490  int& ses_len)
1491 {
1492  int a_size = a_end - a_begin;
1493  int b_size = b_end - b_begin;
1494  unsigned a_offset = a_begin - a_base, b_offset = b_begin - b_base;
1495 
1496  if (a_size == 0 || b_size == 0)
1497  {
1498  if (a_size > 0 && b_size == 0)
1499  // All elements of the first sequences have been deleted. So add
1500  // the relevant deletions to the edit script.
1501  for (RandomAccessOutputIterator i = a_begin; i < a_end; ++i)
1502  ses.deletions().push_back(deletion(i - a_base));
1503 
1504  if (b_size > 0 && a_size == 0)
1505  {
1506  // All elements present in the second sequence are part of
1507  // an insertion into the first sequence at a_end. So add
1508  // that insertion to the edit script.
1509  int a_full_size = a_end - a_base;
1510  int insertion_index = a_full_size ? a_full_size - 1 : -1;
1511  insertion ins(insertion_index);
1512  for (RandomAccessOutputIterator i = b_begin; i < b_end; ++i)
1513  ins.inserted_indexes().push_back(i - b_base);
1514 
1515  ses.insertions().push_back(ins);
1516  }
1517 
1518  ses_len = a_size + b_size;
1519  return;
1520  }
1521 
1522  int d = 0;
1523  snake snak;
1524  vector<point> trace; // the trace of the edit graph. Read the paper
1525  // to understand what a trace is.
1526  bool has_snake =
1527  compute_middle_snake<RandomAccessOutputIterator,
1528  EqualityFunctor>(a_begin, a_end,
1529  b_begin, b_end,
1530  snak, d);
1531  if (has_snake)
1532  {
1533  // So middle_{begin,end} are expressed wrt a_begin and b_begin.
1534  // Let's express them wrt a_base and b_base.
1535  snak.add(a_offset, b_offset);
1536  ses_len = d;
1537  }
1538 
1539  if (has_snake)
1540  {
1541  if ( snak.has_diagonal_edge())
1542  for (int x = snak.diagonal_start().x(), y = snak.diagonal_start().y();
1543  x <= snak.end().x() && y <= snak.end().y();
1544  ++x, ++y)
1545  {
1546  point p(x, y);
1547  trace.push_back(p);
1548  }
1549  }
1550  else
1551  {
1552  // So there is no middle snake. That means there is no lcs, so
1553  // the two sequences are different.
1554 
1555  // In other words, all the elements of the first sequence have
1556  // been deleted ...
1557  for (RandomAccessOutputIterator i = a_begin; i < a_end; ++i)
1558  ses.deletions().push_back(deletion(i - a_base));
1559 
1560  // ... and all the elements of the second sequence are insertions
1561  // that happen at the beginning of the first sequence.
1562  insertion ins(a_begin - a_base);
1563  for (RandomAccessOutputIterator i = b_begin; i < b_end; ++i)
1564  ins.inserted_indexes().push_back(i - b_base);
1565  ses.insertions().push_back(ins);
1566 
1567  ses_len = a_size + b_size;
1568  ABG_ASSERT(ses_len == ses.length());
1569  return;
1570  }
1571 
1572  if (d > 1)
1573  {
1574  int tmp_ses_len0 = 0;
1575  edit_script tmp_ses0;
1576  point px, pu;
1577  snake_end_points(snak, px, pu);
1578  compute_diff<RandomAccessOutputIterator,
1579  EqualityFunctor>(a_base, a_begin, a_base + (px.x() + 1),
1580  b_base, b_begin, b_base + (px.y() + 1),
1581  lcs, tmp_ses0, tmp_ses_len0);
1582 
1583  lcs.insert(lcs.end(), trace.begin(), trace.end());
1584 
1585  int tmp_ses_len1 = 0;
1586  edit_script tmp_ses1;
1587  compute_diff<RandomAccessOutputIterator,
1588  EqualityFunctor>(a_base, a_base + (pu.x() + 1), a_end,
1589  b_base, b_base + (pu.y() + 1), b_end,
1590  lcs, tmp_ses1, tmp_ses_len1);
1591  ABG_ASSERT(tmp_ses0.length() + tmp_ses1.length() == d);
1592  ABG_ASSERT(tmp_ses_len0 + tmp_ses_len1 == d);
1593  ses.append(tmp_ses0);
1594  ses.append(tmp_ses1);
1595  }
1596  else if (d == 1)
1597  {
1598  if (snak.has_diagonal_edge())
1599  {
