
Abstract
Dynamic Probes (DProbes) from IBM [*] is a generic
and pervasive system debugging facility that will
operate under the most extreme software conditions
with minimal system disruption. It permits debugging of
some of the most difficult types of software problem
especially those encountered in a production
environment that will not readily re-create. It is also an
invaluable aid for the developer who has to debug parts
of the operating system inaccessible to other
technologies. DProbes is a front-end enabler for other
debugging technologies, such as crash and core dump s
and kernel/user debuggers. It is designed to operate
with minimal dependence on the operating system,
which affords it the possibility of being ported to other
operating systems, especially UNIX [**] variants, but
not limited to UNIX as it originated conceptually from
Dynamic Trace under OS/2 [*]. This paper describes
the latest developments of the DProbes project in
particular it use as a tracing tool with the Linux Trace
Toolkit project from Opersys [**]. System dependencies
are discussed with an emphasis on portability to other
Linux H/W platforms as well as other operating systems.

1. Introduction
Dynamic Probes (DProbes) for Linux <1> was first
released in August 2000 and presented at the Annual
Linux Showcase in October 2000 <2>. The original
functionality was essentially that of an automated kernel
debugger. Since then DProbes has been extended
considerably. It now interfaces with a number of external
debugging agents, for example: The Kernel Debugger
<3> and Kernel Crash Dump <4> facilities from Silicon
Graphics Inc. (SGI) [**]; the standard user-space core
dump and syslog facilities within Linux and also the
Linux Trace Toolkit <5> from Opersys.

The major topics discussed in this paper are:

� Detailed implementation aspects of DProbes that
relate to its use as an agent for trace instrumentation
under the Linux operating system running on the
Intel 32-bit architecture (IA32) <8>.

� Portability considerations across other operating
systems running under the Intel 32-bit architecture
in particular UNIX-like operating systems.

� Portability to other processor architectures.

Essentially DProbes has become a driver or enabler for
other debugging technologies . Its enabling capability
derives from the following key characteristics:

1. There is a mechanism for intercepting execution at
arbitrary code locations - this is the probepoint
mechanism.

2. Each probepoint has an associated probe handler
that allows specific actions to be taken. This is
implemented using a low-level Reverse Polish
Notation (RPN) language that gives access to kernel
and user space memory and to the processor's
registers [1].

3. A probe handler terminates in one of three ways:

i. By returning to the probed code seamlessly.

ii. By returning to the probed code via a logging
dæmon. A temporary logging buffer is made
available for this purpose. This characteristic is
exploited to provide a means of instrumenting a
module with tracepoints.

iii. By transferring control to an external
debugging facility having first removed the
probepoint. Whether or not the original code
will continue execution is a function of the
external facility.

The efficacy of DProbes is further enhanced by the
following three design criteria:

1. There is no required interactive user interface for the
probe handler[2]. This is intentional - it minimizes the
dependency of the probe handler on system
interfaces and resources. Thus the probe handler is
designed to run as a self-contained interrupt
handler. The RPN command interpreter provides
recovery form potential fatal errors without
reference to operating system facilities. This
criterion gives DProbes its universality since there
are very few restrictions on where a probepoint may
be placed and when the probe handler may execute.
In fact, probepoints are only restricted from being
placed in the code path of the probe handler. If such
a probepoint were to be defined, DProbes would
detect it and silently remove it. Probepoints may
therefore be placed in code that runs at task time,
interrupt time or during a context switch.

A Universal Dynamic Trace for Linux and other Operating Systems
Richard Moore - IBM, Linux Technology Centre - richardj_moore@uk.ibm.com

2. The second design criterion was to align a
probepoint with a module rather than a storage
location. Note that the watchpoint extension, which
is described under 7. Dynamic Probes Recent
Extensions, deviates from this criterion for reasons
explained thereunder. By aligning a probepoint with
a module, or to be more precise an offset into a
module, the probe becomes independent of
incidental circumstances that relate to a module’s
installation in memory and als o the processes under
which that module is executing. Thus, code that is
shared between processes at different virtual
addresses (for example a Linux shared library) has
location-independent and process-independent
probe definitions. This criterion gives DProbes its
independence, since it makes it possible to describe
a probe:

i. Independently of an operating system’s
implementation of module management (clearly
the internal implementation needs to
understand this);

ii. In canonical terms that relate to a programmer’s
view of his/her module which are: independent
of whether a module is loaded at the time the
probe is defined; and independent of any
particular process under which that module
executes.

3. Probepoints are inserted into module code paths
without the need for source code modifications to
that module. Furthermore they may be inserted into
any loaded and running code (kernel or user space)
or code that is paged out or modules not yet
loaded. This mechanism has been described in <2>.
In summary, the instruction at the probe location is
overlaid with a trapping instruction - under Intel
32-bit architecture (IA32) the int3 instruction is
chosen. The original instruction is either
single-stepped or emulated after the probe handler
executes. This particular criterion gives DProbes its
dynamic characteristic. The dynamism refers to its
ability to instrument a module with probes on the fly
so to speak. Thus there is absolutely no
performance penalty when a probepoint is inactive.

