
ELF Symbol Meta-Information

Developed by Todd Snider (Texas Instruments)
in consultation with Jozef Lawrynowicz

Written by Jozef Lawrynowicz

August 2020

Contents
1 Introduction 2

2 Background 2
2.1 Motivation . 2
2.2 Alternative vehicles for symbol meta-information implementation 3

3 Design 5
3.1 Symbol Meta-Information Table 5
3.2 Symbol Meta-Information Table Entries 7
3.3 Symbol Meta-Information Values 9

3.3.1 Restrictions on applying symbol meta-information types
to symbols . 9

3.3.2 SMT_NOINIT use case 9
3.3.3 SMT_PRINTF_FMT use case 10
3.3.4 Considerations for placement of SMT_LOCATION meta-

information symbols (locsyms) 10
3.3.5 Initialization of locsyms at program startup 10

4 Using Symbol Meta-Information 11
4.1 Usage example . 11

5 Conclusion 11
5.1 Symbol meta-information benefits 11
5.2 Symbol meta-information as an extension to the ELF gABI . . . 12

1

1 Introduction
Here we propose a new mechanism for describing additional information about
ELF symbols, called Symbol Meta-Information.

Symbol Meta-Information is intended to solve the problem of how the com-
piler or assembler can communicate information about symbols, not supported
by existing ELF constructs, to downstream tools such as the linker and other
consumers of ELF files. These consumers can then change how they handle the
symbols, based on the supplementary information.

A new ELF special section named .symtab_meta enumerates which symbols
have meta-information, the type of meta-information, and the associated value
of that meta-information.

The use of attributes set on symbol declarations in the source code provides
the programmer with a simple interface to the new functionality.

Symbol meta-information is designed to be extensible, with plenty of room
for new types of meta-information to be added, and flexible, as the value of the
meta-information can take on any format.

2 Background

2.1 Motivation
The modular nature of toolchain components means that communicating infor-
mation from the source code through the build process to downstream tools is
not always straightforward. Of course, this is partly why formats like ELF exist,
but when those formats are reaching the limit of information that is able to be
precisely described by them, programmers search for alternative solutions.

Placing code and data into special named sections is the most common
method used to make the linker handle specific symbols in some non-standard
way. A modified linker script with knowledge of these special sections can then
be used to apply specific properties to the sections, such as saving them from
garbage collection or placing them at specific memory addresses.

However, it can be inconvenient for programmers to modify linker scripts:

• Entire applications can be written without consideration for the linker
script, its existence perhaps acknowledged by the programmer but oth-
erwise being an opaque part of the build process. The programmer may
therefore lack knowledge of the syntax of the linker script, or the ability
to leverage the full breadth of functionality available to achieve what they
want.

• In the context of embedded microcontrollers, linker scripts provided by
semiconductor manufacturers are usually specific to a particular device,
describing a unique combination of the memory map, peripheral register
addresses, vector table etc.

2

– Modifying linker scripts can therefore be bothersome when an appli-
cation targets different devices, each with a unique linker script, or
when linker script updates from semiconductor manufacturers require
merging of downstream and upstream changes.

• Linker scripts can have a large amount of boilerplate code, and modifica-
tions to this boilerplate, as a side-effect to the handling of any new special
sections, can be error-prone.

Another way to supply additional information about a symbol is to give the
symbol itself a special name. This requires the ELF file consumer program to
have knowledge of the special name, and may not be desirable if it interferes with
the way the symbol would be handled if it had its original name. Furthermore,
since there is no opportunity in the gABI for the standardization of special
names for code and data symbols to have some unique meaning, there is likely
to be inconsistencies between processor and vendor support for any toolchains
trying to make use of this mechanism.

2.2 Alternative vehicles for symbol meta-information im-
plementation

We acknowledge some existing constructs which could be used to supply addi-
tional information about ELF symbols, and describe why they are unsuitable
vehicles for the proposed symbol meta-information functionality.

