A Universal Dynamic Tracefor Linux and other Operating Systems
Richard Moore - IBM, Linux Technology Centre - richardj _moore@uk.ibm.com

Abstract

Dynamic Pr obes (DProbes) fromIBM [*] isageneric
and pervasive system debugging facility that will
operate under the most extreme software conditions
with minimal system disruption. It permits debugging of
some of the most difficult types of software problem
especially those encountered in aproduction
environment that will not readily re-create. It isalso an
invaluable aid for the devel oper who hasto debug parts
of the operating system inaccessible to other
technologies. DProbesisafront-end enabler for other
debugging technologies, such as crash and core dump s
and kernel/user debuggers. It is designed to operate
with minimal dependence on the operating system,
which affordsit the possibility of being ported to other
operating systems, especially UNIX [**] variants, but
not limited to UNIX asit originated conceptually from
Dynamic Traceunder OS/2 [*]. This paper describes
the latest developments of the DProbes project in
particular it use as atracing tool with the Linux Trace
Toolkit project from Opersys [**]. System dependencies
are discussed with an emphasis on portability to other
Linux H/W platforms aswell as other operating systems.

1. Introduction

Dynamic Probes (DProbes) for Linux <1>wasfirst
released in August 2000 and presented at the Annual
Linux Showcase in October 2000 <2>. The original
functionality was essentially that of an automated kernel
debugger. Since then DProbes has been extended
considerably. It now interfaces with anumber of external
debugging agents, for example: The Kernel Debugger
<3> and Kernel Crash Dump <4> facilitiesfrom Silicon
GraphicsInc. (SGI) [**]; the standard user-space core
dump and syslog facilities within Linux and also the
Linux Trace Toolkit <5> from Opersys.

The major topics discussed in this paper are:

¢ Detailed implementation aspects of DProbes that
relate to its use as an agent for trace instrumentation
under the Linux operating system running on the
Intel 32-hit architecture (1A32) <8>.

® Portability considerations across other operating
systems running under the Intel 32-bit architecture

in particular UNIX-like operating systems.

® Portability to other processor architectures.

Essentially DProbes has become adriver or enabler for
other debugging technologies. Its enabling capability
derives from the following key characteristics:

1. Thereisamechanism for intercepting execution at
arbitrary code locations - thisisthe probepoint
mechanism.

2. Each probepoint has an associated probe handler
that allows specific actionsto be taken. Thisis
implemented using alow-level Reverse Polish
Notation (RPN) language that gives accessto kernel
and user space memory and to the processor's
registersty,

3. A probe handler terminates in one of three ways:
I. By returning to the probed code seamlessly.

ii. By returning to the probed code viaalogging
daamon. A temporary logging buffer is made
available for this purpose. This characteristicis
exploited to provide a means of instrumenting a
module with tr acepoints.

jii. By transferring control to an external
debugging facility having first removed the
probepoint. Whether or not the original code
will continue execution is afunction of the
externa facility.

The efficacy of DProbes is further enhanced by the
following three design criteria:

1. Thereisno required interactive user interface for the
probe handlerid. Thisisintentiona - it minimizesthe
dependency of the probe handler on system
interfaces and resources. Thusthe probe handler is
designed to run as a self-contained interrupt
handler. The RPN command interpreter provides
recovery form potential fatal errors without
reference to operating system facilities. This
criterion gives DProbes itsuniver sality since there
arevery few restrictions on where a probepoint may
be placed and when the probe handler may execute.
In fact, probepoints are only restricted from being
placed in the code path of the probe handler. If such
aprobepoint were to be defined, DProbes would
detect it and silently remove it. Probepoints may
therefore be placed in code that runs at task time,
interrupt time or during a context switch.

2. Thesecond design criterion wasto align a
probepoint with amodule rather than a storage
location. Note that the watchpoint extension, which
is described under 7. Dynamic Probes Recent
Extensions, deviates from this criterion for reasons
explained thereunder. By aligning a probepoint with
amodule, or to be more precise an offset into a
module, the probe becomes independent of
incidental circumstancesthat relateto amodule's
installation in memory and also the processes under
which that moduleisexecuting. Thus, codethat is
shared between processes at different virtual
addresses (for exanmple a Linux shared library) has
location-independent and process-independent
probe definitions. This criterion gives DProbesits
independence, since it makes it possible to describe
aprobe:

I. Independently of an operating system’s
implementation of module management (clearly
the internal implementation needs to
understand this);

i. Incanonical termsthat relate to a programmer’s
view of his’/her module which are: independent
of whether amoduleisloaded at the time the
probeis defined; and independent of any
particular process under which that module
executes.

3. Probepoints areinserted into module code paths
without the need for source code modifications to
that module. Furthermore they may be inserted into
any loaded and running code (kernel or user space)
or codethat is paged out or modules not yet
loaded. This mechanism has been described in <2>.
In summary, the instruction at the probe locationis
overlaid with atrapping instruction - under Intel
32-bit architecture (IA32) theint3 instructionis
chosen. The original instruction is either
single-stepped or emulated after the probe handler
executes. This particular criterion gives DProbesits
dynamic characteristic. The dynamism refersto its
ability to instrument a module with probeson the fly
so to speak. Thusthereis absolutely no
performance penalty when a probepoint isinactive.