These characteristics therefore provide an elementary
universal dynamic tracing capability, which have been
further extended in both universality and dynamism by
recent enhancements - see the section: 7. Dynamic
Probes Recent Extensions for details .

2. DProbes as a Tracing Mechanism
This section discusses the implementation details of
DProbes as a tracing mechanism in detail. We describe
first the internal mechanism of the Dynamic Probes
Event Handler (DPEH) that enables it to be used as a
tracing agent.

DPEH internal details:
DProbes provides various working storage elements for
use by the probe handler:

1. Local variable array.

2. Global variable array.

3. A per-processor log buffer.

The latter is intended for use as a staging area for
building a trace or log record to be passed
synchronously to a logging or tracing dæmon external to
DProbes. One log buffer is permanently allocated per
processor but the data in each buffer persists only for
the duration that a probe handler is active on its
respective processor. The RPN command interpreter
maintains an internal pointer to the next available
location in the buffer, which is reset to the beginning of
the buffer on entry to the probe handler. Data is thus
always accumulated monotonically and discarded on exit
from the probe handler.

The buffer is populated using the log class of RPN
instructions. These are defined in two categories: those
that copy data directly from the RPN stack and those
that use the RPN stack to specify data to be copied from
system memory.

The direct category comprises three instructions in the
IA32 implementation:

 log b,<n> Log byte
 log w,<n> Log word
 log d,<n> Log double-word

Pop <n> elements from the RPN stack and from each,
copy the least significant byte (8-bit integer), word
(16-bit integer) or double-word to the log buffer.

The indirect category has four members in the IA32
implementation. Each operates by popping an address
followed by a length from the RPN stack. Data, for that
length, at that address, is copied to the log buffer.
However, before data is copied, it is appended with a
3-byte prefix that contains a token byte and a length
word. The length refers to the length of data that follows

the prefix and the token byte to type of data. The feature
enables:

a. A trace or log record to contain variable length data
such as arrays whose length is determined
dynamically.

b. A formatting utility to operate using a fixed template
for variable length data.

The token byte values are defined as follows:

 0 binary data logged successfully of length
specified by the prefix length word.

 1 (ASCII) string data logged successfully of
maximum length specified by the prefix length
word. The actual length of the data may be less
if a terminating NULL byte is encountered
within the prefix length. This allows data of
arbitrary lengths to be capped especially in
cases where string data has been corrupted.

 -1 a fault occurred accessing the data using a flat
address. The prefix length is set to 4 and the
variable data contains only the (flat) address
that caused the fault.

 -2 a fault occurred accessing the data using an
invalid selector. The prefix length is set to 4 and
the variable data contains only the selector for
the segment generating the fault.

Note: the latter two tokens may occur in
circumstances where the data address was
valid. Since the RPN probe handler executes,
essentially as an interrupt handler, with minimal
access to system facilities it will not be able to
recover from otherwise recoverable faults. This
is a trade-off between the universality and
flexibility of DProbes. See 3. DProbes Event
Handler Processing for a further dis cussion on
how such conditions are handled.

Under the IA32 implementation there are 4 RPN
instructions use for logging data in memory:

 log mrf Log memory range from flat address.
 log mrs Log memory range from segmented

address.

Pop a flat address (log mrf) or a 16-bit offset then a
16-bit selector (log mrs) from the RPN stack. Then

pop a length. Reserve space for the 3-byte prefix in
the log buffer. Copy data from the address specified
for the length specified to the log buffer. If a fault is
generated then set the prefix token to -1, the length
to 4 and store the fault address. If no fault is
generated then set the prefix with a 0 token and
length of data logged.

 log arf Log ASCII range from flat address.
 log ars Log ASCII range from segmented

address.

Pop a flat address (log arf) or a 16-bit offset then a
16-bit selector (log ars) from the RPN stack. Then
pop a length. Reserve space for the 3-byte prefix in
the log buffer. Copy data from the address specified
up to the length specified or until a NULL terminator
byte has been copied. If a fault is generated then set
the prefix token to -2, the length to 4 and store the
fault address. If no fault is generated then set the
prefix with a 1 token and maximum length value
popped from the RPN stack.

