memcpy performance on skylake server

Ji, Cheng jicheng1017@gmail.com
Tue Jul 6 08:17:14 GMT 2021


Hello,

I found that memcpy is slower on skylake server CPUs during our
optimization work, and I can't really explain what we got and need some
guidance here.

The problem is that memcpy is noticeably slower than a simple for loop when
copying large chunks of data. This genuinely sounds like an amateur mistake
in our testing code but here's what we have tried:

* The test data is large enough: 1GB.
* We noticed a change quite a while ago regarding skylake and AVX512:
https://patchwork.ozlabs.org/project/glibc/patch/20170418183712.GA22211@intel.com/
* We updated glibc from 2.17 to the latest 2.33, we did see memcpy is 5%
faster but still slower than a simple loop.
* We tested on multiple bare metal machines with different cpus: Xeon Gold
6132, Gold 6252, Silver 4114, as well as a virtual machine on google cloud,
the result is reproducible.
* On an older generation Xeon E5-2630 v3, memcpy is about 50% faster than
the simple loop. On my desktop (i7-7700k) memcpy is also significantly
faster.
* numactl is used to ensure everything is running on a single core.
* The code is compiled by gcc 10.3

The numbers on a Xeon Gold 6132, with glibc 2.33:
simple_memcpy 4.18 seconds, 4.79 GiB/s 5.02 GB/s
simple_copy 3.68 seconds, 5.44 GiB/s 5.70 GB/s
simple_memcpy 4.18 seconds, 4.79 GiB/s 5.02 GB/s
simple_copy 3.68 seconds, 5.44 GiB/s 5.71 GB/s

The result is worse with system provided glibc 2.17:
simple_memcpy 4.38 seconds, 4.57 GiB/s 4.79 GB/s
simple_copy 3.68 seconds, 5.43 GiB/s 5.70 GB/s
simple_memcpy 4.38 seconds, 4.56 GiB/s 4.78 GB/s
simple_copy 3.68 seconds, 5.44 GiB/s 5.70 GB/s


The code to generate this result (compiled with g++ -O2 -g, run with: numactl
--membind 0 --physcpubind 0 -- ./a.out)
=====

#include <chrono>
#include <cstring>
#include <functional>
#include <string>
#include <vector>

class TestCase {
    using clock_t = std::chrono::high_resolution_clock;
    using sec_t = std::chrono::duration<double, std::ratio<1>>;

public:
    static constexpr size_t NUM_VALUES = 128 * (1 << 20); // 128 million *
8 bytes = 1GiB

    void init() {
        vals_.resize(NUM_VALUES);
        for (size_t i = 0; i < NUM_VALUES; ++i) {
            vals_[i] = i;
        }
        dest_.resize(NUM_VALUES);
    }

    void run(std::string name, std::function<void(const int64_t *, int64_t
*, size_t)> &&func) {
        // ignore the result from first run
        func(vals_.data(), dest_.data(), vals_.size());
        constexpr size_t count = 20;
        auto start = clock_t::now();
        for (size_t i = 0; i < count; ++i) {
            func(vals_.data(), dest_.data(), vals_.size());
        }
        auto end = clock_t::now();
        double duration =
std::chrono::duration_cast<sec_t>(end-start).count();
        printf("%s %.2f seconds, %.2f GiB/s, %.2f GB/s\n", name.data(),
duration,
               sizeof(int64_t) * NUM_VALUES / double(1 << 30) * count /
duration,
               sizeof(int64_t) * NUM_VALUES / double(1e9) * count /
duration);
    }

private:
    std::vector<int64_t> vals_;
    std::vector<int64_t> dest_;
};

void simple_memcpy(const int64_t *src, int64_t *dest, size_t n) {
    memcpy(dest, src, n * sizeof(int64_t));
}

void simple_copy(const int64_t *src, int64_t *dest, size_t n) {
    for (size_t i = 0; i < n; ++i) {
        dest[i] = src[i];
    }
}

int main(int, char **) {
    TestCase c;
    c.init();

    c.run("simple_memcpy", simple_memcpy);
    c.run("simple_copy", simple_copy);
    c.run("simple_memcpy", simple_memcpy);
    c.run("simple_copy", simple_copy);
}

=====

The assembly of simple_copy generated by gcc is very simple:
Dump of assembler code for function _Z11simple_copyPKlPlm:
   0x0000000000401440 <+0>:     mov    %rdx,%rcx
   0x0000000000401443 <+3>:     test   %rdx,%rdx
   0x0000000000401446 <+6>:     je     0x401460 <_Z11simple_copyPKlPlm+32>
   0x0000000000401448 <+8>:     xor    %eax,%eax
   0x000000000040144a <+10>:    nopw   0x0(%rax,%rax,1)
   0x0000000000401450 <+16>:    mov    (%rdi,%rax,8),%rdx
   0x0000000000401454 <+20>:    mov    %rdx,(%rsi,%rax,8)
   0x0000000000401458 <+24>:    inc    %rax
   0x000000000040145b <+27>:    cmp    %rax,%rcx
   0x000000000040145e <+30>:    jne    0x401450 <_Z11simple_copyPKlPlm+16>
   0x0000000000401460 <+32>:    retq

When compiling with -O3, gcc vectorized the loop using xmm0, the
simple_loop is around 1% faster.

I took a brief look at the glibc source code. Though I don't have enough
knowledge to understand it yet, I'm curious about the underlying mechanism.
Thanks.

Cheng


More information about the Libc-help mailing list