This is the mail archive of the libc-hacker@sources.redhat.com mailing list for the glibc project.

Note that libc-hacker is a closed list. You may look at the archives of this list, but subscription and posting are not open.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Itanium 2 tuned versions of bzero, memset, and memcpy


It appears that the Itanium 2 optimized versions of these routines
never were checked in (unless I'm missing something).  I cleaned them
up some more and if they look OK, I'd appreciate it if someone could
check them in.  I did run "make check" successfully and the routines
have been in use as part of the Debian glibc package for some time.

There is also an optimized memcmp() routine but it needs some more
debugging/testing before it's ready for prime-time.

	--david

2002-10-02  David Mosberger  <davidm@hpl.hp.com>

	* sysdeps/ia64/bzero.S: Rewritten by Sverre Jarp to tune for
	Itanium 2 (and Itanium).
	Fix unwind directives and make it fit in 80 columns.
	* sysdeps/ia64/memset.S: Ditto.
	* sysdeps/ia64/memcpy.S: Ditto.
	Move jump table to .rodata section.

Index: sysdeps/ia64/bzero.S
===================================================================
RCS file: /cvs/glibc/libc/sysdeps/ia64/bzero.S,v
retrieving revision 1.3
diff -u -r1.3 bzero.S
--- sysdeps/ia64/sysdeps/ia64/bzero.S	25 Aug 2002 05:25:12 -0000	1.3
+++ sysdeps/ia64/sysdeps/ia64/bzero.S	3 Oct 2002 06:00:19 -0000
@@ -1,7 +1,8 @@
 /* Optimized version of the standard bzero() function.
    This file is part of the GNU C Library.
    Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
-   Contributed by Dan Pop <Dan.Pop@cern.ch>.
+   Contributed by Dan Pop for Itanium <Dan.Pop@cern.ch>.
+   Rewritten for McKinley by Sverre Jarp, HP Labs/CERN <Sverre.Jarp@cern.ch>
 
    The GNU C Library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
@@ -25,8 +26,11 @@
         in1:    count
 
    The algorithm is fairly straightforward: set byte by byte until we
-   we get to a word aligned address, then set word by word as much as
-   possible; the remaining few bytes are set one by one.  */
+   we get to a 16B-aligned address, then loop on 128 B chunks using an
+   early store as prefetching, then loop on 32B chucks, then clear remaining
+   words, finally clear remaining bytes.
+   Since a stf.spill f0 can store 16B in one go, we use this instruction
+   to get peak speed.  */
 
 #include <sysdep.h>
 #undef ret
@@ -34,62 +38,278 @@
 #define dest		in0
 #define	cnt		in1
 
-#define save_pfs 	loc0
-#define ptr1		loc1
-#define ptr2		loc2
-#define tmp		loc3
-#define	loopcnt		loc4
-#define save_lc		loc5
+#define tmp		r31
+#define save_lc		r30
+#define ptr0		r29
+#define ptr1		r28
+#define ptr2		r27
+#define ptr3		r26
+#define ptr9 		r24
+#define	loopcnt		r23
+#define linecnt		r22
+#define bytecnt		r21
 