1600  for (int x = snak.diagonal_start().x(), y = snak.diagonal_start().y();
1601  x <= snak.end().x() && y <= snak.end().y();
1602  ++x, ++y)
1603  {
1604  point p(x, y);
1605  trace.push_back(p);
1606  }
1607  }
1608 
1609  if (snak.has_vertical_edge())
1610  {
1611  point p = snak.intermediate();
1612  insertion ins(p.x());
1613  ins.inserted_indexes().push_back(p.y());
1614  ses.insertions().push_back(ins);
1615  }
1616  else if (snak.has_horizontal_edge())
1617  {
1618  if (snak.is_forward())
1619  {
1620  deletion del(snak.intermediate().x());
1621  ses.deletions().push_back(del);
1622  }
1623  else
1624  {
1625  deletion del(snak.begin().x());
1626  ses.deletions().push_back(del);
1627  }
1628  }
1629  }
1630  else if (d == 0)
1631  {
1632  // Obviously on the middle snake is part of the solution, as
1633  // there is no edit script; iow, the two sequences are
1634  // identical.
1635  lcs.insert(lcs.end(), trace.begin(), trace.end());
1636  ses_len = 0;
1637  }
1638 
1639  ABG_ASSERT(ses_len == ses.length());
1640 }
1641 
1642 /// Compute the longest common subsequence of two (sub-regions of)
1643 /// sequences as well as the shortest edit script from transforming
1644 /// the first (sub-region of) sequence into the second (sub-region of)
1645 /// sequence.
1646 ///
1647 /// This uses the LCS algorithm of the paper at section 4b.
1648 ///
1649 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1650 /// this function. It must be a random access output iterator kind.
1651 ///
1652 /// @tparm EqualityFunctor this must be a class that declares a public
1653 /// call operator member returning a boolean and taking two arguments
1654 /// that must be of the same type as the one pointed to by the @ref
1655 /// RandomAccessOutputIterator template parameter. This functor is
1656 /// used to compare the elements referred to by the iterators passed in
1657 /// argument to this function.
1658 ///
1659 /// @param a_start an iterator to the beginning of the first sequence
1660 /// to consider.
1661 ///
1662 /// @param a_end an iterator to the end of the first sequence to
1663 /// consider.
1664 ///
1665 /// @param b_start an iterator to the beginning of the second sequence
1666 /// to consider.
1667 ///
1668 /// @param b_end an iterator to the end of the second sequence to
1669 /// consider.
1670 ///
1671 /// @param lcs the resulting lcs. This is set iff the function
1672 /// returns true.
1673 ///
1674 /// @param ses the resulting shortest editing script.
1675 ///
1676 /// @param ses_len the length of the ses above. Normally this can be
1677 /// retrieved from ses.length(), but this parameter is here for sanity
1678 /// check purposes. The function computes the length of the ses in
1679 /// two redundant ways and ensures that both methods lead to the same
1680 /// result.
1681 ///
1682 /// @return true upon successful completion, false otherwise.
1683 template<typename RandomAccessOutputIterator,
1684  typename EqualityFunctor>
1685 void
1686 compute_diff(RandomAccessOutputIterator a_begin,
1687  RandomAccessOutputIterator a_end,
1688  RandomAccessOutputIterator b_begin,
1689  RandomAccessOutputIterator b_end,
1690  vector<point>& lcs,
1691  edit_script& ses,
1692  int& ses_len)
1693 {
1694  compute_diff<RandomAccessOutputIterator,
1695  EqualityFunctor>(a_begin, a_begin, a_end,
1696  b_begin, b_begin, b_end,
1697  lcs, ses, ses_len);
1698 }
1699 
1700 /// Compute the longest common subsequence of two (sub-regions of)
1701 /// sequences as well as the shortest edit script from transforming
1702 /// the first (sub-region of) sequence into the second (sub-region of)
1703 /// sequence.