 3. DProbes Event Handler Processing
We turn now to considerations concerning back-end
probe event handler processing.

As described in <2>, the DProbes Event Handler (DPEH)
needs to execute the original instruction that was
replaced with a breakpoint. It does this by
single-stepping the original instruction in situ with
interrupts disabled[3]. If that instruction faults then we
require the operating system to recover and retry the
instruction. However, one does not normally wish to
have multiple trace records generated for each retry
execution of an instruction, especially when that
instruction eventually succeeds and will thus appear to
the underlying program to have executed only once, and
with success. This is achieved by delaying the call to the
tracing dæmon until after the original instruction has
completed single-step. If a fault is generated then the
dæmon is not called and the log buffer is reset.
Furthermore the DPEH reinstates the probepoint - int3
instruction under IA32 - and resets interrupt status,
saved by the processor when the fault was generated, to
indicate the status prior to execution of the probepoint.
Finally it returns to the system fault handler to allow
normal fault processing to occur. If the system retries the
faulting instruction it will unwittingly retry the
probepoint instruction. The DPEH will therefore be
called for each retry. Only on successful execution of the
original instruction will the trace dæmon be called.

It is a requirement for the probe handler to be
re-executed for each retry of a faulting instruction. This
is because it is quite possible, in the case of a page fault,
that the data causing the instruction to fault is also
accessed by the probe handler for copying into the log
buffer. Only on successful execution of the original
instruction would the trace record in this case be
complete.

Some instructions generate faults for non-error reasons,
for example IA32 bounds instruction. For such
instructions it would be desirable to log a trace record
despite a fault being generated on single-step. This is
now possible by means of the logonfault control
statement, which is specified in the header of the RPN
file. This feature was added recently to DProbes - see 7.
Dynamic Probes Recent Extensions below.

4. DPEH Performance Implications
We have made an initial study of the performance
overhead of a probepoint. A mo re comprehensive
performance evaluation is future work. The first set of
results are quantitative observations made under the
Linux 2.2.12 kernel. We also present some qualitative
results taken from real-life usage under OS/2. The
conclusions from these OS/2 examples indicate that
under most conditions the impact of a probepoint is
negligible when active. We concern ourselves only with
measuring the effect of the active probepoint, since for
inactive probepoints there is no alteration to the code
path and therefore a zero overhead.

We estimated the overhead of the DPEH using a 90 MHz
Pentium[**] processor[4]. Five experiments were
performed:

1. To obtain a base measurement of the time taken to
execute a sequence of the following three single
cycle instructions in a loop:

loop: dec eax
 nop
 jnz loop

2. To test a null probe handler with only the abort[5]

RPN instruction and with the probe placed on the
dec eax instruction. Here dec is single-stepped by
the DPEH.

3. Using the same probe handler but the probe placed
on the nop instruction. Here nop in emulated by the
DPEH.

4. Using same probe location as 2 but a single push
eax[6] RPN instruction added to the probe handler.

5. The same probe location as 2 but a single exit[7]

RPN instruction in the probe handler.

The results were as follows:

1. One iteration of the three-instruction loop averaged
30ns, each instruction approximately 10ns .

2. One iteration of the loop averaged 16µs. Therefore
the minimum overhead of the DPEH is approximately
16µs.

3. One iteration of the loop averaged 8µs. Therefore
the cost of the DPEH back-end single-step
processing accounts for half the overhead per
probe.

4. One iteration of the loop averaged 16µs. push eax
therefore has a negligible effect. One might
reasonably assume most register and memory based
RPN instructions are of a similar overhead.

5. One iteration of the loop averaged 200µs. Most of
this is the cost of a printk, which is the default
logging method (see 5. The Trace Dæmon Interface
below for details on how printk in invoked).

Taken at face value the minimum overhead of the DPEH
appears to be of the order of 103. This would certainly be
a valid perception if a probe were placed in a tight
CPU-bound loop. However, in most applications of
DProbes the average number of instructions executed
between consecutive executions of the same probepoint
outweighs any overhead imposed by the DPEH. This is
illustrated by the following qualitative results taken from
real-life uses of DProbes (actually Dynamic Trace) under
OS/2:

1. Tracepoints [8] on every kernel API entry and exit
(circa 500 tracepoints).
The user perception varies from unnoticeable to
very slight depending on work load. The system is
useable and performs within acceptable norms.

2. Tracepoints on entry and exit to the process context
switching code with page table data logged on entry
and exit.
No noticeable overhead.

3. Tracepoints on every OS/2 Presentation Manager
[*] API entry and exit (circa 500 tracepoints).
A noticeable slowing of GUI response. The GUI was
useable.

4. Tracepoints on entry to page allocation, page
de-allocation and page fault handling routines in the
OS/2 page manager.
No noticeable overhead.

5. Tracepoints on 4000 internal kernel routines.
Very noticeable, however the system was still
useable.

Conclusions
While the cost of a probe is not cheap it can be
considerably reduced by placing the probe on an
emulated instruction such as nop. It can als o be reduced
by judicious use of logging by employing conditional
logic in the probe handler to avoid unnecessary log
events. But foremost, the practical use of DProbes finds
probepoints being placed in code paths with a relatively
long mean time to iterate. Under these circumstances the
overhead is negligible.

