This is the mail archive of the gdb-patches@sources.redhat.com mailing list for the GDB project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

Re: [gdbserver/rfa] CRIS/CRISv32 gdbserver support (part 2)


Daniel Jacobowitz wrote:

I didn't see any questions?

They were badly disguised as statements ;). (I was referring to the "thread getmsg err" section.)


Another thing: when removing cris_reinsert_addr, I got the same errors as described in http://sourceware.org/ml/gdb/2005-01/msg00071.html (i.e. "thread getmsg err: no event message for getmsg" and gdbserver getting a SIGSEGV). At the moment I have no idea what's going on, so as a temporary solution I reinstated cris_reinsert_addr but with a FIXME.


Odd.  Does your hardware have real single step support, or implement
PTRACE_SINGLESTEP by managing breakpoints?  Other than that, I'm not
sure what could be wrong.

It's real hardware single step.


I've got more nits for you though.


static const unsigned long cris_breakpoint = 0xe938;
#define cris_breakpoint_len 2

static int
cris_breakpoint_at (CORE_ADDR where)
{
 unsigned long insn;

 (*the_target->read_memory) (where, (char *) &insn, cris_breakpoint_len);
 if (insn == cris_breakpoint)
   return 1;

 /* If necessary, recognize more trap instructions here.  GDB only uses the
    one.  */
 return 0;
}


This is presumably going to work for you, but it's seriously untidy -
there's a hidden endianness dependency.  Can you see it?  Hint: the
types of cris_breakpoint and insn are wrong.

Both changed to unsigned shorts; thanks.


Same thing applies to linux-crisv32-low.c.

Also fixed.


I just realized that these files will require an entry in
config/djgpp/fnchange.lst; their names are too similar.

Ok, I will submit that as a separate patch once this is in.


You were doing great on GNU formatting right up until here, and then
you lost it.  Everything from here down in this file needs to be
checked.  For instance:


static int
cris_insert_watchpoint(char type, CORE_ADDR addr, int len)


Space.

Hm, I really did lose it. Corrected a bunch of them.


 if (type < '2' || type > '4') {
   /* Unsupported.  */
   return 1;
 }


Unnecessary braces; even if they were necessary they'd have to be on
their own lines and indented.

I like to have braces when there's more than one line (even if one is a comment) so if it's ok to keep them (and I couldn't find anything in the coding standard saying otherwise) I'd like to. I fixed the formatting; thanks.



-- Orjan Friberg Axis Communications

/* GNU/Linux/CRIS specific low level interface, for the remote server for GDB.
   Copyright 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "server.h"
#include "linux-low.h"
#include <sys/ptrace.h>

/* CRISv10 */
#define cris_num_regs 32

/* Locations need to match <include/asm/arch/ptrace.h>.  */
static int cris_regmap[] = {
  15*4, 14*4, 13*4, 12*4,
  11*4, 10*4, 9*4, 8*4,
  7*4, 6*4, 5*4, 4*4,
  3*4, 2*4, 23*4, 19*4,

  -1, -1, -1, -1,
  -1, 17*4, -1, 16*4,
  -1, -1, -1, 18*4,
  -1, 17*4, -1, -1
  
};

static int
cris_cannot_store_register (int regno)
{
  if (cris_regmap[regno] == -1)
    return 1;
  
  return (regno >= cris_num_regs);
}

static int
cris_cannot_fetch_register (int regno)
{
  if (cris_regmap[regno] == -1)
    return 1;

  return (regno >= cris_num_regs);
}

extern int debug_threads;

static CORE_ADDR
cris_get_pc (void)
{
  unsigned long pc;
  collect_register_by_name ("pc", &pc);
  if (debug_threads)
    fprintf (stderr, "stop pc is %08lx\n", pc);
  return pc;
}

static void
cris_set_pc (CORE_ADDR pc)
{
  unsigned long newpc = pc;
  supply_register_by_name ("pc", &newpc);
}

static const unsigned short cris_breakpoint = 0xe938;
#define cris_breakpoint_len 2

static int
cris_breakpoint_at (CORE_ADDR where)
{
  unsigned short insn;