These characteristics therefore provide an elementary
universal dynamic tracing capability, which have been
further extended in both universality and dynamism by
recent enhancements - see the section: 7. Dynamic
Probes Recent Extensions for details.

2. DProbesasa Tracing Mechanism

This section discusses the implementation details of
DProbes as atracing mechanism in detail. We describe
first the internal mechanism of the Dynamic Probes
Event Handler (DPEH) that enablesit to be used asa
tracing agent.

DPEH internal details;
DProbes provides various working storage elements for
use by the probe handler:

1. Loca variablearray.
2. Globd variable array.
3. A per-processor log buffer.

Thelatter isintended for use as a staging areafor
building atrace or log record to be passed
synchronously to alogging or tracing dsamon external to
DProbes. Onelog buffer is permanently allocated per
processor but the datain each buffer persists only for
the duration that a probe handler is active on its
respective processor. The RPN command interpreter
maintains an internal pointer to the next available
location in the buffer, which isreset to the beginning of
the buffer on entry to the probe handler. Dataisthus
always accumul ated monotonically and discarded on exit
from the probe handler.

The buffer is populated using the log class of RPN
instructions. These are defined in two categories: those
that copy datadirectly from the RPN stack and those
that use the RPN stack to specify datato be copied from
system memory.

The direct category comprises three instructionsin the
|A32 implementation:

log b,<n> Log byte
log w,<n> Log word
log d,<n> L og double-word

Pop <n> elements from the RPN stack and from each,
copy theleast significant byte (8-bit integer), word
(16-bit integer) or double-word to the log buffer.

The indirect category has four membersin the |A32
implementation. Each operates by popping an address
followed by alength from the RPN stack. Data, for that
length, at that address, is copied to the log buffer.
However, before datais copied, it is appended with a
3-byte prefix that contains atoken byte and alength
word. The length refersto the length of data that follows

the prefix and the token byte to type of data. The feature
enables:

a A traceor log record to contain variable length data
such as arrays whose length is determined
dynamically.

b. A formatting utility to operate using afixed template
for variable length data.

Thetoken byte values are defined as follows:

0 binary datalogged successfully of length
specified by the prefix length word.

1 (ASCII) string data logged successfully of
maximum length specified by the prefix length
word. The actual length of the data may be less
if aterminating NULL byte is encountered
within the prefix length. Thisallows data of
arbitrary lengths to be capped especialy in
cases where string data has been corrupted.

-1 afault occurred accessing the data using a flat
address. The prefix length is set to 4 and the
variable data contains only the (flat) address
that caused the fault.

-2 afault occurred accessing the data using an
invalid selector. The prefix lengthis set to 4 and
the variable data contains only the selector for
the segment generating the fault.

Note: the latter two tokens may occur in
circumstances where the data address was
valid. Since the RPN probe handler executes,
essentially as an interrupt handler, with minimal
access to system facilitiesit will not be ableto
recover from otherwise recoverable faults. This
isatrade-off between the universality and
flexibility of DProbes. See 3. DProbes Event
Handler Processing for afurther discussion on
how such conditions are handled.

Under the |A32 implementation there are 4 RPN
instructions use for logging datain memory:

Log memory range from flat address.
L.og memory range from segmented
address.

log mrf
logmrs

Pop aflat address (log mrf) or a 16-bit offset then a
16-hit selector (log mrs) from the RPN stack. Then

pop a length. Reserve space for the 3-byte prefix in
thelog buffer. Copy data from the address specified
for the length specified to the log buffer. If afault is
generated then set the prefix token to -1, the length
to 4 and store the fault address. If no fault is
generated then set the prefix with a 0 token and
length of datalogged.

Log ASCII range from flat address.
Log ASCII range from segmented
address.

logarf
logars

Pop aflat address (log arf) or a 16-hit offset then a
16-hit selector (log ars) from the RPN stack. Then
pop a length. Reserve space for the 3-byte prefix in
thelog buffer. Copy data from the address specified
up to the length specified or until aNULL terminator
byte has been copied. If afault is generated then set
the prefix token to -2, the length to 4 and store the
fault address. If no fault is generated then set the
prefix with a 1 token and maximum length value
popped from the RPN stack.

3. DProbes Event Handler Processing
We turn now to considerations concerning back-end
probe event handler processing.

Asdescribed in <2>, the DProbes Event Handler (DPEH)
needs to execute the original instruction that was
replaced with a breakpoint. It does this by
single-stepping the original instructionin situ with
interrupts disabled®. If that instruction faults then we
require the operating system to recover and retry the
instruction. However, one does not normally wish to
have multiple trace records generated for each retry
execution of an instruction, especially when that
instruction eventually succeeds and will thus appear to
the underlying program to have executed only once, and
with success. Thisis achieved by delaying the call to the
tracing daemon until after the original instruction has
completed single-step. If afault is generated then the
daamon is not called and the log buffer isreset.
Furthermore the DPEH reinstates the probepoint - int3
instruction under 1A32 - and resets interrupt status,
saved by the processor when the fault was generated, to
indicate the status prior to execution of the probepoint.
Finally it returnsto the system fault handler to allow
normal fault processing to occur. If the system retriesthe
faulting instruction it will unwittingly retry the
probepoint instruction. The DPEH will therefore be
called for each retry. Only on successful execution of the
original instruction will the trace deamon be called.