5. The Trace Dæmon Interface
The generic requirements for a trace dæmon interface
are:

1. To provide a logging API capable of being called
from kernel space, while interrupts are disabled, from
both a task-time and interrupt-time context.

2. To allow binary data of an arbitrary length to be
logged and identified as originating from DProbes.

A number of candidates satisfy these requirements. The
default behavior is to invoke the klog dæmon via printk.
Other options include directing output through a
dedicated asynchronous communications port (com1 or
com2). Strictly speaking, using a communications port
doesn’t necessarily invoke a dæmon unless one thinks
of the monitoring system connected to the system
running DProbes as a dæmon. And finally, a local tracing
dæmon can be invoked to record the log buffer. Use of
this option requires a degree of conformance between
both DProbes and the tracing facility. We have chosen
to use the Linux Trace Toolkit from Opersys <5> as an
initial implementation. We will describe a little later a
generic interface that is possible to implement by using
the Generalised Kernel Hook Interface <6> mechanism.

Logging to the Communications ports or klog:
Logging to both the com1 and com2 communications
ports and klog involves converting the log data to an
ASCII string of pairs of hexadecimal characters and
outputting that to the respective medium. Prior to this we
format a record header that contains both constant
information and some optional entities that are common
to all tracepoints. The most generalised form of the trace
header template is as follows:

“DProbes(%d,%d) cpu=%d name=%s pid=%d
uid=%d cs=%x eip=%08lx ss=%x esp=%08lx
tsc=%08lx:%08lx\n”

Other than the DProbes(...) text item, every other item is
optionally present. All but cpu are selectable by the user
through parameter switched to the dprobes command;
cpu is activated automatically when DProbes is run from
a multi-processor system.

The meaning of each constituent header item is as
follows:

DProbes(%d,%d)
Displays the major and minor code that identifies
the probepoint. Each probepoint has assigned a
major and minor identifier. These are not required
to be unique, but by convention are chosen to
indicate a unique type of probe, for example the exit
point(s) of a particular routine. Major and minor
codes are intended to be used by a generalised
formatter to identify a unique formatting template.
See 6. Trace Formatting Interface below

cpu=% d
Displays the processor id on which the probe was
executed. This is suppressed on uniprocessor
systems and always displayed on multi-processor
systems.

name=%s
Displays the process name taken from the current
task structure when the probe was executed.

pid=% d
Displays the process id taken from the current task
structure when the probe was executed.

uid=% d
Displays the user id name taken from the current
task structure when the probe was executed.

cs=% x eip=%08lx
Displays the CS and EIP registers at the probe
location. This is sometimes useful in distinguishing
individuals of a group of similarly formatted and
therefore identical major and minor coded probes.
For example, multiple return points from a function.

ss=% x esp=%08lx
Displays the SS and ESP register values when the
probe was executed. This can give an indication of
the nesting level of a subroutine.

tsc=%08lx:%08lx
Displays the high resolution processor time-stamp
counter in seconds and micro-seconds.

The remaining data is output as an ASCII string of
hexadecimal characters.

Logging to a Trace Daemon
We chose to use the Linux Trace Toolkit (LTT) <5> from
Opersys as the trace recording dæmon. It provides the
usual post-processing, formatting and analysis features
as well as a dæmon that manages the a kernel space trace
buffer and a mechanism for off-loading the trace buffer
to disk. But most importantly, the Linux Trace Toolkit
was conceived as a kernel based static [9] tracing
mechanism, capable for having tracepoints placed in
both interrupt handlers and code that runs with
interrupts disabled. In other words the conditions under
which the DPEH executes. We were able extend the
Linux Trace Toolkit to provide an kernel programming
interface that allows data to be logged of a an arbitrary
length.

The KPI interface to Linux Trace Toolkit’s Raw Data
interface is show below:

struct trace_raw {
 uint32_t id; /* Event ID */
 uint32_t DataSize; /* Size of data

recorded by event */
 void* Data; /* Data recorded by

 event */
}

#define TRACE_RAW(ID, LEN, DATA) \
 do { \
 struct trace_raw raw_event; \
 raw_event.id = id; \
 raw_event.DataSize = LEN; \
 raw_event.Data = DATA; \

event

This an event identifier defined by LTT. It signifies
a binary data record, the format of which is
undisclosed to LTT.

id
This a module identifier returned by LTT when
tracepoints for a given module are activated.
DProbes calls the LTT trace_create_event()
routine when it inserts tracepoint for a given
module. This enables LTT to correlate events with
a module for the purposes of event analysis. Note:
DProbes will call LTT trace_destroy_event()
routine when tracepoints for a module are
removed.

DataSize
This is the overall size of the trace record (flags + +
log buffer content).

Data
This is a pointer to the trace record (flags + header
+ log buffer content).