New symbol types or bindings

• If a type of symbol meta-information implied only one existing symbol
type or binding attribute, then the meta-information type could be im-
plemented as a new type or binding. However, since the proposed symbol
meta-information types support symbols with different types and different
bindings, this approach would not work.

• There are only 3 remaining “slots” for generic symbol types and it is de-
sirable to have more than 3 new types of symbol meta-information. There
are further reserved ranges for operating system-specific and processor-
specific types, but it would not be appropriate to use these for new types
which have generic use.

• Fundamentally, symbol meta-information supplies additional information
about symbols, and does not change the intrinsic type or binding of a
symbol.

st_other member of symbol table entry

• st_other is only 8 bits in size and is used as a bit-mask. Bits 0 and 1
are reserved, with an additional proposal currently pending to reserve bit
2 as well. The remaining bits 3-7 have not been officially reserved but

3

are all in use by a variety of targets. Therefore, there are no remaining
bits which can be used without creating a conflict with some target or
operating system.

• There is no standard way to provide supplemental information which gives
a non-boolean value for the st_other field. Further modifications, such as
the creation of a special section, would be required to provide non-boolean
values to accompany the st_other value.

Solaris SymInfo

• Solaris SymInfo specifically targets dynamic symbols, and the proposed
functionality should be available to targets which do not support the con-
cept of dynamic linking. SymInfo “types” are flags that can be augmented
by extracting a value from the .dynamic section.

– The .dynamic section is identified by the sh_info field of the section
header, and could arguably be repurposed to point to some other
section in cases when there are no dynamic symbols with SymInfo
entries. However, this behavior would not be well defined when there
is also a .dynamic section in the file.

• The si_flags field, which describes the properties of the associated sym-
bol, is the size of a half-word. On a target implementing 32-bit ELF,
this would be 16-bits. Since the flags are implemented as a bit-mask
with 10 types already implemented, there only remains space for 6 further
types. This is unlikely to be enough room for all current and future meta-
information types, especially once factoring in any additional vendor or
processor-specific extensions.

New ABI-mandated “Special Sections”

• A new type of ELF “special section” could be created for each of the
proposed new types of symbol meta-information. ELF file consumers such
as the linker would then handle these sections in a specific way, without
assistance from the linker script. However, this has some downsides:

– The user may not want to put a symbol in it’s own section just to
make use of the desired functionality.

– A special section for the symbol obscures the fact that the meta-
information is for a symbol, not a section.

– If the sh_info member is used to provide an accompanying value for
the meta-information type, then only one value can be specified per
section, meaning symbols with the same type might not be able to
be grouped together in a section.

– An application making use of a large amount of new special sections
to describe symbol meta-information could pollute the section header
table.

4

3 Design

Abbreviations
metasym Any type of meta-information symbol

locsym A meta-information symbol with type SMT_LOCATION

3.1 Symbol Meta-Information Table
ELF relocatable and executable files may contain a new section named .symtab_meta.
This section can be omitted from ELF files if there is no meta-information for
any symbols, but if present, there can only be one section with this name and
type.

Table 1: Section types, sh_type

Name Value
SHT_SYMTAB_META 19

5

Table 2: sh_link and sh_info interpretation

Name sh_link sh_info
SHT_SYMTAB_META The section header

index of the
associated symbol

table.

The format version
number of the

symbol
meta-information

table
(ELFxx_SMH_VER),
and the section

header index of the
.strtab_meta

string table used by
entries in this

section
(ELFxx_SMH_STR).