-ENTRY(__bzero)
+// This routine uses only scratch predicate registers (p6 - p15)
+#define p_scr		p6	// default register for same-cycle branches
+#define p_unalgn	p9
+#define p_y		p11
+#define p_n		p12
+#define p_yy		p13
+#define p_nn		p14
+
+#define movi0		mov
+
+#define MIN1		15
+#define MIN1P1HALF	8
+#define LINE_SIZE	128
+#define LSIZE_SH        7			// shift amount
+#define PREF_AHEAD	8
+
+#define USE_FLP
+#if defined(USE_INT)
+#define store		st8
+#define myval		r0
+#elif defined(USE_FLP)
+#define store		stf8
+#define myval		f0
+#endif
+
+.align	64
+ENTRY(bzero)
+{ .mmi
 	.prologue
-	alloc	save_pfs = ar.pfs, 2, 6, 0, 0
-	.save ar.lc, save_lc
-	mov	save_lc = ar.lc
+	alloc	tmp = ar.pfs, 2, 0, 0, 0
+	lfetch.nt1 [dest]
+	.save   ar.lc, save_lc
+	movi0	save_lc = ar.lc
+} { .mmi
 	.body
-	mov	ret0 = dest
-	and	tmp = 7, dest
-	cmp.eq	p6, p0 = cnt, r0
-(p6)	br.cond.spnt .restore_and_exit ;;
+	mov	ret0 = dest		// return value
+	nop.m	0
+	cmp.eq	p_scr, p0 = cnt, r0
+;; }
+{ .mmi
+	and	ptr2 = -(MIN1+1), dest	// aligned address
+	and	tmp = MIN1, dest	// prepare to check for alignment
+	tbit.nz p_y, p_n = dest, 0	// Do we have an odd address? (M_B_U)
+} { .mib
 	mov	ptr1 = dest
-	sub	loopcnt = 8, tmp
-	cmp.gt	p6, p0 = 16, cnt
-(p6)	br.cond.spnt .set_few;;
-	cmp.eq	p6, p0 = tmp, r0
-(p6)	br.cond.sptk .dest_aligned
-	sub	cnt = cnt, loopcnt
-	adds	loopcnt = -1, loopcnt;;
-	mov	ar.lc = loopcnt;;
-.l1:
-	st1	[ptr1] = r0, 1
-	br.cloop.dptk	.l1 ;;
-.dest_aligned:
-	adds	ptr2 = 8, ptr1
-	shr.u	loopcnt = cnt, 4 ;;	// loopcnt = cnt / 16
-	cmp.eq	p6, p0 = loopcnt, r0
-(p6)	br.cond.spnt	.one_more
-	and	cnt = 0xf, cnt		// compute the remaining cnt
-	adds	loopcnt = -1, loopcnt;;
-	mov     ar.lc = loopcnt;;
-.l2:
-	st8	[ptr1] = r0, 16
-	st8	[ptr2] = r0, 16
-	br.cloop.dptk .l2
-	cmp.le	p6, p0 = 8, cnt	;;
-.one_more:
-(p6)	st8     [ptr1] = r0, 8
-(p6)	adds	cnt = -8, cnt ;;
-	cmp.eq	p6, p0 = cnt, r0
-(p6)	br.cond.spnt	.restore_and_exit
-.set_few:
-	adds	loopcnt = -1, cnt;;
-	mov	ar.lc = loopcnt;;
-.l3:
-	st1     [ptr1] = r0, 1
-	br.cloop.dptk   .l3 ;;
+	nop.i	0
+(p_scr)	br.ret.dpnt.many rp		// return immediately if count = 0
+;; }
+{ .mib
+	cmp.ne	p_unalgn, p0 = tmp, r0
+} { .mib					// NB: # of bytes to move is 1
+	sub	bytecnt = (MIN1+1), tmp		//     higher than loopcnt
+	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
+(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
+;; }
+{ .mmi
+(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
+(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
+(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
+;; }
+{ .mib
+(p_y)	add	cnt = -8, cnt
+(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
+} { .mib
+(p_y)	st8	[ptr2] = r0,-4
+(p_n)	add	ptr2 = 4, ptr2
+;; }
+{ .mib
+(p_yy)	add	cnt = -4, cnt
+(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
+} { .mib
+(p_yy)	st4	[ptr2] = r0,-2
+(p_nn)	add	ptr2 = 2, ptr2
+;; }
+{ .mmi
+	mov	tmp = LINE_SIZE+1		// for compare
+(p_y)	add	cnt = -2, cnt
+(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
+} { .mmi
+	nop.m	0
+(p_y)	st2	[ptr2] = r0,-1
+(p_n)	add	ptr2 = 1, ptr2
+;; }
+
+{ .mmi
+(p_yy)	st1	[ptr2] = r0
+  	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
+} { .mbb
+(p_yy)	add	cnt = -1, cnt
+(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
+;; }
+{ .mib
+	nop.m 	0
+	shr.u	linecnt = cnt, LSIZE_SH
+	nop.b	0
+;; }
+
+	.align 32
+.l1b:	// ------------------//  L1B: store ahead into cache lines; fill later
+{ .mmi
+	and	tmp = -(LINE_SIZE), cnt		// compute end of range
+	mov	ptr9 = ptr1			// used for prefetching
+	and	cnt = (LINE_SIZE-1), cnt	// remainder
+} { .mmi
+	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
+	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
+;; }
+{ .mmi
+(p_scr)	add	loopcnt = -1, linecnt
+	add	ptr2 = 16, ptr1	// start of stores (beyond prefetch stores)
+	add	ptr1 = tmp, ptr1	// first address beyond total range
+;; }
+{ .mmi
+	add	tmp = -1, linecnt	// next loop count
+	movi0	ar.lc = loopcnt
+;; }
+.pref_l1b:
+{ .mib
+	stf.spill [ptr9] = f0, 128	// Do stores one cache line apart
+	nop.i   0
+	br.cloop.dptk.few .pref_l1b
+;; }
+{ .mmi
+	add	ptr0 = 16, ptr2		// Two stores in parallel
+	movi0	ar.lc = tmp
+;; }
+.l1bx:
+ { .mmi
+	stf.spill [ptr2] = f0, 32
+	stf.spill [ptr0] = f0, 32
+ ;; }
+ { .mmi
+	stf.spill [ptr2] = f0, 32
+	stf.spill [ptr0] = f0, 32
+ ;; }
+ { .mmi
+	stf.spill [ptr2] = f0, 32
+	stf.spill [ptr0] = f0, 64
+ 	cmp.lt	p_scr, p0 = ptr9, ptr1	// do we need more prefetching?
+ ;; }
+{ .mmb
+	stf.spill [ptr2] = f0, 32
+(p_scr)	stf.spill [ptr9] = f0, 128
+	br.cloop.dptk.few .l1bx
+;; }
+{ .mib
+	cmp.gt  p_scr, p0 = 8, cnt	// just a few bytes left ?
+(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment
+;; }
+
+.fraction_of_line:
+{ .mib
+	add	ptr2 = 16, ptr1
+	shr.u	loopcnt = cnt, 5   	// loopcnt = cnt / 32
+;; }
+{ .mib
+	cmp.eq	p_scr, p0 = loopcnt, r0
+	add	loopcnt = -1, loopcnt
+(p_scr)	br.cond.dpnt.many .store_words
+;; }
+{ .mib
+	and	cnt = 0x1f, cnt		// compute the remaining cnt
+	movi0   ar.lc = loopcnt
+;; }
+	.align 32
+.l2:	// -----------------------------//  L2A:  store 32B in 2 cycles
+{ .mmb
+	store	[ptr1] = myval, 8
+	store	[ptr2] = myval, 8
+;; } { .mmb
+	store	[ptr1] = myval, 24
+	store	[ptr2] = myval, 24
+	br.cloop.dptk.many .l2
+;; }
+.store_words:
+{ .mib
+	cmp.gt	p_scr, p0 = 8, cnt	// just a few bytes left ?
+(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
+;; }
+
+{ .mmi
+	store	[ptr1] = myval, 8	// store
+	cmp.le	p_y, p_n = 16, cnt	//
+	add	cnt = -8, cnt		// subtract
+;; }
+{ .mmi
+(p_y)	store	[ptr1] = myval, 8	// store
+(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt
+(p_y)	add	cnt = -8, cnt		// subtract
+;; }
+{ .mmi					// store
+(p_yy)	store	[ptr1] = myval, 8
+(p_yy)	add	cnt = -8, cnt		// subtract
+;; }
+
+.move_bytes_from_alignment:
+{ .mib
+	cmp.eq	p_scr, p0 = cnt, r0
+	tbit.nz.unc p_y, p0 = cnt, 2	// should we terminate with a st4 ?
+(p_scr)	br.cond.dpnt.few .restore_and_exit
+;; }
+{ .mib
+(p_y)	st4	[ptr1] = r0,4
+	tbit.nz.unc p_yy, p0 = cnt, 1	// should we terminate with a st2 ?
+;; }
+{ .mib
+(p_yy)	st2	[ptr1] = r0,2
+	tbit.nz.unc p_y, p0 = cnt, 0	// should we terminate with a st1 ?
+;; }
+
+{ .mib
+(p_y)	st1	[ptr1] = r0
+;; }
 .restore_and_exit:
-	mov	ar.lc = save_lc
-	mov	ar.pfs = save_pfs
-	br.ret.sptk.many b0
-END(__bzero)
-weak_alias (__bzero, bzero)
+{ .mib
+	nop.m	0
+	movi0	ar.lc = save_lc
+	br.ret.sptk.many rp
+;; }
+
+.move_bytes_unaligned:
+{ .mmi
+       .pred.rel "mutex",p_y, p_n
+       .pred.rel "mutex",p_yy, p_nn
+(p_n)	cmp.le  p_yy, p_nn = 4, cnt
+(p_y)	cmp.le  p_yy, p_nn = 5, cnt
+(p_n)	add	ptr2 = 2, ptr1
+} { .mmi
+(p_y)	add	ptr2 = 3, ptr1
+(p_y)	st1	[ptr1] = r0, 1		// fill 1 (odd-aligned) byte
+(p_y)	add	cnt = -1, cnt		// [15, 14 (or less) left]
+;; }
+{ .mmi
+(p_yy)	cmp.le.unc p_y, p0 = 8, cnt
+	add	ptr3 = ptr1, cnt	// prepare last store
+	movi0	ar.lc = save_lc
+} { .mmi
+(p_yy)	st2	[ptr1] = r0, 4		// fill 2 (aligned) bytes
+(p_yy)	st2	[ptr2] = r0, 4		// fill 2 (aligned) bytes
+(p_yy)	add	cnt = -4, cnt		// [11, 10 (o less) left]
+;; }
+{ .mmi
+(p_y)	cmp.le.unc p_yy, p0 = 8, cnt
+	add	ptr3 = -1, ptr3		// last store
+	tbit.nz p_scr, p0 = cnt, 1	// will there be a st2 at the end ?
+} { .mmi
+(p_y)	st2	[ptr1] = r0, 4		// fill 2 (aligned) bytes
+(p_y)	st2	[ptr2] = r0, 4		// fill 2 (aligned) bytes
+(p_y)	add	cnt = -4, cnt		// [7, 6 (or less) left]
+;; }
+{ .mmi
+(p_yy)	st2	[ptr1] = r0, 4		// fill 2 (aligned) bytes
+(p_yy)	st2	[ptr2] = r0, 4		// fill 2 (aligned) bytes
+					// [3, 2 (or less) left]
+	tbit.nz p_y, p0 = cnt, 0	// will there be a st1 at the end ?
+} { .mmi
+(p_yy)	add	cnt = -4, cnt
+;; }
+{ .mmb
+(p_scr)	st2	[ptr1] = r0		// fill 2 (aligned) bytes
+(p_y)	st1	[ptr3] = r0		// fill last byte (using ptr3)
+	br.ret.sptk.many rp
+;; }
+END(bzero)
Index: sysdeps/ia64/memcpy.S
===================================================================
RCS file: /cvs/glibc/libc/sysdeps/ia64/memcpy.S,v
retrieving revision 1.8
diff -u -r1.8 memcpy.S
--- sysdeps/ia64/sysdeps/ia64/memcpy.S	6 Jul 2001 04:55:54 -0000	1.8
+++ sysdeps/ia64/sysdeps/ia64/memcpy.S	3 Oct 2002 06:00:19 -0000
@@ -1,7 +1,8 @@
 /* Optimized version of the standard memcpy() function.
    This file is part of the GNU C Library.
    Copyright (C) 2000, 2001 Free Software Foundation, Inc.
-   Contributed by Dan Pop <Dan.Pop@cern.ch>.
+   Contributed by Dan Pop for Itanium <Dan.Pop@cern.ch>.
+   Rewritten for McKinley by Sverre Jarp, HP Labs/CERN <Sverre.Jarp@cern.ch>
 