It isarequirement for the probe handler to be
re-executed for each retry of afaulting instruction. This
is becauseit is quite possible, in the case of apage fault,
that the data causing the instruction to fault isalso
accessed by the probe handler for copying into the log
buffer. Only on successful execution of the original
instruction would the trace record in this case be
complete.

Some instructions generate faults for non-error reasons,
for example IA32 bounds instruction. For such
instructions it would be desirable to log atrace record
despite afault being generated on single-step. Thisis
now possible by means of the logonfault control
statement, which is specified in the header of the RPN
file. This feature was added recently to DProbes - see 7.

Dynamic Probes Recent Extensions below.

4. DPEH Performance Implications

We have made an initial study of the performance
overhead of a probepoint. A more conprehensive
performance evaluation is future work. The first set of
results are quantitative observations made under the
Linux 22.12 kernel. We also present some qualitative
results taken fromreal-life usage under OS/2. The
conclusions from these OS2 examplesindicate that
under most conditions theimpact of a probepoint is
negligible when active. We concern ourselves only with
mesasuring the effect of the active probepoint, sincefor
inactive probepoints thereis no alteration to the code
path and therefore azero overhead.

We estimated the overhead of the DPEH using a 90 MHz
Pentium[**] processorl4. Five experiments were
performed:

1. To obtain abase measurement of the time taken to
execute a sequence of the following three single
cycleinstructionsin aloop:

loop: dec eax
nop
jnzloop

2. Totest anull probe handler with only the abort’!
RPN instruction and with the probe placed on the
dec eax instruction. Here decis single-stepped by
the DPEH.

3. Using the same probe handler but the probe placed
on the nopinstruction. Here nopin emulated by the
DPEH.

4., Using same probe location as 2 but asingle push
eax®l RPN instruction added to the probe handler.

5. Thesame probelocation as 2 but asingle exit!?
RPN instruction in the probe handler.

The results were asfollows:

1. Oneiteration of the three-instruction |oop averaged
30ns, each instruction approximately 10ns.

2. Oneiteration of the loop averaged 16ps. Therefore
the minimum overhead of the DPEH is approximately
16ps.

3. Oneiteration of the loop averaged 8us. Therefore
the cost of the DPEH back-end single-step
processing accounts for half the overhead per
probe.

4. Oneiteration of the loop averaged 16ys. push eax
therefore has a negligible effect. One might
reasonably assume most register and memory based
RPN instructions are of asimilar overhead.

5. Oneiteration of the loop averaged 200us. Most of
thisisthe cost of aprintk, which isthe default
logging method (see 5. The Trace Daamon Interface
below for details on how printk ininvoked).

Taken at face value the minimum overhead of the DPEH
appears to be of the order of 10°. Thiswould certainly be
avalid perception if aprobe were placed in atight
CPU-bound loop. However, in most applications of
DProbes the average number of instructions executed
between consecutive executions of the same probepoint
outweighs any overhead imposed by the DPEH. Thisis
illustrated by thefollowing qualitative results taken from
real-life uses of DProbes (actually Dynamic Trace) under
0s/2:

1. Tracepoints® on every kernel AP entry and exit
(circa 500 tracepoints).
The user perception varies from unnoticeable to
very slight depending on work load. The systemis
useable and performs within acceptable norms.

2. Tracepoints on entry and exit to the process context
switching code with page table data logged on entry
and exit.

No noticeable overhead.

3. Tracepoints on every OS/2 Presentation Manager
[*] API entry and exit (circa 500 tracepoints).
A noticeable slowing of GUI response. The GUI was
useable.

4. Tracepoints on entry to pagedlocation, page
de-allocation and page fault handling routinesin the
0S/2 page manager.

No noticeable overhead.

5. Tracepoints on 4000 internal kernel routines.
Very noticeable, however the systemwas still
useable.

Conclusions

While the cost of aprobeis not cheap it can be
considerably reduced by placing the probe on an
emulated instruction such as nop. It can also be reduced
by judicious use of logging by employing conditional
logic in the probe handler to avoid unnecessary log
events. But foremost, the practical use of DProbes finds
probepoints being placed in code paths with arelatively
long mean time to iterate. Under these circumstances the
overhead is negligible.

5. The Trace Daemon Interface
The generic requirements for atrace daamon interface
are:

1. Toprovidealogging APl capable of being called
from kernel space, while interrupts are disabled, from
both atask-time and interrupt-time context.