The logged data is further structured with a header
followed by the data from the log buffer. The header
comprises a flag double-word followed by one or mo re
binary data items concatenated together. The presence
of an item is signified by its corresponding flag bit being
set. The following table shows the format of each header
item and its corresponding flag setting in the order they
appear in the header:

process namestring0x040011
tscuint640x020010
espuint320x01009
ssuint320x00808
eipuint320x00407
csuint320x00206
uiduint320x00105
piduint320x00084
cpuuint320x00043
minoruint320x00022
majoruint320x00011
descriptiontypeflag#

This implementation is specific to LTT, but may be
readily adapted to other dæmons either by requiring that
they support the three interfaces for creating, destroying
and logging an event.

Generalised Kernel Hook Interface
The disadvantage of the implementation just described
is that DProbes needs to be built for use with LTT and
LTT needs to be present in the system before DProbes
loads in order to resolve the external references to the
three interfaces. We can avoid this problem by using the
Generalised Kernel Hook Interface <6> to define hook
exit points within DProbes for the three interfaces. An
arbitrary trace dæmon would register and arm exit
routines for these three hooks when the dæmon loads or
is instructed to do so. Because the state of activation of
a GKHI hook is transparent to DProbes, it would execute
code paths that call the three interfaces (now hooks)
without regard to whether a recipient dæmon had armed
them. The equivalent hook exit points for each of the
three API calls is coded as follows:

trace_event(event, &event_struc);
GKHOOK_2VAR(GKHOOK_DPROBES_LOG_EVEN
T, event, &event_struc);

event=trace_create_event(name, format, desc);
GKHOOK_4VAR(GKHOOK_DPROBES_CREATE_EV
ENT,&event, &name, &format, &desc);

rc=trace_destroy_event(event);
GKHOOK_2VAR(GKHOOK_DPROBES_DESTROY_
EVENT,&rc, event);

DProbes would notify GKHI of the existence of these
three hooks during initialisation by calling
GKH_identify.

6. Trace Formatting Interface
Clearly, a hexidecimal format for the trace record is not
the most user friendly. Therefore we have proposed a
formatting utility in the form of a set of shared library
routines that may be called to format individual trace
records. The unformatted binary trace record is passed
to the formatter and a pointer to the formatted trace
record is returned.

The formatter uses text templates with place-holders to
format the raw data. For efficiency, templates are cached
in memory. The formatting library provides two
additional subroutine calls:

1. initialise, where essentially the template directory
file is opened, loaded and closed.

2. terminate, where any cached templates are freed.

Note: these two interfaces may be called sequentially, in
reverse order to allow templates to be re-read from disk
following an update.

Formatting Template Structure
The template syntax is an extension and simplification of
that employed by the OS/2 Trace Formatter, which is a
natural thing to do since Dynamic Probes also owes its
origin to OS/2's Dynamic Trace facility <7>. This scheme
is based on a printf-like formatting template. But as
discussed below, we have a requirement to format arrays
and binary data (essentially an array of bytes) whose
number of elements is only determined at the time a trace
record is created. This requirement necessitates
deviation from a simple printf template.

By convention a unique major code is assigned per
module. Each unique trace record format for a module is
assigned a unique minor code within the major code.
This allows us to employ one formatting template file per
major code. A template directory is employed to
cross-reference major code to template file name. The
template file needs only to identify minor code to delimit
each template, however, for sanity purposes the major
code is coded at the head of the file.
Comments are allowed using c-style comment syntax.

Each formatting statement is of the form
keyword=<value>

Numeric values are allowed to be expressed in decimal
and hexadecimal using c-notation.

Strings are quoted using c-notation.

The first statement of the file is:
major=<major code>

Subsequent statements will follow the format:
minor=<minor code>[,]
desc=<”descriptive header text”>[,]
fmt=<”template 1”>[,]
fmt=<”template 2”>[,]
.
.
.

End of file or the next minor keyword delimits the end of
the previous template.

The desc statement serves to provide a static text
description of the trace event.

Major, minor and desc are mandatory, fmt is optional,
however if minor is omitted then only default formatting
will be performed. The data will be treated as binary and
formatted in dump format displaying offsets, hexadecimal
and ASCII.

The fmt statements are used to supply template
information for formatting user data in the trace record.

In general any alphanumeric character found in the fmt
statement is treated as literal text and copied directly to
the output buffer. Escape control characters \n and \t are
supported. In general the last pair of characters in a
sequence of fmt statements will be \n, however the
formatter will always generate an additional new-line at
the end of a new trace record.

Multiple fmt statements for the same minor code are
concatenated by the formatter, so the user must supply
necessary spacing and new-line characters if the
formatted data is to span more than one line. Place
holders for data to be extracted and formatted within the
template is signified by a sequence that is prefixed with a
% character. Multi-byte control sequences are
terminated by any non-numeric character, since in a
multi-byte control sequence the trailing characters are
numeric.

The following control sequences may be specified:

%<n>c - format n-bytes as an ASCII characters. If the
character is in the range 0x20-0x7f then format the ASCII
equivalent character, otherwise substitute a period.