    The GNU C Library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
@@ -26,27 +27,39 @@
         in2:    byte count
 
    An assembly implementation of the algorithm used by the generic C
-   version from glibc.  The case when all three arguments are multiples
-   of 8 is treated separatedly, for extra performance.
+   version from glibc.  The case when source and sest are aligned is
+   treated separately, for extra performance.
 
-   In this form, it assumes little endian mode.  For big endian mode,
+   In this form, memcpy assumes little endian mode.  For big endian mode,
    sh1 must be computed using an extra instruction: sub sh1 = 64, sh1
    and the order of r[MEMLAT] and r[MEMLAT+1] must be reverted in the
    shrp instruction.  */
 
+#define USE_LFETCH
+#define USE_FLP
 #include <sysdep.h>
 #undef ret
 
+#define LFETCH_DIST     500
+
+#define ALIGN_UNROLL_no   4 // no. of elements
+#define ALIGN_UNROLL_sh	  2 // (shift amount)
+
+#define MEMLAT	8
+#define Nrot	((4*(MEMLAT+2) + 7) & ~7)
+
 #define OP_T_THRES 	16
 #define OPSIZ 		8
 
-#define adest		r15
-#define saved_pr	r17
-#define saved_lc	r18
+#define loopcnt		r14
+#define elemcnt		r15
+#define saved_pr	r16
+#define saved_lc	r17
+#define adest		r18
 #define dest		r19
-#define src		r20
-#define len		r21
-#define asrc		r22
+#define asrc		r20
+#define src		r21
+#define len		r22
 #define tmp2		r23
 #define tmp3		r24
 #define	tmp4		r25
@@ -54,113 +67,339 @@
 #define ploop56		r27
 #define	loopaddr	r28
 #define	sh1		r29
-#define loopcnt		r30
-#define	value		r31
+#define ptr1		r30
+#define ptr2		r31
 
-#define LOOP(shift)							\
-		.align	32 ;						\
-.loop##shift##:								\
-(p[0])		ld8	r[0] = [asrc], 8 ;	/* w1 */		\
-(p[MEMLAT+1])	st8	[dest] = value, 8 ;				\
-(p[MEMLAT])	shrp	value = r[MEMLAT], r[MEMLAT+1], shift ;		\
-		nop.b	0 ;						\
-		nop.b	0 ;						\
-		br.ctop.sptk .loop##shift ;				\
-		br.cond.sptk .cpyfew ; /* deal with the remaining bytes */
+#define movi0 		mov
+
+#define p_scr		p6
+#define p_xtr		p7
+#define p_nxtr		p8
+#define p_few		p9
+
+#if defined(USE_FLP)
+#define load		ldf8
+#define store		stf8
+#define tempreg		f6
+#define the_r		fr
+#define the_s		fs
+#define the_t		ft
+#define the_q		fq
+#define the_w		fw
+#define the_x		fx
+#define the_y		fy
+#define the_z		fz
+#elif defined(USE_INT)
+#define load		ld8
+#define store		st8
+#define tempreg		tmp2
+#define the_r		r
+#define the_s		s
+#define the_t		t
+#define the_q		q
+#define the_w		w
+#define the_x		x
+#define the_y		y
+#define the_z		z
+#endif
+
+
+#if defined(USE_LFETCH)
+#define LOOP(shift)						\
+		.align	32 ;					\
+.loop##shift##:							\
+{ .mmb								\
+(p[0])	ld8.nt1	r[0] = [asrc], 8 ;				\
+(p[0])	lfetch.nt1 [ptr1], 16 ;				\
+	nop.b 0 ;						\
+} { .mib							\
+(p[MEMLAT+1]) st8 [dest] = tmp3, 8 ;				\
+(p[MEMLAT]) shrp tmp3 = r[MEMLAT], s[MEMLAT+1], shift ;		\
+ 	nop.b 0 ;;						\
+ } { .mmb							\
+(p[0])	ld8.nt1	s[0] = [asrc], 8 ;				\
+(p[0])	lfetch.nt1	[ptr2], 16 ;			\
+	nop.b 0 ;						\
+} { .mib							\
+(p[MEMLAT+1]) st8 [dest] = tmp4, 8 ;				\
+(p[MEMLAT]) shrp tmp4 = s[MEMLAT], r[MEMLAT], shift ;		\
+	br.ctop.sptk.many .loop##shift 				\
+;; }								\
+{ .mib								\
+	br.cond.sptk.many .copy_bytes ; /* deal with the remaining bytes */  \
+}
+#else
+#define LOOP(shift)						\
+		.align	32 ;					\
+.loop##shift##:							\
+{ .mmb								\
+(p[0])	ld8.nt1	r[0] = [asrc], 8 ;				\
+	nop.b 0 ;						\
+} { .mib							\
+(p[MEMLAT+1]) st8 [dest] = tmp3, 8 ;				\
+(p[MEMLAT]) shrp tmp3 = r[MEMLAT], s[MEMLAT+1], shift ;		\
+ 	nop.b 0 ;;						\
+ } { .mmb							\
+(p[0])	ld8.nt1	s[0] = [asrc], 8 ;				\
+	nop.b 0 ;						\
+} { .mib							\
+(p[MEMLAT+1]) st8 [dest] = tmp4, 8 ;				\
+(p[MEMLAT]) shrp tmp4 = s[MEMLAT], r[MEMLAT], shift ;		\
+	br.ctop.sptk.many .loop##shift 				\
+;; }								\
+{ .mib								\
+	br.cond.sptk.many .copy_bytes ; /* deal with the remaining bytes */  \
+}
+#endif
 