2. Toadlow binary dataof an arbitrary length to be
logged and identified as originating from DProbes.

A number of candidates satisfy these requirements. The
default behavior isto invoke the klog deemon viaprintk.
Other optionsinclude directing output through a
dedicated asynchronous communications port (com1 or
com2). Strictly speaking, using acommunications port
doesn’t necessarily invoke adaamon unless one thinks
of the monitoring system connected to the system
running DProbes as a daamon. And finally, alocal tracing
daamon can be invoked to record the log buffer. Use of
this option requires a degree of conformance between
both DProbes and the tracing facility. We have chosen
to usethe Linux Trace Toolkit from Opersys <5> asan
initial implementation. We will describe alittle later a
generic interface that is possible to implement by using
the Generalised Kernel Hook Interface <6> mechanism.

L ogging to the Communications ports or klog:
Logging to both the com1 and com2 communications

ports and klog involves converting the log datato an
ASCII string of pairsof hexadecimal characters and
outputting that to the respective medium. Prior to thiswe
format arecord header that contains both constant
information and some optional entitiesthat are common
to al tracepoints. The most generalised form of the trace
header templateis asfollows:

“DProbes(%l, %d) cpu=% name=% pi d=%
ui d=% cs=% ei p=%08l x ss=% esp=%08I x
tsc=%08l x: %98l x\ n”

Other than the DProbeg(...) text item, every other itemis
optionally present. All but cpu are selectable by the user
through parameter switched to the dprobes command;
cpu is activated automatically when DProbesisrun from
amulti-processor system.

The meaning of each constituent header itemis as
follows:

DProbes(%d,%d)
Displays the major and minor code that identifies
the probepoint. Each probepoint has assigned a
major and minor identifier. These are not required
to be unique, but by convention are chosen to
indicate a unique type of probe, for example the exit
point(s) of aparticular routine. Major and minor
codes are intended to be used by a generaised
formatter to identify a unique formatting template.

See 6. Trace Formatting Interface below

cpu=% d
Displays the processor id on which the probe was
executed. Thisis suppressed on uniprocessor
systems and alway's displayed on multi-processor
systems.

name=%s
Displays the process name taken from the current
task structure when the probe was executed.

pid=% d
Displaysthe processid taken from the current task
structure when the probe was executed.

uid=%d
Displays the user id name taken from the current
task structure when the probe was executed.

cs=% X ep=% 08Ix
Displays the CS and ElPregisters at the probe
location. Thisis sometimes useful in distinguishing
individuals of agroup of similarly formatted and
therefore identical major and minor coded probes.
For example, multiple return points from afunction.

$5=% X esp=% 08Ix
Displaysthe SS and ESP register values when the
probe was executed. This can give an indication of
the nesting level of a subroutine.

tsc=% 08l x: % 08l x
Displays the high resolution processor time-stamp
counter in seconds and micro-seconds.

Theremaining datais output asan ASCI| string of
hexadecimal characters.

L ogaing to a Trace Daemon
We chose to use the Linux Trace Toolkit (LTT) <5> from

Opersys as the trace recording daamon. It providesthe
usual post-processing, formatting and analysis features
aswell asadaamon that manages the akernel space trace
buffer and a mechanism for off-loading the trace buffer
to disk. But most importantly, the Linux Trace Toolkit
was conceived as akernel based static!? tracing
mechanism, capable for having tracepoints placed in
both interrupt handlers and code that runswith
interrupts disabled. In other words the conditions under
which the DPEH executes. We were able extend the
Linux Trace Toolkit to provide an kernel programming
interface that allows datato be logged of aan arbitrary
length.

The KPI interfaceto Linux Trace Toolkit's Raw Data
interface is show below:

struct trace_raw {

uint32_t id; /* Event ID*/

uint32_t DataSize; /* Size of data
recorded by event */
voi d* Dat a; /* Data recorded by

event */

}

#define TRACE_RAWID, LEN, DATA) \

do { \
struct trace_raw raw event; \
raw event.id =id; \

raw_event . DataSi ze = LEN;, \
raw_event. Data = DATA; \

event

Thisan event identifier defined by LTT. It signifies
abinary datarecord, the format of whichis
undisclosed toLTT.

Thisamodule identifier returned by LTT when
tracepoints for a given module are activated.
DProbescallsthe LTT trace create event()
routine when it inserts tracepoint for agiven
module. ThisenablesLTT to correlate events with
amodule for the purposes of event analysis. Note:
DProbeswill call LTT trace destroy_event()
routine when tracepoints for amodule are
removed.

DataSize
Thisisthe overall size of the trace record (flags + +
log buffer content).

Data
Thisisapointer to the trace record (flags + header
+ log buffer content).