%<n>d - format and n-byte decimal integer with leading
zeros removed.

%<n>f - format an n-byte floating point numeric with
leading zeros removed.

%<n>i - skip n bytes in the unformatted data buffer.

% p - skip the three-byte prefix for variable length data,
see the description of the logging RPN commands under
2. DProbes as a Tracing Mechanism above. This is used
in combination with mo st other controls by placing then
after p. Controls u and r are excluded from use with p.

% r - skip the three byte prefix for variable length data,
but use it as a repetition control, see below. This is used
with other controls or a complex expression following.

% s - format an ASCII string up to the length specified
by the % p prefix, or until a null terminator is

encountered. If %p is not specified then % s formats a
string until a null is encountered.

%<n>u - format an n-byte unsigned decimal integer with
leading zeros removed.

%<n>x - format and n-byte hexadecimal integer
including leading zeros.

% z - format the remainder of the trace record in dump
format (offset, 0x20 hexadecimal bytes separated by
spaces and ASCII equivalent for each 0x20 bytes,
repeated for each 0x20 bytes - one per line).

+00000000 21 22 23 24 25 26 27 28 20 c4 a8
fe ae ef ff bb *abcdefgh*
+00000020 21 22 23 24 25 26 27 28 20 c4 a8
fe ae ef ff bb *abcdefgh*
+00000040 21 22 23 24 25 26
 abcdef

(- begins a complex expression - see below
) - ends a complex expression - see below

Where a <n> qualifier is allowed then its omission
defaults to 1.

Processing the 3-byte prefix
% p causes the formatter to skip over the prefix, noting
the code and length. If an error is indicated an error
message is formatted.

If % s follows % p and the code is 0x01 then data is
formatted up to the first null character or until the length
is exhausted.

If % s follows % p and the code is 0x00 then data is
formatted up to the first null character and any remaining
data up to the value of the length is skipped.

If any other control follows % p then that data is
formatted according to the following control, having
skipped the prefix (the error code being checked first).

% p may be combined with any control other then % r
and % u.

% r is used to process the prefix in a similar way to % p,
except in this case it uses the prefix to repeat the control
sequence that follows until data of the length specified
by the prefix is formatted. % r may be combined with
any control though it seldom makes sense to combine it
with %p, %s in simple formatting expressions.

When controls are combined only one % is specified.
For example:
%ps - causes a prefixed string to be processed.

When two data items are to be concatenated then two
% signs are needed. For example:

%4us - formats a 4-byte unsigned decimal integer
suffixed with a character s, whereas
%4u%s - formats a 4-byte unsigned decimal integer
concatenated to a zero terminated string.

% r may be followed by a left parenthesis (to form a
complex formatting expression, which is completed with
a right parenthesis). This device allows arrays of
structures to be formatted. For example an array for
which each entry contained two double-words called
“function” and “return code” would be formatted using:

%r(function=0x%2x return code=0x%2x\n)

The result would be (for a length value of 12 in the
prefix):

Function=0x0000 return code=0x0000
Function=0x0000 return code=0x0003
Function=0x0002 return code=0x0000

A more complex example where the array is a table
pointers to strings could be formatted using:

%r(pointer=0x%4x, string=’%ps’\n)

The result would be:

pointer=0x801234455, string=’this is an example string’
pointer=0x802234455, string=’this is another example
string’

Within a complex expression the % must be used to
prefix groups of controls.
To format a literal %, (or) character then an additional
prefix % is required. For example:

% % results in %
% (results in (
%) results in)

Note: there is scope for extending this scheme to cope
with formatting bit masks and conditional formatting and
this is something we plan to do.

7. Dynamic Probes Recent Extensions

Since its original release, Dynamic Probes has been
enhanced with a number of new features which are
relevant to tracing. These are briefly described below:

Watchpoint Probes
This innovation defines a new class of probe that
exploits the hardware watchpoint[10] architecture.
Watchpoints are specified by watch-type, which
under IA32 may be Read, Write, Execute or IO; and
address range. Watchpoints are global and not
aligned with any particular module, however
symbolic expressions are permitted in the
specification of a watchpoint address. This
capability gives DProbes its ability to trace memory
accesses.

Logonfault
This allows the option of logging the contents of
a log buffer whether or not the instruction at the
tracepoint generates an exception during
single-step. If the operating system retries the
instruction then multiple events will be logged.
This was introduced to handle two circumstances:

1. where instructions such as bounds generate
exceptions as part of normal execution and the
exception is not subject to seamless recovery
by the operating system.

2. when a probe is used for monitoring program
efficiency. For example, by logging all
attempted executions of an instruction that is
capable of generating a page-fault. By this
means one may glean an insight into the
effects of a particular code path on demand
paging.

In both cases it is acceptable log each execution of
the probed instruction whether or not it is for
recovery purposes.