1704 ///
1705 /// A sequence is determined by a base, a beginning offset and an end
1706 /// offset. The base always points to the container that contains the
1707 /// sequence to consider. The beginning offset is an iterator that
1708 /// points the beginning of the sub-region of the sequence that we
1709 /// actually want to consider. The end offset is an iterator that
1710 /// points to the end of the sub-region of the sequence that we
1711 /// actually want to consider.
1712 ///
1713 /// This uses the LCS algorithm of the paper at section 4b.
1714 ///
1715 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1716 /// this function. It must be a random access output iterator kind.
1717 ///
1718 /// @tparm EqualityFunctor this must be a class that declares a public
1719 /// call operator member returning a boolean and taking two arguments
1720 /// that must be of the same type as the one pointed to by the @ref
1721 /// RandomAccessOutputIterator template parameter. This functor is
1722 /// used to compare the elements referred to by the iterators passed in
1723 /// argument to this function.
1724 ///
1725 /// @param a_base the iterator to the base of the first sequence.
1726 ///
1727 /// @param a_start an iterator to the beginning of the sub-region
1728 /// of the first sequence to actually consider.
1729 ///
1730 /// @param a_end an iterator to the end of the sub-region of the first
1731 /// sequence to consider.
1732 ///
1733 ///@param b_base an iterator to the base of the second sequence to
1734 ///consider.
1735 ///
1736 /// @param b_start an iterator to the beginning of the sub-region
1737 /// of the second sequence to actually consider.
1738 ///
1739 /// @param b_end an iterator to the end of the sub-region of the
1740 /// second sequence to actually consider.
1741 ///
1742 /// @param lcs the resulting lcs. This is set iff the function
1743 /// returns true.
1744 ///
1745 /// @param ses the resulting shortest editing script.
1746 ///
1747 /// @return true upon successful completion, false otherwise.
1748 template<typename RandomAccessOutputIterator,
1749  typename EqualityFunctor>
1750 void
1751 compute_diff(RandomAccessOutputIterator a_base,
1752  RandomAccessOutputIterator a_begin,
1753  RandomAccessOutputIterator a_end,
1754  RandomAccessOutputIterator b_base,
1755  RandomAccessOutputIterator b_begin,
1756  RandomAccessOutputIterator b_end,
1757  vector<point>& lcs,
1758  edit_script& ses)
1759 {
1760  int ses_len = 0;
1761 
1762  compute_diff<RandomAccessOutputIterator,
1763  EqualityFunctor>(a_base, a_begin, a_end,
1764  b_base, b_begin, b_end,
1765  lcs, ses, ses_len);
1766 }
1767 
1768 /// Compute the longest common subsequence of two (sub-regions of)
1769 /// sequences as well as the shortest edit script from transforming
1770 /// the first (sub-region of) sequence into the second (sub-region of)
1771 /// sequence.
1772 ///
1773 /// This uses the LCS algorithm of the paper at section 4b.
1774 ///
1775 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1776 /// this function. It must be a random access output iterator kind.
1777 ///
1778 /// @tparm EqualityFunctor this must be a class that declares a public
1779 /// call operator member returning a boolean and taking two arguments
1780 /// that must be of the same type as the one pointed to by the @ref
1781 /// RandomAccessOutputIterator template parameter. This functor is
1782 /// used to compare the elements referred to by the iterators passed in
1783 /// argument to this function.
1784 ///
1785 /// @param a_start an iterator to the beginning of the first sequence
1786 /// to consider.
1787 ///
1788 /// @param a_end an iterator to the end of the first sequence to
1789 /// consider.
1790 ///
1791 /// @param b_start an iterator to the beginning of the sequence to
1792 /// actually consider.
1793 ///
1794 /// @param b_end an iterator to the end of second sequence to
1795 /// consider.
1796 ///
1797 /// @param lcs the resulting lcs. This is set iff the function
1798 /// returns true.
1799 ///
1800 /// @param ses the resulting shortest editing script.
1801 ///
1802 /// @return true upon successful completion, false otherwise.