  (*the_target->read_memory) (where, (char *) &insn, cris_breakpoint_len);
  if (insn == cris_breakpoint)
    return 1;

  /* If necessary, recognize more trap instructions here.  GDB only uses the
     one.  */
  return 0;
}

/* We only place breakpoints in empty marker functions, and thread locking
   is outside of the function.  So rather than importing software single-step,
   we can just run until exit.  */
static CORE_ADDR
cris_reinsert_addr (void)
{
  unsigned long pc;
  collect_register_by_name ("srp", &pc);
  return pc;
}

struct linux_target_ops the_low_target = {
  cris_num_regs,
  cris_regmap,
  cris_cannot_fetch_register,
  cris_cannot_store_register,
  cris_get_pc,
  cris_set_pc,
  (const char *) &cris_breakpoint,
  cris_breakpoint_len,
  cris_reinsert_addr,
  0,
  cris_breakpoint_at,
  0,
  0,
  0,
  0,
};
/* GNU/Linux/CRIS specific low level interface, for the remote server for GDB.
   Copyright 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "server.h"
#include "linux-low.h"
#include <sys/ptrace.h>

/* CRISv32 */
#define cris_num_regs 49

/* Note: Ignoring USP (having the stack pointer in two locations causes trouble
   without any significant gain).  */

/* Locations need to match <include/asm/arch/ptrace.h>.  */
static int cris_regmap[] = {
  1*4, 2*4, 3*4, 4*4,
  5*4, 6*4, 7*4, 8*4,
  9*4, 10*4, 11*4, 12*4,
  13*4, 14*4, 24*4, 15*4,

  -1, -1, -1, 16*4,
  -1, 22*4, 23*4, 17*4,
  -1, -1, 21*4, 20*4,
  -1, 19*4, -1, 18*4,

  25*4,

  26*4, -1,   -1,   29*4, 
  30*4, 31*4, 32*4, 33*4,
  34*4, 35*4, 36*4, 37*4,
  38*4, 39*4, 40*4, -1
  
};

extern int debug_threads;

static CORE_ADDR
cris_get_pc (void)
{
  unsigned long pc;
  collect_register_by_name ("pc", &pc);
  if (debug_threads)
    fprintf (stderr, "stop pc is %08lx\n", pc);
  return pc;
}

static void
cris_set_pc (CORE_ADDR pc)
{
  unsigned long newpc = pc;
  supply_register_by_name ("pc", &newpc);
}

static const unsigned short cris_breakpoint = 0xe938;
#define cris_breakpoint_len 2

static int
cris_breakpoint_at (CORE_ADDR where)
{
  unsigned short insn;

  (*the_target->read_memory) (where, (char *) &insn, cris_breakpoint_len);
  if (insn == cris_breakpoint)
    return 1;

  /* If necessary, recognize more trap instructions here.  GDB only uses the
     one.  */
  return 0;
}

/* We only place breakpoints in empty marker functions, and thread locking
   is outside of the function.  So rather than importing software single-step,
   we can just run until exit.  */

/* FIXME: This function should not be needed, since we have PTRACE_SINGLESTEP
   for CRISv32.  Without it, td_ta_event_getmsg in thread_db_create_event
   will fail when debugging multi-threaded applications.  */

static CORE_ADDR
cris_reinsert_addr (void)
{
  unsigned long pc;
  collect_register_by_name ("srp", &pc);
  return pc;
}

