This is the mail archive of the newlib@sourceware.org mailing list for the newlib project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: Year 2038 problem


On 20/11/15 10:53, Clemens Ladisch wrote:
> Stefan Heinzmann wrote:
>> I don't quite understand yet why the Y2038 problem means that we have
>> to go to a 64-bit time_t.
>>
>> How important is it to be able to deal with times back to almost the
>> year 1900, particularly in an embedded system?
> 
> I estimate that there are more than zero devices that need to handle
> dates both before 1970 and after 2038.
> 
>> When reading POSIX I don't seem to find anywhere stated that time_t
>> needs to be signed, and indeed there are various platforms that have
>> it unsigned, even though the Unix world seems to tacitly assume it is
>> signed. For a portable C library like newlib, I would have assumed that
>> it works correctly with either. Does it? (I've not checked this yet).
> 
> In C, for many arithmetic operations, signed types are the default.
> So unless this has actually been tested, I doubt that it would work
> reliably.
> 
> We know that newlib works with a (signed) 64-bit time_t on 64-bit
> architectures.  So it makes sense to use the same on all architectures.
> 
>> one can push out the problem another 70 years with no speed or size
>> penalty, at the small cost of not being able to represent dates before
>> 1970.
> 
> That cost probably is not so small.
> 
> And do you really want to _create_ a year 2106 problem?
> 
> 
> Regards,
> Clemens
> 

time_t is a signed type, so with a 32-bit time_t we only have a positive
range of 68 years when counting in seconds.  1970 + 68 years = 2038.  I
don't know where you get the 1900 from.

R.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]