1803 template<typename RandomAccessOutputIterator,
1804  typename EqualityFunctor>
1805 void
1806 compute_diff(RandomAccessOutputIterator a_begin,
1807  RandomAccessOutputIterator a_end,
1808  RandomAccessOutputIterator b_begin,
1809  RandomAccessOutputIterator b_end,
1810  vector<point>& lcs,
1811  edit_script& ses)
1812 {
1813  compute_diff<RandomAccessOutputIterator,
1814  EqualityFunctor>(a_begin, a_begin, a_end,
1815  b_begin, b_begin, b_end,
1816  lcs, ses);
1817 }
1818 
1819 /// Compute the longest common subsequence of two (sub-regions of)
1820 /// sequences as well as the shortest edit script from transforming
1821 /// the first (sub-region of) sequence into the second (sub-region of)
1822 /// sequence.
1823 ///
1824 /// This uses the LCS algorithm of the paper at section 4b.
1825 ///
1826 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1827 /// this function. It must be a random access output iterator kind.
1828 ///
1829 /// @param a_start an iterator to the beginning of the first sequence
1830 /// to consider.
1831 ///
1832 /// @param a_end an iterator to the end of the first sequence to
1833 /// consider.
1834 ///
1835 /// @param b_start an iterator to the beginning of the sequence to
1836 /// actually consider.
1837 ///
1838 /// @param b_end an iterator to the end of second sequence to
1839 /// consider.
1840 ///
1841 /// @param lcs the resulting lcs. This is set iff the function
1842 /// returns true.
1843 ///
1844 /// @param ses the resulting shortest editing script.
1845 ///
1846 /// @return true upon successful completion, false otherwise.
1847 template<typename RandomAccessOutputIterator>
1848 void
1849 compute_diff(RandomAccessOutputIterator a_begin,
1850  RandomAccessOutputIterator a_end,
1851  RandomAccessOutputIterator b_begin,
1852  RandomAccessOutputIterator b_end,
1853  vector<point>& lcs,
1854  edit_script& ses)
1855 {
1856  compute_diff<RandomAccessOutputIterator,
1857  default_eq_functor>(a_begin, a_end, b_begin, b_end, lcs, ses);
1858 }
1859 
1860 /// Compute the longest common subsequence of two (sub-regions of)
1861 /// sequences as well as the shortest edit script from transforming
1862 /// the first (sub-region of) sequence into the second (sub-region of)
1863 /// sequence.
1864 ///
1865 /// A sequence is determined by a base, a beginning offset and an end
1866 /// offset. The base always points to the container that contains the
1867 /// sequence to consider. The beginning offset is an iterator that
1868 /// points the beginning of the sub-region of the sequence that we
1869 /// actually want to consider. The end offset is an iterator that
1870 /// points to the end of the sub-region of the sequence that we
1871 /// actually want to consider.
1872 ///
1873 /// This uses the LCS algorithm of the paper at section 4b.
1874 ///
1875 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1876 /// this function. It must be a random access output iterator kind.
1877 ///
1878 /// @tparm EqualityFunctor this must be a class that declares a public
1879 /// call operator member returning a boolean and taking two arguments
1880 /// that must be of the same type as the one pointed to by the @ref
1881 /// RandomAccessOutputIterator template parameter. This functor is
1882 /// used to compare the elements referred to by the iterators passed in
1883 /// argument to this function.
1884 ///
1885 /// @param a_base the iterator to the base of the first sequence.
1886 ///
1887 /// @param a_start an iterator to the beginning of the sub-region
1888 /// of the first sequence to actually consider.
1889 ///
1890 /// @param a_end an iterator to the end of the sub-region of the first
1891 /// sequence to consider.
1892 ///
1893 /// @param b_base an iterator to the base of the second sequence to
1894 /// consider.
1895 ///
1896 /// @param b_start an iterator to the beginning of the sub-region
1897 /// of the second sequence to actually consider.
1898 ///
1899 /// @param b_end an iterator to the end of the sub-region of the
1900 /// second sequence to actually consider.
1901 ///
1902 /// @param ses the resulting shortest editing script.