-#define MEMLAT	21
-#define Nrot	(((2*MEMLAT+3) + 7) & ~7)
 
 ENTRY(memcpy)
+{ .mmi
 	.prologue
 	alloc 	r2 = ar.pfs, 3, Nrot - 3, 0, Nrot
-	.rotr	r[MEMLAT + 2], q[MEMLAT + 1]
-	.rotp	p[MEMLAT + 2]
-	mov	ret0 = in0		// return value = dest
-	.save pr, saved_pr
-	mov	saved_pr = pr		// save the predicate registers
-	.save ar.lc, saved_lc
-        mov 	saved_lc = ar.lc	// save the loop counter
-	.body
-	or	tmp3 = in0, in1 ;;	// tmp3 = dest | src
-	or	tmp3 = tmp3, in2	// tmp3 = dest | src | len
+	.rotr	r[MEMLAT+1], s[MEMLAT+2], q[MEMLAT+1], t[MEMLAT+1]
+	.rotp	p[MEMLAT+2]
+	.rotf	fr[MEMLAT+1], fq[MEMLAT+1], fs[MEMLAT+1], ft[MEMLAT+1]
+	mov	ret0 = in0		// return tmp2 = dest
+	.save   pr, saved_pr
+	movi0	saved_pr = pr		// save the predicate registers
+} { .mmi
+	and	tmp4 = 7, in0 		// check if destination is aligned
 	mov 	dest = in0		// dest
 	mov 	src = in1		// src
+;; }
+{ .mii
+	cmp.eq	p_scr, p0 = in2, r0	// if (len == 0)
+	.save   ar.lc, saved_lc
+        movi0 	saved_lc = ar.lc	// save the loop counter
+	.body
+	cmp.ge	p_few, p0 = OP_T_THRES, in2 // is len <= OP_T_THRESH
+} { .mbb
 	mov	len = in2		// len
-	sub	tmp2 = r0, in0		// tmp2 = -dest
-	cmp.eq	p6, p0 = in2, r0	// if (len == 0)
-(p6)	br.cond.spnt .restore_and_exit;;// 	return dest;
-	and	tmp4 = 7, tmp3 		// tmp4 = (dest | src | len) & 7
-	shr.u	loopcnt = len, 4 ;;	// loopcnt = len / 16
-	cmp.ne	p6, p0 = tmp4, r0	// if ((dest | src | len) & 7 != 0)
-(p6)	br.cond.sptk .next		//	goto next;
-
-// The optimal case, when dest, src and len are all multiples of 8
-
-	and	tmp3 = 0xf, len		// tmp3 = len % 16
-	mov	pr.rot = 1 << 16	// set rotating predicates
-	mov	ar.ec = MEMLAT + 1 ;;	// set the epilog counter
-	cmp.ne	p6, p0 = tmp3, r0	// do we have to copy an extra word?
-	adds	loopcnt = -1, loopcnt;;	// --loopcnt
-(p6)	ld8	value = [src], 8;;	
-(p6)	st8	[dest] = value, 8	// copy the "extra" word
-	mov	ar.lc = loopcnt 	// set the loop counter		 
-	cmp.eq	p6, p0 = 8, len
-(p6)	br.cond.spnt .restore_and_exit;;// there was only one word to copy
-	adds	adest = 8, dest
-	adds	asrc = 8, src ;;
+(p_scr)	br.cond.dpnt.few .restore_and_exit // 	Branch no. 1: return dest
+(p_few) br.cond.dpnt.many .copy_bytes	// Branch no. 2: copy byte by byte
+;; }
+{ .mmi
+#if defined(USE_LFETCH)
+	lfetch.nt1 [dest]		//
+	lfetch.nt1 [src]		//
+#endif
+	shr.u	elemcnt = len, 3	// elemcnt = len / 8
+} { .mib
+	cmp.eq	p_scr, p0 = tmp4, r0	// is destination aligned?
+	sub	loopcnt = 7, tmp4	//
+(p_scr) br.cond.dptk.many .dest_aligned
+;; }
+{ .mmi
+	ld1	tmp2 = [src], 1		//
+	sub	len = len, loopcnt, 1	// reduce len
+	movi0	ar.lc = loopcnt		//
+} { .mib
+	cmp.ne  p_scr, p0 = 0, loopcnt	// avoid loading beyond end-point
+;; }
+
+.l0:	// ---------------------------- // L0: Align src on 8-byte boundary
+{ .mmi
+	st1	[dest] = tmp2, 1	//
+(p_scr)	ld1	tmp2 = [src], 1		//
+} { .mib
+	cmp.lt	p_scr, p0 = 1, loopcnt	// avoid load beyond end-point
+	add	loopcnt = -1, loopcnt
+	br.cloop.dptk.few .l0		//
+;; }
+
+.dest_aligned:
+{ .mmi
+	and	tmp4 = 7, src		// ready for alignment check
+	shr.u	elemcnt = len, 3	// elemcnt = len / 8
+;; }
+{ .mib
+	cmp.ne	p_scr, p0 = tmp4, r0	// is source also aligned
+	tbit.nz p_xtr, p_nxtr = src, 3	// prepare a separate move if src
+} { .mib				// is not 16B aligned
+	add	ptr2 = LFETCH_DIST, dest	// prefetch address
+	add	ptr1 = LFETCH_DIST, src
+(p_scr) br.cond.dptk.many .src_not_aligned
+;; }
+
+// The optimal case, when dest, and src are aligned
+
+.both_aligned:
+{ .mmi
+	.pred.rel "mutex",p_xtr,p_nxtr
+(p_xtr)	cmp.gt  p_scr, p0 = ALIGN_UNROLL_no+1, elemcnt // Need N + 1 to qualify
+(p_nxtr) cmp.gt p_scr, p0 = ALIGN_UNROLL_no, elemcnt  // Need only N to qualify
+	movi0	pr.rot = 1 << 16	// set rotating predicates
+} { .mib
+(p_scr) br.cond.dpnt.many .copy_full_words
+;; }
+
+{ .mmi
+(p_xtr)	load	tempreg = [src], 8
+(p_xtr) add 	elemcnt = -1, elemcnt
+	movi0	ar.ec = MEMLAT + 1	// set the epilog counter
+;; }
+{ .mmi
+(p_xtr) add	len = -8, len		//
+	add 	asrc = 16, src 		// one bank apart (for USE_INT)
+	shr.u	loopcnt = elemcnt, ALIGN_UNROLL_sh  // cater for unrolling
+;;}
+{ .mmi
+	add	loopcnt = -1, loopcnt
+(p_xtr)	store	[dest] = tempreg, 8	// copy the "extra" word
+	nop.i	0
+;; }
+{ .mib
+	add	adest = 16, dest
+	movi0	ar.lc = loopcnt 	// set the loop counter
+;; }
+
 	.align	32
-.l0:
-(p[0])		ld8	r[0] = [src], 16
-(p[0])		ld8	q[0] = [asrc], 16
-(p[MEMLAT])	st8	[dest] = r[MEMLAT], 16
-(p[MEMLAT])	st8	[adest] = q[MEMLAT], 16
-		br.ctop.dptk .l0 ;;
+#if defined(USE_FLP)
+.l1: // ------------------------------- // L1: Everything a multiple of 8
+{ .mmi
+#if defined(USE_LFETCH)
+(p[0])	lfetch.nt1 [ptr2],32
+#endif
+(p[0])	ldfp8	the_r[0],the_q[0] = [src], 16
+(p[0])	add	len = -32, len
+} {.mmb
+(p[MEMLAT]) store [dest] = the_r[MEMLAT], 8
+(p[MEMLAT]) store [adest] = the_s[MEMLAT], 8
+;; }
+{ .mmi
+#if defined(USE_LFETCH)
+(p[0])	lfetch.nt1 [ptr1],32
+#endif
+(p[0])	ldfp8	the_s[0], the_t[0] = [src], 16
+} {.mmb
+(p[MEMLAT]) store [dest] = the_q[MEMLAT], 24
+(p[MEMLAT]) store [adest] = the_t[MEMLAT], 24
+	br.ctop.dptk.many .l1
+;; }
+#elif defined(USE_INT)
+.l1: // ------------------------------- // L1: Everything a multiple of 8
+{ .mmi
+(p[0])	load	the_r[0] = [src], 8
+(p[0])	load	the_q[0] = [asrc], 8
+(p[0])	add	len = -32, len
+} {.mmb
+(p[MEMLAT]) store [dest] = the_r[MEMLAT], 8
+(p[MEMLAT]) store [adest] = the_q[MEMLAT], 8
+;; }
+{ .mmi
+(p[0])	load	the_s[0]  = [src], 24
+(p[0])	load	the_t[0] = [asrc], 24
+} {.mmb
+(p[MEMLAT]) store [dest] = the_s[MEMLAT], 24
+(p[MEMLAT]) store [adest] = the_t[MEMLAT], 24
+#if defined(USE_LFETCH)
+;; }
+{ .mmb
+(p[0])	lfetch.nt1 [ptr2],32
+(p[0])	lfetch.nt1 [ptr1],32
+#endif
+	br.ctop.dptk.many .l1
+;; }
+#endif
+
+.copy_full_words:
+{ .mib
+	cmp.gt	p_scr, p0 = 8, len	//
+	shr.u	elemcnt = len, 3	//
+(p_scr) br.cond.dpnt.many .copy_bytes
+;; }
+{ .mii
+	load	tempreg = [src], 8
+	add	loopcnt = -1, elemcnt	//
+;; }
+{ .mii
+	cmp.ne	p_scr, p0 = 0, loopcnt	//
+	mov	ar.lc = loopcnt		//
+;; }
+
+.l2: // ------------------------------- // L2: Max 4 words copied separately
+{ .mmi
+	store	[dest] = tempreg, 8
+(p_scr)	load	tempreg = [src], 8	//
+	add	len = -8, len
+} { .mib
+	cmp.lt	p_scr, p0 = 1, loopcnt	// avoid load beyond end-point
+	add	loopcnt = -1, loopcnt
+	br.cloop.dptk.few  .l2
+;; }
+
+.copy_bytes:
+{ .mib
+	cmp.eq	p_scr, p0 = len, r0	// is len == 0 ?
+	add	loopcnt = -1, len	// len--;
+(p_scr)	br.cond.spnt	.restore_and_exit
+;; }
+{ .mii
+	ld1	tmp2 = [src], 1
+	movi0	ar.lc = loopcnt
+	cmp.ne	p_scr, p0 = 0, loopcnt	// avoid load beyond end-point
+;; }
+
+.l3: // ------------------------------- // L3: Final byte move
+{ .mmi
+	st1	[dest] = tmp2, 1
+(p_scr)	ld1	tmp2 = [src], 1
+} { .mib
+	cmp.lt	p_scr, p0 = 1, loopcnt	// avoid load beyond end-point
+	add	loopcnt = -1, loopcnt
+	br.cloop.dptk.few  .l3
+;; }
 