Probe handler exception handling
This capability allows an RPN probe handler to
specify a label from which execution will continue
should a fault occur when processing a log
instruction. The 3-byte prefix is optionally
generated with the error code depending on the
definition of the exception handler. Interpretation
of the RPN probe handler is allowed to continue.

Call Kmod
This allows an open-ended extension to the RPN
command set, by providing a hook for which any

kernel module may register. The call kmod RPN
instruction will give control to the hook exit
routine. GKHI is used to implement this interface.

8. Porting Considerations:
Because DProbes relies on few operating system
interfaces it is relatively easy to port to other operating
systems, especially of the UNIX variety. Furthermore it
is structured in a way that enables it to be ported to
other architectures besides IA32. IBM is currently
working on ports to the zSeries (31-bit and 64-bit) [*]
and Intel 64-bit <8> architectures.

Porting to Linux on other processor platforms
The following are the key items to be translated when
considering a port to another processor architecture:

Integer size
The global and local variable array element size is
set to the integer size (in multiples of 8). So also the
element size of the RPN stack. All these
dependencies are tied to a single #define
definition.

RPN instruction set
References to processor registers need to be
mapped to the new architecture. Each register push
instruction is actually an alias for the single
instruction push r,<n>. The aliases are
implemented by the dprobes command from a table
that cross-references register to register number.

The push byte, word and double-word set may
need to be extended to include a quad-word
(64-bit). The will need to be implemented to
produce the correct results for the particular endian
characteristic of the processor.

It is unlikely that a probe handler written for one
architecture would work without modification for
another. However this can be addressed by using a
high-level language interface for probe handler
definitions. This would avoid low-level CPU based
constructs and have a good chance of being
architecturally independent.[11]

Probepoint implementation
Probepoints are implemented trapping instruction
breakpoints. The processor architecture must
provide an instruction that can be stored
atomically and will case a privilege-level switch.
For example, SVC 255 serves this purpose for IBM
zSeries processors. The interrupt handler for the

breakpoint instruction will need to be hooked by
the DPEH.

Single-step
The original instruction at the probepoint needs to
be single-stepped. Such a mechanism must
therefore exits for use under software control. Use
of the hardware watchpoint mechanism may be
needed to implement this. Under IBM zSeries, one
would use the Program Event Recording (PER)
facility. If no inherent single-step capability exists
then use of additional breakpoint instructions will
be required - this however is an imperfect solution
which may prohibit the specification of
probepoints on jump or call instructions.

Processor exceptions
All processor exceptions that are generated
through normal instruction execution need to be
intercepted as part of the single-step back-end
processing. Additionally the sequence from
breakpoint interrupt through to single-step
interrupt needs to be conducted with interrupts
disabled in order:

1. to preserve event sequences where an
interrupt occurs during the processing of a
probe event

2. to avoid difficulties that arise with recursion
through the DPEH.

Under Linux for IA32 this required both the
exception 1 and exception 3 trap gates to be
converted to interrupt gates.

Processor serialisation
Under a multi-processor environment the
single-step optionally needs to be executed while
other processors suspend execution. If this facility
cannot be guaranteed then the -stopcpus switch of
the dprobes command will not be supportable.

Instruction cache serialisation
Because instructions of loaded modules are
dynamically altered, serialisation of the instruction
pre-fectch cache may need to be performed. Under
Linux the flush_icache operating system call
achieves this.

Watchpoint implementation
This is more complex and difficult to generalise. In
the worst case scenario, watchpoint probe support
will have to be removed. Otherwise support is a

matter of mapping the watchpoint address and
range the processor implementation. The DPEH
watchpoint event interface will need to hook the
watchpoint interrupt handler. It is likely that a
generalised debug register allocation scheme will
be needed along with adjustments to context
switching to ensure registers used for watchpoints
are global to all contexts and can easily co-exist
with other uses of watchpoints within the
system[12].

Porting to other operating systems.
There are four key considerations:

Module management
DProbes requires a unique handle by which it can
refer to a module while either loaded or on disk.
There needs to be a means of correlating a virtual
storage address in a given context with a module
handle. Under Linux the inode serves this purpose.

Page management
Probepoints need to be re-inserted when a module
page is brought into memory. Under Linux DProbes
achieves this by hooking the readpage address. If
the paging mechanism is not used make the initial
load of a module, as in the case of Linux kernel
modules then module load and unload will also
need to be hooked.

Symbolic support
To support symbolic expressions the
expression-analyser in the dprobes command will
need to be adapted to process the module format.
Under Linux DProbes assumes the ELF format,
which is common to many UNIX-like platforms.

Memory management services
Apart from basic allocation and de-allocation
functions, DProbes will require a means of aliasing
a physical page with a private writeable virtual
address to be able to store the breakpoint
instructions without causing a fault or a
proliferation of privatised pages, which would be
the case where a Copy-on-Write page management
scheme is implemented.