1903 ///
1904 /// @return true upon successful completion, false otherwise.
1905 template<typename RandomAccessOutputIterator,
1906  typename EqualityFunctor>
1907 void
1908 compute_diff(RandomAccessOutputIterator a_base,
1909  RandomAccessOutputIterator a_begin,
1910  RandomAccessOutputIterator a_end,
1911  RandomAccessOutputIterator b_base,
1912  RandomAccessOutputIterator b_begin,
1913  RandomAccessOutputIterator b_end,
1914  edit_script& ses)
1915 {
1916  vector<point> lcs;
1917 
1918  compute_diff<RandomAccessOutputIterator,
1919  EqualityFunctor>(a_base, a_begin, a_end,
1920  b_base, b_begin, b_end,
1921  lcs, ses);
1922 }
1923 
1924 /// Compute the longest common subsequence of two (sub-regions of)
1925 /// sequences as well as the shortest edit script from transforming
1926 /// the first (sub-region of) sequence into the second (sub-region of)
1927 /// sequence.
1928 ///
1929 /// This uses the LCS algorithm of the paper at section 4b.
1930 ///
1931 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1932 /// this function. It must be a random access output iterator kind.
1933 ///
1934 /// @tparm EqualityFunctor this must be a class that declares a public
1935 /// call operator member returning a boolean and taking two arguments
1936 /// that must be of the same type as the one pointed to by the @ref
1937 /// RandomAccessOutputIterator template parameter. This functor is
1938 /// used to compare the elements referred to by the iterators passed in
1939 /// argument to this function.
1940 ///
1941 /// @param a_start an iterator to the beginning of the first sequence
1942 /// to consider.
1943 ///
1944 /// @param a_end an iterator to the end of the first sequence to
1945 /// consider.
1946 ///
1947 /// @param b_start an iterator to the beginning of the second sequence
1948 /// to consider.
1949 ///
1950 /// @param b_end an iterator to the end of the second sequence to
1951 /// consider.
1952 ///
1953 /// @param ses the resulting shortest editing script.
1954 ///
1955 /// @return true upon successful completion, false otherwise.
1956 template<typename RandomAccessOutputIterator,
1957  typename EqualityFunctor>
1958 void
1959 compute_diff(RandomAccessOutputIterator a_begin,
1960  RandomAccessOutputIterator a_end,
1961  RandomAccessOutputIterator b_begin,
1962  RandomAccessOutputIterator b_end,
1963  edit_script& ses)
1964 {
1965  compute_diff<RandomAccessOutputIterator,
1966  EqualityFunctor>(a_begin, a_begin, a_end,
1967  b_begin, b_begin, b_end,
1968  ses);
1969 }
1970 
1971 /// Compute the longest common subsequence of two (sub-regions of)
1972 /// sequences as well as the shortest edit script from transforming
1973 /// the first (sub-region of) sequence into the second (sub-region of)
1974 /// sequence.
1975 ///
1976 /// This uses the LCS algorithm of the paper at section 4b.
1977 ///
1978 /// @tparm RandomAccessOutputIterator the type of iterators passed to
1979 /// this function. It must be a random access output iterator kind.
1980 ///
1981 /// @param a_start an iterator to the beginning of the first sequence
1982 /// to consider.
1983 ///
1984 /// @param a_end an iterator to the end of the first sequence to
1985 /// consider.
1986 ///
1987 /// @param b_start an iterator to the beginning of the second sequence
1988 /// to consider.
1989 ///
1990 /// @param b_end an iterator to the end of the second sequence to
1991 /// consider.
1992 ///
1993 /// @param ses the resulting shortest editing script.
1994 ///
1995 /// @return true upon successful completion, false otherwise.
1996 template<typename RandomAccessOutputIterator>
1997 void
1998 compute_diff(RandomAccessOutputIterator a_begin,
1999  RandomAccessOutputIterator a_end,
2000  RandomAccessOutputIterator b_begin,
2001  RandomAccessOutputIterator b_end,
2002  edit_script& ses)
2003 {
2004  compute_diff<RandomAccessOutputIterator, default_eq_functor>(a_begin, a_end,
2005  b_begin, b_end,
2006  ses);
2007 }
2008 
2009 void
2010 compute_lcs(const char* str1, const char* str2, int &ses_len, string& lcs);
2011 
2012 void
2013 compute_ses(const char* str1, const char* str2, edit_script& ses);
2014 
2015 /// Display an edit script on standard output.