-	mov	pr = saved_pr, -1	// restore the predicate registers
-	mov	ar.lc = saved_lc	// restore the loop counter
+.restore_and_exit:
+{ .mmi
+	movi0	pr = saved_pr, -1	// restore the predicate registers
+;; }
+{ .mib
+	movi0	ar.lc = saved_lc	// restore the loop counter
 	br.ret.sptk.many b0
-.next:
-	cmp.ge	p6, p0 = OP_T_THRES, len	// is len <= OP_T_THRES
-	and	loopcnt = 7, tmp2 		// loopcnt = -dest % 8
-(p6)	br.cond.spnt	.cpyfew			// copy byte by byte
-	;;
-	cmp.eq	p6, p0 = loopcnt, r0
-(p6)	br.cond.sptk	.dest_aligned
-	sub	len = len, loopcnt	// len -= -dest % 8
-	adds	loopcnt = -1, loopcnt	// --loopcnt
-	;;
-	mov	ar.lc = loopcnt
-.l1:					// copy -dest % 8 bytes
-	ld1	value = [src], 1	// value = *src++
-	;;
-	st1	[dest] = value, 1	// *dest++ = value  
-	br.cloop.dptk .l1 ;;	
-.dest_aligned:
+;; }
+
+
+.src_not_aligned:
+{ .mmi
+	cmp.gt	p_scr, p0 = 16, len
 	and	sh1 = 7, src 		// sh1 = src % 8
-	and	tmp2 = -8, len   	// tmp2 = len & -OPSIZ
-	and	asrc = -8, src		// asrc = src & -OPSIZ  -- align src
-	shr.u	loopcnt = len, 3	// loopcnt = len / 8
-	and	len = 7, len;;		// len = len % 8
-	adds	loopcnt = -1, loopcnt	// --loopcnt
-	addl	tmp4 = @ltoff(.table), gp 
-	addl	tmp3 = @ltoff(.loop56), gp
-	mov     ar.ec = MEMLAT + 1	// set EC
-	mov     pr.rot = 1 << 16;;	// set rotating predicates
-	mov	ar.lc = loopcnt		// set LC
-	cmp.eq  p6, p0 = sh1, r0 	// is the src aligned?
-(p6)    br.cond.sptk .src_aligned
-	add	src = src, tmp2		// src += len & -OPSIZ
+	shr.u	loopcnt = len, 4	// element-cnt = len / 16
+} { .mib
+	add	tmp4 = @ltoff(.table), gp
+	add 	tmp3 = @ltoff(.loop56), gp
+(p_scr)	br.cond.dpnt.many .copy_bytes	// do byte by byte if too few
+;; }
+{ .mmi
+	and	asrc = -8, src		// asrc = (-8) -- align src for loop
+	add 	loopcnt = -1, loopcnt	// loopcnt--
 	shl	sh1 = sh1, 3		// sh1 = 8 * (src % 8)
+} { .mmi
+	ld8	ptable = [tmp4]		// ptable = &table
 	ld8	ploop56 = [tmp3]	// ploop56 = &loop56
-	ld8	ptable = [tmp4];;	// ptable = &table
-	add	tmp3 = ptable, sh1;;	// tmp3 = &table + sh1
-	mov	ar.ec = MEMLAT + 1 + 1 // one more pass needed
-	ld8	tmp4 = [tmp3];;		// tmp4 = loop offset
+	and	tmp2 = -16, len		// tmp2 = len & -OPSIZ
+;; }
+{ .mmi
+	add	tmp3 = ptable, sh1	// tmp3 = &table + sh1
+	add	src = src, tmp2		// src += len & (-16)
+	movi0	ar.lc = loopcnt		// set LC
+;; }
+{ .mmi
+	ld8	tmp4 = [tmp3]		// tmp4 = loop offset
+	sub	len = len, tmp2		// len -= len & (-16)
+	movi0	ar.ec = MEMLAT + 2 	// one more pass needed
+;; }
+{ .mmi
+	ld8	s[1] = [asrc], 8	// preload
 	sub	loopaddr = ploop56,tmp4	// loopadd = &loop56 - loop offset
-	ld8	r[1] = [asrc], 8;;	// w0
-	mov	b6 = loopaddr;;
+	movi0   pr.rot = 1 << 16	// set rotating predicates
+;; }
+{ .mib
+	nop.m	0
+	movi0	b6 = loopaddr
 	br	b6			// jump to the appropriate loop
+;; }
 