Thelogged datais further structured with a header
followed by the datafrom the log buffer. The header
comprises aflag double-word followed by one or more
binary dataitems concatenated together. The presence
of anitemissignified by its corresponding flag bit being
set. The following table shows the format of each header
item and its corresponding flag setting in the order they
appear in the header:

flag | type description
1| 0x0001| uint32 major

2| 0x0002 | uint32 minor

3| 0x0004 | uint32 cpu

4] 0x0008 | uint32 pid

5| 0x0010 | uint32 uid

6| 0x0020 | uint32 cs

7] 0x0040 | unt32 ap

8| 0x0080 | uint32 ss

9| 0x0100| unt32 esp

10| 0Ox0200 | uint64 tsc

11| Ox0400| gring process name

Thisimplementation is specifictoLTT, but may be
readily adapted to other daamons either by requiring that
they support the three interfaces for creating, destroying
and logging an event.

Generdised Kernel Hook Interface

The disadvantage of theimplementation just described
isthat DProbes needs to be built for usewithLTT and
LTT needsto be present in the system before DProbes
loadsin order to resolve the external referencesto the
three interfaces. We can avoid this problem by using the
Generalised Kernel Hook Interface <6> to define hook
exit points within DProbes for the three interfaces. An
arbitrary trace daamon would register and arm exit
routines for these three hooks when the daamon loads or
isinstructed to do so. Because the state of activation of
aGKHI hook istransparent to DProbes, it would execute
code paths that call the three interfaces (now hooks)
without regard to whether arecipient daamon had armed
them. The equivalent hook exit points for each of the
three API callsis coded asfollows:

trace_event(event, & event_struc);
GKHOOK_2VAR(GKHOOK_DPROBES LOG EVEN
T, event, & event_struc);

event=trace create_event(name, for mat, desc);
GKHOOK_4VAR(GKHOOK_DPROBES CREATE EV
ENT & event, & name, & format, & desc);

rc=trace destroy_event(event);
GKHOOK_2VAR(GKHOOK_DPROBES DESTROY_
EVENT,&rc, event);

DProbeswould notify GKHI of the existence of these
three hooks during initialisation by calling
GKH_identify.

6. Trace Formatting Interface

Clearly, ahexidecimal format for the trace record is not
the most user friendly. Therefore we have proposed a
formatting utility in the form of aset of shared library
routines that may be called to format individual trace
records. The unformatted binary trace record is passed
to the formatter and a pointer to the formatted trace
record is returned.

The formatter uses text templates with place-holders to
format the raw data. For efficiency, templates are cached
in memory. Theformatting library provides two
additional subroutine calls:

1. initialise, where essentially the template directory
fileis opened, loaded and closed.

2. terminate, where any cached templates are freed.

Note: these two interfaces may be called sequentially, in
reverse order to alow templates to be re-read from disk
following an update.

Formatting Template Structure
Thetemplate syntax is an extension and simplification of

that employed by the OS/2 Trace Formatter, whichisa
natural thing to do since Dynamic Probes also owesits
origin to OS/2's Dynamic Trace facility <7>. This scheme
is based on a printf-like formatting template. But as
discussed below, we have arequirement to format arrays
and binary data (essentially an array of bytes) whose
number of elementsisonly determined at thetime atrace
record is created. This requirement necessitates
deviation from asimple printf template.

By convention a unique major code is assigned per
module. Each unique trace record format for amoduleis
assigned a unigue minor code within the major code.
This allows us to employ one formatting template file per
major code. A template directory is employed to
cross-reference major code to template file name. The
template file needs only to identify minor code to delimit
each template, however, for sanity purposes the major
codeis coded at the head of thefile.

Comments are allowed using c-style comment syntax.

Each formatting statement is of the form
keywor d=<value>

Numeric values are allowed to be expressed in decimal
and hexadecimal using c-notation.

Strings are quoted using c-notation.

Thefirst statement of thefileis:
major=<major code>

Subsequent statements will follow the format:
minor=<minor code>,]

desc=<"descriptive header text”>[,]
fmt=<"template 1" >[,]

fmt=<"template 2" >[,]

End of file or the next minor keyword delimits the end of
the previous templ ate.

The desc statement serves to provide a static text
description of the trace event.

Major, minor and desc are mandatory, fmt is optional,
however if minor isomitted then only default formatting
will be performed. The datawill be treated as binary and
formatted in dump format displaying offsets, hexadecimal
and ASCII.

The fmt statements are used to supply template
information for formatting user datain the trace record.

In general any a phanumeric character found in the fmt
statement istreated asliteral text and copied directly to
the output buffer. Escape control characters\n and \t are
supported. In general the last pair of charactersina
sequence of fmt statements will be\n, however the
formatter will always generate an additional new-line at
the end of anew trace record.

Multiple fmt statements for the same minor code are
concatenated by the formatter, so the user must supply
necessary spacing and new-line charactersif the
formatted datais to span more than oneline. Place
holders for datato be extracted and formatted within the
template is signified by a sequence that is prefixed with a
% character. Multi-byte control sequences are
terminated by any non-numeric character, sincein a
multi-byte control sequence the trailing characters are
numeric.

The following control sequences may be specified:

% <n>c - format n-bytes as an ASCI| characters. If the
character isin the range 0x20-0x7f then format the ASCI|I
equivalent character, otherwise substitute a period.