2016 ///
2017 /// @param es the edit script to display
2018 ///
2019 /// @param str1_base the first string the edit script is about.
2020 ///
2021 /// @pram str2_base the second string the edit script is about.
2022 template<typename RandomAccessOutputIterator>
2023 void
2025  const RandomAccessOutputIterator str1_base,
2026  const RandomAccessOutputIterator str2_base,
2027  ostream& out)
2028 {
2029  if (es.num_deletions() == 0)
2030  out << "no deletion:\n";
2031  else if (es.num_deletions() == 1)
2032  {
2033  out << "1 deletion:\n"
2034  << "\t happened at index: ";
2035  }
2036  else
2037  {
2038  out << es.num_deletions() << " deletions:\n"
2039  << "\t happened at indexes: ";
2040  }
2041 
2042  for (vector<deletion>::const_iterator i = es.deletions().begin();
2043  i != es.deletions().end();
2044  ++i)
2045  {
2046  if (i != es.deletions().begin())
2047  out << ", ";
2048  out << i->index() << " (" << str1_base[i->index()] << ")";
2049  }
2050  out << "\n\n";
2051 
2052  if (es.num_insertions() == 0)
2053  out << "no insertion\n";
2054  else if (es.num_insertions() == 1)
2055  out << "1 insertion\n";
2056  else
2057  out << es.num_insertions() << " insertions:\n";
2058  for (vector<insertion>::const_iterator i = es.insertions().begin();
2059  i != es.insertions().end();
2060  ++i)
2061  {
2062  int idx = i->insertion_point_index();
2063  if (idx < 0)
2064  out << "\t before index of first sequence: " << idx + 1
2065  << " (" << str1_base[idx + 1] << ")\n";
2066  else
2067  out << "\t after index of first sequence: " << idx
2068  << " (" << str1_base[idx] << ")\n";
2069 
2070  if (!i->inserted_indexes().empty())
2071  out << "\t\t inserted indexes from second sequence: ";
2072 
2073  for (vector<unsigned>::const_iterator j = i->inserted_indexes().begin();
2074  j != i->inserted_indexes().end();
2075  ++j)
2076  {
2077  if (j != i->inserted_indexes().begin())
2078  out << ", ";
2079  out << *j << " (" << str2_base[*j] << ")";
2080  }
2081  out << "\n";
2082  }
2083  out << "\n\n";
2084 }
2085 
2086 }//end namespace diff_utils
2087 
2088 }//end namespace abigail
2089 #endif // __ABG_DIFF_UTILS_H__
#define ABG_ASSERT(cond)
This is a wrapper around the 'assert' glibc call. It allows for its argument to have side effects,...
Definition: abg-fwd.h:1714
The array containing the furthest D-path end-points, for each value of K. MAX_D is the maximum value ...
d_path_vec(unsigned size1, unsigned size2)
Constructor of the d_path_vec.
The abstraction of the deletion of one element of a sequence A.
The abstraction of an edit script for transforming a sequence A into a sequence B.
The abstration of an insertion of elements of a sequence B into a sequence A. This is used to represe...
A class representing a vertex in an edit graph, as explained in the paper. A vertex is a basically a ...
The abstraction of the Snake concept, from the paper.
snake()
Default constructor for snake.
void intermediate(const point &p)
Setter for the end point of the non-diagonal edge of the snake, aka intermediate point.
const point & diagonal_start() const
Getter for the end point of the first diagonal edge, aka diagonal start point. Note that if the snake...
void end(const point &p)
Setter for the end point of the last diagonal edge, aka snake end point. Note that if the snake has n...
void begin(const point &p)
Getter for the starting point of the non-diagonal edge of the snake, aka begin point.
const point & end() const
Getter for the end point of the last diagonal edge, aka snake end point. Note that if the snake has n...
snake(const point &b, const point &i, const point &e)
Constructor from the beginning, intermediate and end points.