static void
cris_write_data_breakpoint (int bp, unsigned long start, unsigned long end)
{
  switch (bp)
    {
    case 0:
      supply_register_by_name ("s3", &start);
      supply_register_by_name ("s4", &end);
      break;
    case 1:
      supply_register_by_name ("s5", &start);
      supply_register_by_name ("s6", &end);
      break;
    case 2:
      supply_register_by_name ("s7", &start);
      supply_register_by_name ("s8", &end);
      break;
    case 3:
      supply_register_by_name ("s9", &start);
      supply_register_by_name ("s10", &end);
      break;
    case 4:
      supply_register_by_name ("s11", &start);
      supply_register_by_name ("s12", &end);
      break;
    case 5:
      supply_register_by_name ("s13", &start);
      supply_register_by_name ("s14", &end);
      break;
    }
}

static int
cris_insert_watchpoint (char type, CORE_ADDR addr, int len)
{
  int bp;
  unsigned long bp_ctrl;
  unsigned long start, end;
  unsigned long ccs;
  
  /* Breakpoint/watchpoint types (GDB terminology):
     0 = memory breakpoint for instructions
     (not supported; done via memory write instead)
     1 = hardware breakpoint for instructions (not supported)
     2 = write watchpoint (supported)
     3 = read watchpoint (supported)
     4 = access watchpoint (supported).  */
  
  if (type < '2' || type > '4') 
    {
      /* Unsupported.  */
      return 1;
    }

  /* Read watchpoints are set as access watchpoints, because of GDB's
     inability to deal with pure read watchpoints.  */
  if (type == '3')
    type = '4';

  /* Get the configuration register.  */
  collect_register_by_name ("s0", &bp_ctrl);

  /* The watchpoint allocation scheme is the simplest possible.
     For example, if a region is watched for read and
     a write watch is requested, a new watchpoint will
     be used.  Also, if a watch for a region that is already
     covered by one or more existing watchpoints, a new
     watchpoint will be used.  */
    
  /* First, find a free data watchpoint.  */
  for (bp = 0; bp < 6; bp++)
    {
      /* Each data watchpoint's control registers occupy 2 bits
	 (hence the 3), starting at bit 2 for D0 (hence the 2)
	 with 4 bits between for each watchpoint (yes, the 4).  */
      if (!(bp_ctrl & (0x3 << (2 + (bp * 4))))) 
	break;
    }
    
  if (bp > 5)
    {
      /* We're out of watchpoints.  */
      return -1;
    }

  /* Configure the control register first.  */
  if (type == '3' || type == '4')
    {
      /* Trigger on read.  */
      bp_ctrl |= (1 << (2 + bp * 4));
    }
  if (type == '2' || type == '4') 
    {
      /* Trigger on write.  */
      bp_ctrl |= (2 << (2 + bp * 4));
    }
  
  /* Setup the configuration register.  */
  supply_register_by_name ("s0", &bp_ctrl);
  
  /* Setup the range.  */
  start = addr;
  end = addr + len - 1;

  /* Configure the watchpoint register.  */
  cris_write_data_breakpoint (bp, start, end);

  collect_register_by_name ("ccs", &ccs);
  /* Set the S1 flag to enable watchpoints.  */
  ccs |= (1 << 19);
  supply_register_by_name ("ccs", &ccs);

  return 0;
}

static int
cris_remove_watchpoint (char type, CORE_ADDR addr, int len)
{
  int bp;
  unsigned long bp_ctrl;
  unsigned long start, end;
  
  /* Breakpoint/watchpoint types:
     0 = memory breakpoint for instructions
     (not supported; done via memory write instead)
     1 = hardware breakpoint for instructions (not supported)
     2 = write watchpoint (supported)
     3 = read watchpoint (supported)
     4 = access watchpoint (supported).  */
  if (type < '2' || type > '4')
    return -1;
  
  /* Read watchpoints are set as access watchpoints, because of GDB's
     inability to deal with pure read watchpoints.  */
  if (type == '3')
    type = '4';
  
  /* Get the configuration register.  */
  collect_register_by_name ("s0", &bp_ctrl);

  /* Try to find a watchpoint that is configured for the
     specified range, then check that read/write also matches.  */
  
  /* Ugly pointer arithmetic, since I cannot rely on a
     single switch (addr) as there may be several watchpoints with
     the same start address for example.  */

  unsigned long bp_d_regs[12];