% <n>d - format and n-byte decimal integer with leading
zeros removed.

% <n>f - format an n-byte floating point numeric with
leading zeros removed.

% <n>i - skip n bytesin the unformatted data buffer.

% p - skip the three-byte prefix for variable length data,
see the description of the logging RPN commands under
2. DProbes as a Tracing Mechanismabove. Thisis used
in combination with most other controls by placing then
after p. Controls u and r areexcluded from use with p.

% r - skip the three byte prefix for variable length data,
but useit as arepetition control, see below. Thisis used
with other controls or a complex expression following.

% s - format an ASCI|I string up to the length specified
by the % p prefix, or until anull terminator is

encountered. If % p is not specified then % s formatsa
string until anull is encountered.

% <n>u - format an n-byte unsigned decimal integer with
leading zeros removed.

% <n>x - format and n-byte hexadecimal integer
including leading zeros.

% z - format the remainder of the trace record in dump
format (offset, 0x20 hexadecimal bytes separated by
spaces and ASCII equivalent for each 0x20 bytes,
repeated for each 0x20 bytes - one per line).

+00000000 21 22 23 24 25 26 27 28 20 c4 a8

fe ae ef ff bb *abcdefgh *
+00000020 21 22 23 24 25 26 27 28 20 c4 a8
fe ae ef ff bb *abcdefgh *
+00000040 21 22 23 24 25 26

*abcdef *

(- begins acomplex expression - see below
) - ends acomplex expression - see below

Where a<n> qualifier is alowed then its omission
defaultsto 1.

Processing the 3-byte prefix
% p causes the formatter to skip over the prefix, noting

the code and length. If an error isindicated an error
message is formatted.

If % s follows% p and the code is 0x01 then datais
formatted up to the first null character or until the length
is exhausted.

If % s follows% p and the code is 0x00 then datais
formatted up to the first null character and any remaining
data up to the value of the length is skipped.

If any other control follows% pthen that datais
formatted according to the following control, having
skipped the prefix (the error code being checked first).

% p may be combined with any control other then% r
and % u.

% r isused to process the prefix in asimilar way to% p,
except in this caseit uses the prefix to repeat the control
sequence that follows until data of the length specified
by the prefix is formatted. % r may be combined with
any control though it seldom makes sense to combine it
with% p, % s in simple formatting expressions.

When controls are combined only one % is specified.
For example:
% ps - causes a prefixed string to be processed.

When two dataitems are to be concatenated then two
% signs are needed. For example:

% 4us - formats a 4-byte unsigned decimal integer
suffixed with a character s, whereas

% 4u% s - formats a 4-byte unsigned decimal integer
concatenated to a zero terminated string.

% r may be followed by aleft parenthesis(toforma
complex formatting expression, which is completed with
aright parenthesis). This device allows arrays of
structures to be formatted. For example an array for
which each entry contained two double-words called
“function” and “return code” would be formatted using:

% r (function=0x% 2x r etur n code=0x% 2x\n)

The result would be (for alength value of 12 inthe
prefix):

Function=0x0000 return code=0x0000
Function=0x0000 return code=0x0003
Function=0x0002 return code=0x0000

A more complex example wherethe array isatable
pointers to strings could be formatted using:

%-r (pointer=0x%4x, string="'% ps'\n)
Theresult would be:

pointer=0x801234455, string="this is an example string’
pointer=0x802234455, string="this is another example
string’

Within acomplex expression the % must be used to
prefix groups of controls.

Toformat aliteral %, (or) character then an additional
prefix % isrequired. For example:

% % resultsin %
% (resultsin (
%) resultsin)

Note: there is scope for extending this scheme to cope
with formatting bit masks and conditional formatting and
thisis something we plan to do.

7. Dynamic Probes Recent Extensions

Sinceitsoriginal release, Dynamic Probes has been
enhanced with a number of new featureswhich are
relevant to tracing. These are briefly described below:

Watchpoint Probes
Thisinnovation defines anew class of probe that
exploits the hardware watchpoint!* architecture.
Watchpoints are specified by watch-type, which
under 1A32 may be Read, Write, Execute or 10; and
address range. Watchpoints are global and not
aligned with any particular module, however
symbolic expressions are permitted in the
specification of awatchpoint address. This
capability gives DProbesits ability to trace memory
accesses.

L ogonfault
Thisalowsthe option of logging the contents of
alog buffer whether or not the instruction at the
tracepoint generates an exception during
single-step. If the operating system retries the
instruction then multiple events will be logged.
Thiswasintroduced to handle two circumstances:

1. whereinstructions such as bounds generate
exceptions as part of normal execution and the
exception is not subject to seaml ess recovery
by the operating system

2. when aprobeis used for monitoring program
efficiency. For exanple, by logging all
attempted executions of aninstruction that is
capable of generating a page-fault. By this
means one may glean an insight into the
effects of aparticular code path on demand

paging.

In both casesit is acceptable log each execution of
the probed instruction whether or not itisfor
recovery purposes.