 	LOOP(8)
 	LOOP(16)
@@ -169,26 +408,9 @@
 	LOOP(40)
 	LOOP(48)
 	LOOP(56)
-	
-.src_aligned:
-.l3:
-(p[0])		ld8	r[0] = [src], 8
-(p[MEMLAT])	st8	[dest] = r[MEMLAT], 8
-		br.ctop.dptk .l3 ;;
-.cpyfew:
-	cmp.eq	p6, p0 = len, r0	// is len == 0 ?
-	adds	len = -1, len		// --len;
-(p6)	br.cond.spnt	.restore_and_exit ;;
-	mov	ar.lc = len
-.l4:
-	ld1	value = [src], 1
-	;;
-	st1	[dest] = value, 1
-	br.cloop.dptk	.l4 ;;
-.restore_and_exit:
-	mov     pr = saved_pr, -1    	// restore the predicate registers
-	mov 	ar.lc = saved_lc	// restore the loop counter
-	br.ret.sptk.many b0
+END(memcpy)
+
+	.rodata
 	.align 8
 .table:
 	data8	0			// dummy entry
@@ -199,5 +421,3 @@
 	data8	.loop56 - .loop40
 	data8	.loop56 - .loop48
 	data8	.loop56 - .loop56
-
-END(memcpy)
Index: sysdeps/ia64/memset.S
===================================================================
RCS file: /cvs/glibc/libc/sysdeps/ia64/memset.S,v
retrieving revision 1.4
diff -u -r1.4 memset.S
--- sysdeps/ia64/sysdeps/ia64/memset.S	6 Jul 2001 04:55:54 -0000	1.4
+++ sysdeps/ia64/sysdeps/ia64/memset.S	3 Oct 2002 06:00:19 -0000
@@ -1,7 +1,8 @@
 /* Optimized version of the standard memset() function.
    This file is part of the GNU C Library.
-   Copyright (C) 2000, 2001 Free Software Foundation, Inc.
-   Contributed by Dan Pop <Dan.Pop@cern.ch>.
+   Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
+   Contributed by Dan Pop for Itanium <Dan.Pop@cern.ch>.
+   Rewritten for McKinley by Sverre Jarp, HP Labs/CERN <Sverre.Jarp@cern.ch>
 
    The GNU C Library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
@@ -19,80 +20,373 @@
    02111-1307 USA.  */
 
 /* Return: dest
-  
+
    Inputs:
         in0:    dest
         in1:    value
         in2:    count
 
    The algorithm is fairly straightforward: set byte by byte until we
-   we get to a word aligned address, then set word by word as much as
-   possible; the remaining few bytes are set one by one.  */
+   we get to a 16B-aligned address, then loop on 128 B chunks using an
+   early store as prefetching, then loop on 32B chucks, then clear remaining
+   words, finally clear remaining bytes.
+   Since a stf.spill f0 can store 16B in one go, we use this instruction
+   to get peak speed when value = 0.  */
 
 #include <sysdep.h>
 #undef ret
 
 #define dest		in0
-#define byteval		in1
+#define value		in1
 #define	cnt		in2
 
-#define save_pfs 	loc0
-#define ptr1		loc1
-#define ptr2		loc2
-#define tmp		loc3
-#define	loopcnt		loc4
-#define save_lc		loc5
-#define wordval		loc6
+#define tmp		r31
+#define save_lc		r30
+#define ptr0		r29
+#define ptr1		r28
+#define ptr2		r27
+#define ptr3		r26
+#define ptr9 		r24
+#define	loopcnt		r23
+#define linecnt		r22
+#define bytecnt		r21
+
+#define fvalue		f6
+
+// This routine uses only scratch predicate registers (p6 - p15)
+#define p_scr		p6			// default register for same-cycle branches
+#define p_nz		p7
+#define p_zr		p8
+#define p_unalgn	p9
+#define p_y		p11
+#define p_n		p12
+#define p_yy		p13
+#define p_nn		p14
+
+#define movi0		mov
 