(a) Accessors for the sh_info field'

&

$

%

#define ELF32_SMH_STR(i) ((i)>‌>8)
#define ELF32_SMH_VER(i) ((unsigned char)(i))
#define ELF32_SMH_INFO(s,v) (((s)<‌<8)+(unsigned char)(v))

#define ELF64_SMH_STR(i) ((i)>‌>32)
#define ELF64_SMH_VER(i) ((i)&0xffffffffL)
#define ELF64_SMH_INFO(s,v) (((s)<‌<32)+((v)&0xffffffffL))

(b) .symtab_meta versions

Value Meaning
0 Invalid Version
1 There is no header at the beginning of

.symtab_meta.
2 A header containing the hash of .symtab is at

the beginning of .symtab_meta.

Table 3: Special Sections

Name Type Attributes
.symtab_meta SHT_SYMTAB_META None
.strtab_meta SHT_STRTAB None

Version 2 of the table has a short header, and a list of symbol meta-information
entries follows.

symtab_hash For version >= 2, a 20-byte SHA-1 hash of the entire contents
of .symtab (taken once the symbol table indices have been finalized) is

6

Figure 1: Structure of the .symtab_meta header'

&

$

%

typedef struct {
unsigned char symtab_hash[20];

} Elf32_SMhdr;

typedef struct {
unsigned char symtab_hash[20];

} Elf64_SMhdr;

used to verify .symtab has not been modified by tools which do not rec-
ognize .symtab_meta. These tools would not update the symbol index
stored in the symbol meta-information table entry when making changes
to the program, possibly corrupting the state of .symtab_meta.

3.2 Symbol Meta-Information Table Entries
Symbol meta-information table entries describe the symbol that the meta-information
applies to, the type of meta-information, and the associated value of the meta-
information.

The format of symbol meta-information table entries is physically identical
to ELF Rel relocation entries. The smi_info field encodes the symbol table
index of the corresponding symbol and the type of meta-information in the same
way that the symbol table index and type of a relocation are encoded in the
r_info field of relocation entries.

Figure 2: Structure of a .symtab_meta entry'

&

$

%

typedef struct {
Elf32_Addr smi_info;
Elf32_Word smi_value;

} Elf32_SymMetaInfo;

typedef struct {
Elf64_Addr smi_info;
Elf64_Xword smi_value;

} Elf64_SymMetaInfo;

smi_info This field describes both the symbol table index of the ELF sym-
bol this symbol meta-information this applies to, and the type of meta-
information entry this is. A number of generic types are pre-defined. There
are also reserved ranges for processor-specific and application-specific (i.e.
vendor-specific) types.

7

Figure 3: Accessors for the smi_info field'

&

$

%

#define ELF32_SMI_SYM(i) ((i)>‌>8)
#define ELF32_SMI_TYPE(i) ((unsigned char)(i))
#define ELF32_SMI_INFO(s,t) (((s)<‌<8)+(unsigned char)(t))

#define ELF64_SMI_SYM(i) ((i)>‌>32)
#define ELF64_SMI_TYPE(i) ((i)&0xffffffffL)
#define ELF64_SMI_INFO(s,t) (((s)<‌<32)+((t)&0xffffffffL))

smi_value The interpretation depends on the associated type. The value
could be interpreted as a boolean, symbol table index, address, string
table index etc.

Figure 4: Symbol Meta-Information Types

Value Type Format of Value
0 SMT_NONE None
1 SMT_RETAIN Boolean
2 SMT_LOCATION Address
3 SMT_NOINIT Boolean
4 SMT_PRINTF_FMT Integer

0xC0 SMT_LOPROC Processor-specific
0xDF SMT_HIPROC
0xE0 SMT_LOUSER Vendor-specific
0xFF SMT_HIUSER

SMT_NONE This indicates an invalid or incomplete entry.

SMT_RETAIN A value of 1 indicates the associated symbol should be re-
tained in the output executable file, even it appears unused and so the
linker would normally garbage collect it. Other values result in the type
being ignored.

SMT_LOCATION The VMA of the associated symbol in the output exe-
cutable file should be set to the specified the value.

SMT_NOINIT A value of 1 indicates the associated data symbol should not
be initialized by the runtime support code at program startup. Other
values result in the type being ignored.