Probe handler exception handling
This capability allows an RPN probe handler to
specify alabel from which execution will continue
should afault occur when processing alog
instruction. The 3-byte prefix is optionally
generated with the error code depending on the
definition of the exception handler. Interpretation
of the RPN probe handler is allowed to continue.

Call Kmod
Thisallows an open-ended extension to the RPN
command set, by providing a hook for which any

kernel module may register. The call kmod RPN
instruction will give control to the hook exit
routine. GKHI is used to implement thisinterface.

8. Porting Consider ations:

Because DProbes relies on few operating system
interfacesit isrelatively easy to port to other operating
systems, especially of the UNIX variety. Furthermoreit
isstructured in away that enablesit to be ported to
other architectures besidesIA32. IBM iscurrently
working on ports to the zSeries (31-bit and 64-bit) [*]
and Intel 64-bit <8> architectures.

Porting to Linux on other processor platforms
Thefollowing are the key items to be translated when

considering a port to another processor architecture:

Integer size
The global and |local variable array element sizeis
set to theinteger size (in multiples of 8). So aso the
element size of the RPN stack. All these
dependencies aretied to asingle #define
definition.

RPN instruction set
References to processor registers need to be
mapped to the new architecture. Each register push
instruction is actually an aliasfor the single
instruction pushr,<n>. The aliases are
implemented by the dprobes command from atable
that cross-references register to register number.

The push byte, word and double-word set may
need to be extended to include a quad-word
(64-bit). Thewill need to be implemented to
produce the correct resultsfor the particular endian
characteristic of the processor.

Itis unlikely that a probe handler written for one
architecture would work without modification for
another. However this can be addressed by using a
high-level language interface for probe handler
definitions. Thiswould avoid low-level CPU based
constructs and have a good chance of being
architecturally independent.[*!

Probepoint implementation
Probepoints are implemented trapping instruction
breakpoints. The processor architecture must
provide an instruction that can be stored
atomically and will case aprivilege-level switch.
For example, SV C 255 serves this purpose for IBM
zSeries processors. The interrupt handler for the

breakpoint instruction will need to be hooked by
the DPEH.

Single-step
Theoriginal instruction at the probepoint needs to
be single-stepped. Such a mechanism must
therefore exits for use under software control. Use
of the hardware watchpoint mechanism may be
needed to implement this. Under IBM zSeries, one
would use the Program Event Recording (PER)
facility. If no inherent single-step capability exists
then use of additional breakpoint instructions will
be required - this however is an imperfect solution
which may prohibit the specification of
probepoints on jump or call instructions.

Processor exceptions
All processor exceptions that are generated
through normal instruction execution need to be
intercepted as part of the single-step back-end
processing. Additionally the sequence from
breakpoint interrupt through to single-step
interrupt needs to be conducted with interrupts
disabled in order:

1. to preserve event sequences where an
interrupt occurs during the processing of a
probe event

2. toavoid difficulties that arise with recursion
through the DPEH.

Under Linux for IA32 thisrequired both the
exception 1 and exception 3 trap gatesto be
converted to interrupt gates.

Processor serialisation
Under a multi-processor environment the
single-step optionally needs to be executed while
other processors suspend execution. If thisfacility
cannot be guaranteed then the -stopcpus switch of
the dprobes command will not be supportable.

Instruction cache serialisation
Because instructions of loaded modules are
dynamically altered, serialisation of the instruction
pre-fectch cache may need to be performed. Under
Linux theflush_icache operating system call
achievesthis.

Watchpoint implementation
Thisis more complex and difficult to generalise. In
the worst case scenario, watchpoint probe support
will have to be removed. Otherwise support isa

matter of mapping the watchpoint address and
range the processor implementation. The DPEH
watchpoint event interface will need to hook the
watchpoint interrupt handler. Itislikely that a
generalised debug register allocation scheme will
be needed along with adjustments to context
switching to ensure registers used for watchpoints
are global to al contexts and can easily co-exist
with other uses of watchpointswithin the
system®a,

Porting to other operating systems.
There arefour key considerations:

M odule management
DProbes requires a unique handle by which it can
refer to amodule while either loaded or on disk.
There needs to be ameans of correlating avirtual
storage addressin a given context with amodule
handle. Under Linux the inode serves this purpose.

Page management
Probepoints need to be re-inserted when amodule
pageis brought into memory. Under Linux DProbes
achieves this by hooking the readpage address. If
the paging mechanism is not used make the initial
load of amodule, asin the case of Linux kernel
modul es then modul e load and unload will also
need to be hooked.

Symboalic support
To support symbolic expressions the
expression-analyser in the dprobes command will
need to be adapted to process the module format.
Under Linux DProbes assumes the ELF format,
which is common to many UNIX-like platforms.

M emory management services
Apart from basic alocation and de-allocation
functions, DProbes will require ameans of aliasing
aphysical page with aprivate writeable virtual
address to be able to store the breakpoint
instructions without causing afault or a
proliferation of privatised pages, which would be
the case where a Copy-on-Write page management
schemeisimplemented.