+#define MIN1		15
+#define MIN1P1HALF	8
+#define LINE_SIZE	128
+#define LSIZE_SH        7			// shift amount
+#define PREF_AHEAD	8
+
+#define USE_FLP
+#if defined(USE_INT)
+#define store		st8
+#define myval           value
+#elif defined(USE_FLP)
+#define store		stf8
+#define myval		fvalue
+#endif
+
+.align	64
 ENTRY(memset)
+{ .mmi
 	.prologue
-	alloc	save_pfs = ar.pfs, 3, 7, 0, 0	
-	.save ar.lc, save_lc
-	mov	save_lc = ar.lc
+	alloc	tmp = ar.pfs, 3, 0, 0, 0
+	lfetch.nt1 [dest]
+	.save   ar.lc, save_lc
+	movi0	save_lc = ar.lc
+} { .mmi
 	.body
-	mov	ret0 = dest
-	and	tmp = 7, dest
-	cmp.eq	p6, p0 = cnt, r0
-(p6)	br.cond.spnt .restore_and_exit ;;
+	mov	ret0 = dest		// return value
+	cmp.ne	p_nz, p_zr = value, r0	// use stf.spill if value is zero
+	cmp.eq	p_scr, p0 = cnt, r0
+;; }
+{ .mmi
+	and	ptr2 = -(MIN1+1), dest	// aligned address
+	and	tmp = MIN1, dest	// prepare to check for alignment
+	tbit.nz p_y, p_n = dest, 0	// Do we have an odd address? (M_B_U)
+} { .mib
 	mov	ptr1 = dest
-	sub	loopcnt = 8, tmp
-	cmp.gt	p6, p0 = 16, cnt
-(p6)	br.cond.spnt .set_few;;
-	cmp.eq	p6, p0 = tmp, r0
-(p6)	br.cond.sptk .dest_aligned
-	sub	cnt = cnt, loopcnt
-	adds	loopcnt = -1, loopcnt;;
-	mov	ar.lc = loopcnt;;	
-.l1:
-	st1	[ptr1] = byteval, 1
-	br.cloop.dptk	.l1 ;;
-.dest_aligned:
-	adds	ptr2 = 8, ptr1
-	mux1	wordval = byteval, @brcst
-	shr.u	loopcnt = cnt, 4 ;;	// loopcnt = cnt / 16
-	cmp.eq	p6, p0 = loopcnt, r0
-(p6)	br.cond.spnt	.one_more
-	and	cnt = 0xf, cnt		// compute the remaining cnt
-	adds	loopcnt = -1, loopcnt;;
-	mov     ar.lc = loopcnt;;	
-.l2:
-	st8	[ptr1] = wordval, 16
-	st8	[ptr2] = wordval, 16
-	br.cloop.dptk .l2
-	cmp.le	p6, p0 = 8, cnt	;;
-.one_more:
-(p6)	st8     [ptr1] = wordval, 8
-(p6)	adds	cnt = -8, cnt ;;
-	cmp.eq	p6, p0 = cnt, r0
-(p6)	br.cond.spnt	.restore_and_exit
-.set_few:
-	adds	loopcnt = -1, cnt;;
-	mov	ar.lc = loopcnt;;
-.l3:	
-	st1     [ptr1] = byteval, 1
-	br.cloop.dptk   .l3 ;;	
+	mux1	value = value, @brcst	// create 8 identical bytes in word
+(p_scr)	br.ret.dpnt.many rp		// return immediately if count = 0
+;; }
+{ .mib
+	cmp.ne	p_unalgn, p0 = tmp, r0
+} { .mib				// NB: # of bytes to move is 1 higher
+	sub	bytecnt = (MIN1+1), tmp	//     than loopcnt
+	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
+(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
+;; }
+{ .mmi
+(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
+(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
+(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
+;; }
+{ .mib
+(p_y)	add	cnt = -8, cnt
+(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
+} { .mib
+(p_y)	st8	[ptr2] = value, -4
+(p_n)	add	ptr2 = 4, ptr2
+;; }
+{ .mib
+(p_yy)	add	cnt = -4, cnt
+(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
+} { .mib
+(p_yy)	st4	[ptr2] = value, -2
+(p_nn)	add	ptr2 = 2, ptr2
+;; }
+{ .mmi
+	mov	tmp = LINE_SIZE+1		// for compare
+(p_y)	add	cnt = -2, cnt
+(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
+} { .mmi
+	setf.sig fvalue=value			// transfer value to FLP side
+(p_y)	st2	[ptr2] = value, -1
+(p_n)	add	ptr2 = 1, ptr2
+;; }
+
+{ .mmi
+(p_yy)	st1	[ptr2] = value
+  	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
+} { .mbb
+(p_yy)	add	cnt = -1, cnt
+(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
+;; }
+
+{ .mib
+	nop.m 0
+	shr.u	linecnt = cnt, LSIZE_SH
+(p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill
+;; }
+
+	.align 32 // -------- //  L1A: store ahead into cache lines; fill later
+{ .mmi
+	and	tmp = -(LINE_SIZE), cnt		// compute end of range
+	mov	ptr9 = ptr1			// used for prefetching
+	and	cnt = (LINE_SIZE-1), cnt	// remainder
+} { .mmi
+	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
+	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
+;; }
+{ .mmi
+(p_scr)	add	loopcnt = -1, linecnt		// start of stores
+	add	ptr2 = 8, ptr1			// (beyond prefetch stores)
+	add	ptr1 = tmp, ptr1		// first address beyond total
+;; }						// range
+{ .mmi
+	add	tmp = -1, linecnt		// next loop count
+	movi0	ar.lc = loopcnt
+;; }
+.pref_l1a:
+{ .mib
+	store [ptr9] = myval, 128	// Do stores one cache line apart
+	nop.i	0
+	br.cloop.dptk.few .pref_l1a
+;; }
+{ .mmi
+	add	ptr0 = 16, ptr2		// Two stores in parallel
+	movi0	ar.lc = tmp
+;; }
+.l1ax:
+ { .mmi
+	store [ptr2] = myval, 8
+	store [ptr0] = myval, 8
+ ;; }
+ { .mmi
+	store [ptr2] = myval, 24
+	store [ptr0] = myval, 24
+ ;; }
+ { .mmi
+	store [ptr2] = myval, 8
+	store [ptr0] = myval, 8
+ ;; }
+ { .mmi
+	store [ptr2] = myval, 24
+	store [ptr0] = myval, 24
+ ;; }
+ { .mmi
+	store [ptr2] = myval, 8
+	store [ptr0] = myval, 8
+ ;; }
+ { .mmi
+	store [ptr2] = myval, 24
+	store [ptr0] = myval, 24
+ ;; }
+ { .mmi
+	store [ptr2] = myval, 8
+	store [ptr0] = myval, 32
+ 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