SMT_PRINTF_FMT The value indicates a byte offset into the .strtab_meta
section. The section header table index of .strtab_meta is extracted from
the sh_info value of .symtab_meta, using the ELFxx_SMH_STR accessor.
The null-terminated string extracted from the string table is a de-duplicated

8

list of format specifiers used by calls to printf-like functions, in the func-
tion whose symbol is pointed to by this entry.
For example, the following C code:
printf (“%d / %d = %f\n”, ...);
would generate the following string in .strtab_meta:
“%d%f”.

SMT_LOPROC..SMT_HIPROC Values in this range are reserved for
processor-specific semantics.

SMT_LOUSER..SMT_HIUSER Values in this range are reserved for vendor-
specific semantics.

3.3 Symbol Meta-Information Values
3.3.1 Restrictions on applying symbol meta-information types to

symbols

Symbol meta-information entries are always tied to a symbol in the symbol
table, so there are no special rules regarding different symbols with the same
name; the standard symbol binding rules apply.

No two entries in .symtab_meta can have the same smi_info value - each
symbol must only have one value for a given meta-information type.

Figure 5: Symbol bindings and types permitted for metasyms
Symbol

Meta-Information
Type

Permitted Symbol Binding Permitted Symbol
Type

SMT_RETAIN Any < STB_LOOS STT_FUNC
or STT_OBJECT
or STT_COMMON

SMT_LOCATION Any < STB_LOOS STT_FUNC
or STT_OBJECT
or STT_COMMON

SMT_NOINIT Any < STB_LOOS STT_OBJECT
or STT_COMMON

SMT_PRINTF_FMT Any < STB_LOOS STT_FUNC

3.3.2 SMT_NOINIT use case

When a piece of data is not initialized to a constant value, but does not need
to be zero-initialized, SMT_NOINIT indicates that it can be skipped by runtime

9

startup code that would normally initialize it, to save time when starting the
program.

Alternatively, when a piece of data is initialized to a constant value when the
program is loaded, but should not be re-initialized when the processor resets,
SMT_NOINIT can also be applied.

3.3.3 SMT_PRINTF_FMT use case

When the size of an application is a concern to the programmer, limiting the
format specifiers supported by printf-like functions can reduce the code and
data usage of these functions in the application.

By storing the required format specifiers in the symbol meta-information
table, the linker can examine each of the SMT_PRINTF_FMT entries for functions
that will be used in the final linked executable, and link in the minimal imple-
mentation of the printf function required to support all the format specifiers
used by the application.

3.3.4 Considerations for placement of SMT_LOCATIONmeta-information
symbols (locsyms)

Locsyms are intended to augment a well-defined linker script. The linker vali-
dates the address provided for the locsym by examining the permissions of the
segment (p_flags) which contains the specified VMA. For example, the linker
must ensure that a locsym for a read/write symbol with type STT_OBJECT is not
placed in a segment without write (PF_W) permissions, and emit an error if the
segment containing the address is invalid.

The linker may need to place the input section of a locsym within an output
section, within which it would not normally be placed. For example, consider
an application with a large .text output section, which spans most of ROM. If
a locsym corresponding to a piece of read-only data has an address within range
of that .text section, and there is no way to offset the .text section within
ROM such that the read-only data can be placed directly at the location, that
read-only data can be placed amongst the .text input sections at the requested
address. As long as the output section flags are not changed by adding the new
input section, there should not be any problems mixing sections in this way.

3.3.5 Initialization of locsyms at program startup

Data which requires initialization at program startup (e.g. copying data from
their LMA to VMA) has long been handled by the associated runtime library.
When all data requiring initialization is within a range of addresses defined
by known __*_start and __*_end symbols, only a fixed number of target-
dependent initialization functions need to be run. However, when code and data
can reside alone at disparate locations in memory, there must be a mechanism
to initialize each of these as required. The procedure for initializing this data is
not enforced by this ABI. It is expected that an entry in .init_array is created

10

for a function which will run through entries in a table describing how to copy
data or initialize variables as required.