Fault handling
The DPEH needsto intercept faultsrelating to
access violations before any operating system
processing so that they may be silently handled by
the DPEH RPN command interpreter.

9. Whereto obtain DProbesand GKHI:

DPr obes, and GKHI ar e availablefrom the IBM Linux
Technology Centre’ sweb page at:

http://oss.softwar e.ibm.com/devel oper wor ks/opensour ce
/linux/pr ojects/dprobes

The development team comprises:

Richard J Moor e (DProbes Project Lead) -
richardj_moore@uk.ibm.com

Bharata B Rao - rbharata@in.ibmcom

Subodh Soni - ssubodh@in.ibmcom
Vamsikrishna Sangavarapu - rlvamsi@in.ibm.com
SuparnaBhattacharya - bsuparna@in.ibm.com

10. References

<1> Dynamic Probesis an open-source project
distributed freely under the GNU GPL from
http://oss.softwar e.ibm.com/devel oper wor ks/'openso
urce/linux/pr oj ects/dpr obes

<2> Dynamic Probes and Generalised Kernel Hooks
paper published in the USENIX Proceedings of the
October 2000 Annual Linux Showcase.

<3> The SGI [**] Kernel Debugger is an open-source
project from Silicon GraphicsInc.. It may be
obtained from:
http://oss.sgi.com/projects/kdb

<4> The SGI Kerngl Crash Dump is an open-source
project from Silicon GraphicsInc.. It may be
obtained from:
http://oss.sgi.com/projects/lk cd

<5> The Linux Trace Toolkit is an open-source project
from Opersys, Motreal. It may be obtained from:
http://Amww.oper syscom/LTT/

<6> Generalised Kernel Hooks Interfaceis an
open-source project distributed freely under the
GNU GPL from:

http://oss.softwar eibm.com/devel oper wor ks/opens

our ce/linux/pr oj ects/dpr obes

<7> 0OS/2 Tracefacilities are described in the OS/2
Debugging Handbook Volume 3. Order number
SBOF 8617 or as an on-line Redbook under order
number SG244640.

<8> 1A32 and |A64 are abbreviations for the 32-bit
Pentium and 64-bit Itanium processors of the Intel
Corporation [**].

11. Trademarks
[*] 1BM, OS2, zSeries, S/390 and Presentation M anager
are trademarks of the International Business
Machines Corporation in the United States and other
countries.
[**] UNIX isaregistered trademark of The Open Group
in the United States and other countries.

Intel, Pentium and Itanium are trademarks of the
Intel Corporation in the United States, other
countries, or both.

Javaisatrademark of Sun Microsystens, Inc. inthe
United States, other countries, or both.

Other company, product, and service names may be
trademarks or service marks of others.

12. Notes

[1] An RPN languageis used for the following reasons:

a. it alows a simple abstraction of the processor
architecture to be defined to give accessto the
lowest level resources for minimal overhead.

b. it provides a basis on which high-level
language interfaces can be defined and be
largely architecturally independent. Compare
thiswith the Java [**] language and its
implementation by a JavaVirtual Machine
which has an RPN-based virtual machine code.

[2] Aninteractive interface could always be provided by
transfering control to a debugger such asthe SGI
kernel debugger.

[3] The reasonsfor thisrestrictive behavior are
described in <2>. In summary thisis due to the fact
the recursion cannot be tolerated by the DPEH since
few system services are availableto it, in particul ar
memory allocation. It would be possible to tolerate a
finite level of recursion using a DPEH state saving
stack independent of the | A32 implemented stack,
however, performance and boundary conditions
become complications. The latter in particular, sinceit
would be difficult to manifest a consistent behavior
to the user.

[4] These experiments were subsequently repeated
using an Intel 200MHz Pentium processor. The
results were consistent with those obtained earlier
using the Intel 9OMhz Pentium processor, being
scaled by afactor of approximately 50%.

[5] The abort RPN instruction causes probe handler to
exit without calling any external logging function.
[6] push eax stores the value of the EAX register on the
RPN stack. The processing by the interpreter for this

instruction similar to that of most of the RPN
instruction set.

[7] The exit RPN instruction causes the probe handler
to exit and for the default external logging function to
be called.

[8] A tracepoint is a probepoint used for the purpose of
tracing.

[9] Static as opposed to dynamic trace refers here to
tracepoints that are hard coded in program source as

opposed to dynamically inserted at run-rime. With
static trace thereis always an overhead even when
the tracepoint isinactive.

[10] watchpoints refer to processor implemented
breakpoints that require no code modification. In
general they areimplemented using special registers
and features of the processor. They normelly are not
confined to monitoring execution but aso permit
memory references to be monitored. Watchpoints are
usually global in nature being specified by virtual or
even physical addresslocation under some
architectures.

[11] The IBM Dprobes team isworking on a current
project to implement a high-level language
preprocessor for DProbes which generates RPN
instructions from a c-like probe definition language.

[12] TheIBM DProbes team submitted a Linux kernel
patch to the Linux Kernel Mailing List to achieve this
for Linux under |A32.