Fault handling
The DPEH needs to intercept faults relating to
access violations before any operating system
processing so that they may be silently handled by
the DPEH RPN command interpreter.

9. Where to obtain DProbes and GKHI:
DProbes, and GKHI are available from the IBM Linux
Technology Centre’s web page at:
http://oss.software.ibm.com/developerworks/opensource
/linux/projects/dprobes

The development team comprises:
Richard J Moore (DProbes Project Lead) -
richardj_moore@uk.ibm.com
Bharata B Rao - rbharata@in.ibm.com
Subodh Soni - ssubodh@in.ibm.com
Vamsikrishna Sangavarapu - r1vamsi@in.ibm.com
Suparna Bhattacharya - bsuparna@in.ibm.com

10. References
<1> Dynamic Probes is an open-source project

distributed freely under the GNU GPL from
http://oss.software.ibm.com/developerworks/openso
urce/linux/projects/dprobes

<2> Dynamic Probes and Generalised Kernel Hooks
paper published in the USENIX Proceedings of the
October 2000 Annual Linux Showcase.

<3> The SGI [**] Kernel Debugger is an open-source
project from Silicon Graphics Inc.. It may be
obtained from:
http://oss.sgi.com/projects/kdb

<4> The SGI Kernel Crash Dump is an open-source
project from Silicon Graphics Inc.. It may be
obtained from:
http://oss.sgi.com/projects/lkcd

<5> The Linux Trace Toolkit is an open-source project
from Opersys, Motreal. It may be obtained from:
http://www.opersys.com/LTT/

<6> Generalised Kernel Hooks Interface is an
open-source project distributed freely under the
GNU GPL from:
 http://oss.software.ibm.com/developerworks/opens
ource/linux/projects/dprobes

<7> OS/2 Trace facilities are described in the OS/2
Debugging Handbook Volume 3. Order number
SBOF 8617 or as an on-line Redbook under order
number SG244640.

<8> IA32 and IA64 are abbreviations for the 32-bit
Pentium and 64-bit Itanium processors of the Intel
Corporation [**].

11. Trademarks
[*] IBM, OS/2, zSeries, S/390 and Presentation Manager

are trademarks of the International Business
Machines Corporation in the United States and other
countries.

[**] UNIX is a registered trademark of The Open Group
in the United States and other countries.

Intel, Pentium and Itanium are trademarks of the
Intel Corporation in the United States, other
countries, or both.
Java is a trademark of Sun Microsystems, Inc. in the
United States, other countries, or both.
Other company, product, and service names may be
trademarks or service marks of others.

12. Notes

[9] Static as opposed to dynamic trace refers here to
tracepoints that are hard coded in program source as

[8] A tracepoint is a probepoint used for the purpose of
tracing.

[7] The exit RPN instruction causes the probe handler
to exit and for the default external logging function to
be called.

[6] push eax stores the value of the EAX register on the
RPN stack. The processing by the interpreter for this
instruction similar to that of most of the RPN
instruction set.

[5] The abort RPN instruction causes probe handler to
exit without calling any external logging function.

[4] These experiments were subsequently repeated
using an Intel 200MHz Pentium processor. The
results were consistent with those obtained earlier
using the Intel 90Mhz Pentium processor, being
scaled by a factor of approximately 50%.

[3] The reasons for this restrictive behavior are
described in <2>. In summary this is due to the fact
the recursion cannot be tolerated by the DPEH since
few system services are available to it, in particular
memory allocation. It would be possible to tolerate a
finite level of recursion using a DPEH state saving
stack independent of the IA32 implemented stack,
however, performance and boundary conditions
become complications. The latter in particular, since it
would be difficult to manifest a consistent behavior
to the user.

[2] An interactive interface could always be provided by
transfering control to a debugger such as the SGI
kernel debugger.

[1] An RPN language is used for the following reasons:
a. it allows a simple abstraction of the processor

architecture to be defined to give access to the
lowest level resources for minimal overhead.

b. it provides a basis on which high-level
language interfaces can be defined and be
largely architecturally independent. Compare
this with the Java [**] language and its
implementation by a Java Virtual Machine
which has an RPN-based virtual machine code.

[12] The IBM DProbes team submitted a Linux kernel
patch to the Linux Kernel Mailing List to achieve this
for Linux under IA32.

[11] The IBM Dprobes team is working on a current
project to implement a high-level language
preprocessor for DProbes which generates RPN
instructions from a c-like probe definition language.

[10] Watchpoints refer to processor implemented
breakpoints that require no code modification. In
general they are implemented using special registers
and features of the processor. They normally are not
confined to mo nitoring execution but als o permit
memory references to be monitored. Watchpoints are
usually global in nature being specified by virtual or
even physical address location under some
architectures.

opposed to dynamically inserted at run-rime. With
static trace there is always an overhead even when
the tracepoint is inactive.