+ ;; }
+{ .mmb
+	store [ptr2] = myval, 24
+(p_scr)	store [ptr9] = myval, 128
+	br.cloop.dptk.few .l1ax
+;; }
+{ .mbb
+	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?
+(p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2
+	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3
+;; }
+
+	.align 32
+.l1b:	// ------------------ //  L1B: store ahead into cache lines; fill later
+{ .mmi
+	and	tmp = -(LINE_SIZE), cnt		// compute end of range
+	mov	ptr9 = ptr1			// used for prefetching
+	and	cnt = (LINE_SIZE-1), cnt	// remainder
+} { .mmi
+	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
+	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
+;; }
+{ .mmi
+(p_scr)	add	loopcnt = -1, linecnt
+	add	ptr2 = 16, ptr1	// start of stores (beyond prefetch stores)
+	add	ptr1 = tmp, ptr1	// first address beyond total range
+;; }
+{ .mmi
+	add	tmp = -1, linecnt	// next loop count
+	movi0	ar.lc = loopcnt
+;; }
+.pref_l1b:
+{ .mib
+	stf.spill [ptr9] = f0, 128	// Do stores one cache line apart
+	nop.i   0
+	br.cloop.dptk.few .pref_l1b
+;; }
+{ .mmi
+	add	ptr0 = 16, ptr2		// Two stores in parallel
+	movi0	ar.lc = tmp
+;; }
+.l1bx:
+ { .mmi
+	stf.spill [ptr2] = f0, 32
+	stf.spill [ptr0] = f0, 32
+ ;; }
+ { .mmi
+	stf.spill [ptr2] = f0, 32
+	stf.spill [ptr0] = f0, 32
+ ;; }
+ { .mmi
+	stf.spill [ptr2] = f0, 32
+	stf.spill [ptr0] = f0, 64
+ 	cmp.lt	p_scr, p0 = ptr9, ptr1	// do we need more prefetching?
+ ;; }
+{ .mmb
+	stf.spill [ptr2] = f0, 32
+(p_scr)	stf.spill [ptr9] = f0, 128
+	br.cloop.dptk.few .l1bx
+;; }
+{ .mib
+	cmp.gt  p_scr, p0 = 8, cnt	// just a few bytes left ?
+(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment
+;; }
+
+.fraction_of_line:
+{ .mib
+	add	ptr2 = 16, ptr1
+	shr.u	loopcnt = cnt, 5   	// loopcnt = cnt / 32
+;; }
+{ .mib
+	cmp.eq	p_scr, p0 = loopcnt, r0
+	add	loopcnt = -1, loopcnt
+(p_scr)	br.cond.dpnt.many .store_words
+;; }
+{ .mib
+	and	cnt = 0x1f, cnt		// compute the remaining cnt
+	movi0   ar.lc = loopcnt
+;; }
+	.align 32
+.l2:	// ---------------------------- //  L2A:  store 32B in 2 cycles
+{ .mmb
+	store	[ptr1] = myval, 8
+	store	[ptr2] = myval, 8
+;; } { .mmb
+	store	[ptr1] = myval, 24
+	store	[ptr2] = myval, 24
+	br.cloop.dptk.many .l2
+;; }
+.store_words:
+{ .mib
+	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?
+(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
+;; }
+
+{ .mmi
+	store	[ptr1] = myval, 8		// store
+	cmp.le	p_y, p_n = 16, cnt		//
+	add	cnt = -8, cnt			// subtract
+;; }
+{ .mmi
+(p_y)	store	[ptr1] = myval, 8		// store
+(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt		//
+(p_y)	add	cnt = -8, cnt			// subtract
+;; }
+{ .mmi						// store
+(p_yy)	store	[ptr1] = myval, 8		//
+(p_yy)	add	cnt = -8, cnt			// subtract
+;; }
+
+.move_bytes_from_alignment:
+{ .mib
+	cmp.eq	p_scr, p0 = cnt, r0
+	tbit.nz.unc p_y, p0 = cnt, 2	// should we terminate with a st4 ?
+(p_scr)	br.cond.dpnt.few .restore_and_exit
+;; }
+{ .mib
+(p_y)	st4	[ptr1] = value, 4
+	tbit.nz.unc p_yy, p0 = cnt, 1	// should we terminate with a st2 ?
+;; }
+{ .mib
+(p_yy)	st2	[ptr1] = value, 2
+	tbit.nz.unc p_y, p0 = cnt, 0
+;; }
+
+{ .mib
+(p_y)	st1	[ptr1] = value
+;; }
 .restore_and_exit:
-	mov	ar.lc = save_lc
-	mov	ar.pfs = save_pfs
-	br.ret.sptk.many b0					
+{ .mib
+	nop.m	0
+	movi0	ar.lc = save_lc
+	br.ret.sptk.many rp
+;; }
+
+.move_bytes_unaligned:
+{ .mmi
+       .pred.rel "mutex",p_y, p_n
+       .pred.rel "mutex",p_yy, p_nn
+(p_n)	cmp.le  p_yy, p_nn = 4, cnt
+(p_y)	cmp.le  p_yy, p_nn = 5, cnt
+(p_n)	add	ptr2 = 2, ptr1
+} { .mmi
+(p_y)	add	ptr2 = 3, ptr1
+(p_y)	st1	[ptr1] = value, 1	// fill 1 (odd-aligned) byte
+(p_y)	add	cnt = -1, cnt		// [15, 14 (or less) left]
+;; }
+{ .mmi
+(p_yy)	cmp.le.unc p_y, p0 = 8, cnt
+	add	ptr3 = ptr1, cnt	// prepare last store
+	movi0	ar.lc = save_lc
+} { .mmi
+(p_yy)	st2	[ptr1] = value, 4	// fill 2 (aligned) bytes
+(p_yy)	st2	[ptr2] = value, 4	// fill 2 (aligned) bytes
+(p_yy)	add	cnt = -4, cnt		// [11, 10 (o less) left]
+;; }
+{ .mmi
+(p_y)	cmp.le.unc p_yy, p0 = 8, cnt
+	add	ptr3 = -1, ptr3		// last store
+	tbit.nz p_scr, p0 = cnt, 1	// will there be a st2 at the end ?
+} { .mmi
+(p_y)	st2	[ptr1] = value, 4	// fill 2 (aligned) bytes
+(p_y)	st2	[ptr2] = value, 4	// fill 2 (aligned) bytes
+(p_y)	add	cnt = -4, cnt		// [7, 6 (or less) left]
+;; }
+{ .mmi
+(p_yy)	st2	[ptr1] = value, 4	// fill 2 (aligned) bytes
+(p_yy)	st2	[ptr2] = value, 4	// fill 2 (aligned) bytes
+					// [3, 2 (or less) left]
+	tbit.nz p_y, p0 = cnt, 0	// will there be a st1 at the end ?
+} { .mmi
+(p_yy)	add	cnt = -4, cnt
+;; }
+{ .mmb
+(p_scr)	st2	[ptr1] = value		// fill 2 (aligned) bytes
+(p_y)	st1	[ptr3] = value		// fill last byte (using ptr3)
+	br.ret.sptk.many rp
+;; }
 END(memset)
+


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]