void diagonal_start(const point &p)
Setter for the end point of the first diagonal edge, aka diagonal start point.
void set_forward(bool f)
Set to true if the snake is a forward snake; that is, if it was built while walking the edit graph go...
const point & intermediate() const
Getter for the end point of the non-diagonal edge of the snake.
void add(int x_offset, int y_offset)
Add an offset to the abscissas of the points of the snake, and add another offset to the ordinates of...
const point & begin() const
Getter for the starting point of the non-diagonal edge of the snake.
void set(const point &b, const point &i, const point &d, const point &e)
Setter for the begin, intermediate, diagonal start and end points of the snake.
void set(const point &b, const point &i, const point &e)
Setter for the begin, intermediate and end points of the snake.
snake(const point &b, const point &i, const point &d, const point &e)
Constructor from the beginning, intermediate and end points.
bool compute_middle_snake(const char *str1, const char *str2, snake &s, int &ses_len)
Returns the middle snake of two strings, as well as the length of their shortest editing script.
bool snake_end_points(const snake &s, point &x, point &u)
Get the end points of the snake, as intended by the paper.
bool ends_of_furthest_d_paths_overlap(const point &forward_d_path_end, const point &reverse_d_path_end)
bool is_match_point(RandomAccessOutputIterator a_begin, RandomAccessOutputIterator a_end, RandomAccessOutputIterator b_begin, RandomAccessOutputIterator b_end, const point &point)
Tests if a given point is a match point in an edit graph.
void display_edit_script(const edit_script &es, const RandomAccessOutputIterator str1_base, const RandomAccessOutputIterator str2_base, ostream &out)
Display an edit script on standard output.
void compute_lcs(const char *str1, const char *str2, int &ses_len, string &lcs)
Compute the longest common subsequence of two strings and return the length of the shortest edit scri...
bool end_of_fr_d_path_in_k(int k, int d, RandomAccessOutputIterator a_begin, RandomAccessOutputIterator a_end, RandomAccessOutputIterator b_start, RandomAccessOutputIterator b_end, d_path_vec &v, snake &snak)
Find the end of the furthest reaching d-path on diagonal k, for two sequences. In the paper This is r...
bool end_of_frr_d_path_in_k_plus_delta(int k, int d, RandomAccessOutputIterator a_begin, RandomAccessOutputIterator a_end, RandomAccessOutputIterator b_begin, RandomAccessOutputIterator b_end, d_path_vec &v, snake &snak)
Find the end of the furthest reaching reverse d-path on diagonal k + delta. Delta is abs(M - N),...
void compute_ses(const char *str1, const char *str2, edit_script &ses)
Compute the shortest edit script for transforming a string into another.
void compute_diff(RandomAccessOutputIterator a_base, RandomAccessOutputIterator a_begin, RandomAccessOutputIterator a_end, RandomAccessOutputIterator b_base, RandomAccessOutputIterator b_begin, RandomAccessOutputIterator b_end, vector< point > &lcs, edit_script &ses, int &ses_len)
Compute the longest common subsequence of two (sub-regions of) sequences as well as the shortest edit...
void print_snake(RandomAccessOutputIterator a_begin, RandomAccessOutputIterator b_begin, const snake &s, ostream &out)
This prints the middle snake of two strings.
int ses_len(const char *str1, const char *str2, bool reverse)
Compute the length of the shortest edit script for two strings. This is done using the "Greedy LCS/SE...
bool point_is_valid_in_graph(point &p, unsigned a_size, unsigned b_size)
Toplevel namespace for libabigail.
An equality functor to deeply compare pointers.
bool operator()(const shared_ptr< T > first, const shared_ptr< T > second) const
This equality operator compares pointers by comparing the pointed-to objects.
bool operator()(const T *first, const T *second) const
This equality operator compares pointers by comparing the pointed-to objects.
bool operator()(const weak_ptr< T > first, const weak_ptr< T > second) const
This equality operator compares pointers by comparing the pointed-to objects.
The default equality functor used by the core diffing algorithms.
bool operator()(const T a, const T b) const
This equality operator uses the default "==" to compare its arguments.