  /* Get all range registers to simplify search.  */
  collect_register_by_name ("s3", &bp_d_regs[0]);
  collect_register_by_name ("s4", &bp_d_regs[1]);
  collect_register_by_name ("s5", &bp_d_regs[2]);
  collect_register_by_name ("s6", &bp_d_regs[3]);
  collect_register_by_name ("s7", &bp_d_regs[4]);
  collect_register_by_name ("s8", &bp_d_regs[5]);
  collect_register_by_name ("s9", &bp_d_regs[6]);
  collect_register_by_name ("s10", &bp_d_regs[7]);
  collect_register_by_name ("s11", &bp_d_regs[8]);
  collect_register_by_name ("s12", &bp_d_regs[9]);
  collect_register_by_name ("s13", &bp_d_regs[10]);
  collect_register_by_name ("s14", &bp_d_regs[11]);

  for (bp = 0; bp < 6; bp++) 
    {
      if (bp_d_regs[bp * 2] == addr 
	  && bp_d_regs[bp * 2 + 1] == (addr + len - 1)) {
	/* Matching range.  */
	int bitpos = 2 + bp * 4;
	int rw_bits;
      
	/* Read/write bits for this BP.  */
	rw_bits = (bp_ctrl & (0x3 << bitpos)) >> bitpos;
      
	if ((type == '3' && rw_bits == 0x1)
	    || (type == '2' && rw_bits == 0x2) 
	    || (type == '4' && rw_bits == 0x3))
	  {
	    /* Read/write matched.  */
	    break;
	  }
      }
    }
    
  if (bp > 5)
    {
      /* No watchpoint matched.  */
      return -1;
    }
    
  /* Found a matching watchpoint.  Now, deconfigure it by
     both disabling read/write in bp_ctrl and zeroing its
     start/end addresses.  */
  bp_ctrl &= ~(3 << (2 + (bp * 4)));
  /* Setup the configuration register.  */
  supply_register_by_name ("s0", &bp_ctrl);

  start = end = 0;
  /* Configure the watchpoint register.  */
  cris_write_data_breakpoint (bp, start, end);

  /* Note that we don't clear the S1 flag here.  It's done when continuing.  */
  return 0;
}

static int
cris_stopped_by_watchpoint (void)
{
  unsigned long exs;

  collect_register_by_name ("exs", &exs);

  return (((exs & 0xff00) >> 8) == 0xc);
}

static CORE_ADDR
cris_stopped_data_address (void)
{
  unsigned long eda;

  collect_register_by_name ("eda", &eda);

  /* FIXME: Possibly adjust to match watched range.  */
  return eda;
}

static void
cris_fill_gregset (void *buf)
{
  int i;

  for (i = 0; i < cris_num_regs; i++)
    {
      if (cris_regmap[i] != -1)
	collect_register (i, ((char *) buf) + cris_regmap[i]);
    }
}

static void
cris_store_gregset (const void *buf)
{
  int i;

  for (i = 0; i < cris_num_regs; i++)
    {
      if (cris_regmap[i] != -1)
	supply_register (i, ((char *) buf) + cris_regmap[i]);
    }
}

typedef unsigned long elf_gregset_t[cris_num_regs];

struct regset_info target_regsets[] = {
  { PTRACE_GETREGS, PTRACE_SETREGS, sizeof (elf_gregset_t),
    GENERAL_REGS, cris_fill_gregset, cris_store_gregset },
  { 0, 0, -1, -1, NULL, NULL }
};

struct linux_target_ops the_low_target = {
  -1,
  NULL,
  NULL,
  NULL,
  cris_get_pc,
  cris_set_pc,
  (const char *) &cris_breakpoint,
  cris_breakpoint_len,
  cris_reinsert_addr,
  0,
  cris_breakpoint_at,
  cris_insert_watchpoint,
  cris_remove_watchpoint,
  cris_stopped_by_watchpoint,
  cris_stopped_data_address,
};

Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]