Note that this functionality can be leveraged to easily allow functions to be
executed from a memory region without persistent storage e.g. RAM. When the
linker sees that the segment containing the VMA of the function has a different
LMA and VMA, a copy table entry is created, and the runtime startup code
will copy the contents of this function from the LMA to VMA, in the same way
it would with a piece of data.

4 Using Symbol Meta-Information

4.1 Usage example
The programmer does not need to be aware of the symbol meta-information
mechanism itself to be able to make use of the different types and apply special
handling to symbols. An attribute set in the source code will cause the compiler
to emit an assembler directive describing the meta-information, the assembler
then creates the .symtab_meta section, which the linker absorbs, performs any
required actions, and then outputs a new .symtab_meta section with all accu-
mulated metasyms from input object files.

Figure 6: Example

Compiler source code:
uint16_t __attribute__((retain,location(0x1000)))
core0_key = 0x1234;

Compiled assembly code:
.global core0_key
.type core0_key, @object
.sym_meta_info core0_key, SMT_RETAIN, 1
.sym_meta_info core0_key, SMT_LOCATION, 0x1000

.symtab_meta dump from assembled object file:
SYMBOL META-INFORMATION TABLE:
Idx Kind Value Sym idx Name
0: SMT_RETAIN 0x1 7 core0_key
1: SMT_LOCATION 0x1000 7 core0_key

5 Conclusion

5.1 Symbol meta-information benefits
Ease of use The application of an attribute to a symbol declaration in the

source code is now enough to achieve what previously required both source
code and linker script modifications. For programmers without strong
knowledge of linker script functionality, there is an even clearer benefit as

11

functionality which may have previously seemed overwhelming to imple-
ment is now possible without leaving the source code. Many toolchains
supporting ELF are very powerful, and in the hands of an experienced user,
behavior supported by symbol meta-information can already be achieved.
In this case, symbol meta-information will at least reduce the number of
steps the programmer must take to implement the desired behavior.

Record of operations In relocatable files, the symbol meta-information table
serves as a list of transformations to be made later in the build process. In
executable files, the table shows which transformations have been made.
With the assistance of a dump program which has understanding of the
format of .symtab_meta, a formatted dump of the table makes it clear
which symbols have supplemental information.
When linker script modifications are used to alter the handling of cer-
tain symbols, that file has to be studied by the programmer, possibly in
conjunction with the source code, to understand what special handling is
going to be applied. The standard boilerplate linker script code required
for regular operation is likely to further obscure which symbols have sup-
plemental information.

Clear, defined purpose Each symbol meta-information type has a specific
purpose. When putting symbols into sections with the aim of having them
later be treated in some special way by the linker script, it may not always
be clear what is trying to be achieved without examining the relationship
between the section and symbol at different stages of the build process.

No limitations A type of symbol meta-information can be implemented such
that its value describes an offset into the string table, or the section number
of a section containing additional information. Therefore, since the true
value is not limited to the size of the value in the symbol meta-information
table itself, there are many possibilities for what can be accomplished using
the meta-information.

5.2 Symbol meta-information as an extension to the ELF
gABI

As for why this functionality should be added to the generic ABI, and not
a processor-specific or vendor-specific ABI, we see this functionality helping
other targets and vendors solve problems previously requiring non-standard and
inventive solutions.

Initial versions of this functionality are already implemented for the MSP430
target within the MSP430-GCC fork, and for TI ARM targets in Texas In-
struments’ Clang/LLVM fork. By making this available in the gABI and in-
troducing the changes to the upstream mainline branches, other targets and
vendors can leverage the generic functionality immediately. The overall meta-
information mechanism can then be extended in generic, processor-specific, or
vendor-specific ways, as required, to further improve the toolchain’s feature-set.

12

