This is the mail archive of the
gsl-discuss@sources.redhat.com
mailing list for the GSL project.
LU "bug" and fix
- From: Slaven Peles <peles at cns dot physics dot gatech dot edu>
- To: gsl-discuss at sources dot redhat dot com
- Date: Wed, 18 Dec 2002 14:29:10 -0500
- Subject: LU "bug" and fix
- References: <m18NfJa-0000fTC@localhost>
LU decomposition does not give an error message in case that input matrix is
singular, and I guess it should... I changed functions gsl_linalg_LU_decomp
and gsl_linalg_complex_LU_decomp (in files linalg/lu.c and linalg/luc.c) so
they cry foul whenever user puts a singular matrix as the input. Perhaps this
should be added to gsl cvs at some point?
Cheers,
Slaven
/* linalg/luc.c
*
* Copyright (C) 2001 Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_complex.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_permute_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_complex_math.h>
#include <gsl/gsl_linalg.h>
/* Factorise a general N x N complex matrix A into,
*
* P A = L U
*
* where P is a permutation matrix, L is unit lower triangular and U
* is upper triangular.
*
* L is stored in the strict lower triangular part of the input
* matrix. The diagonal elements of L are unity and are not stored.
*
* U is stored in the diagonal and upper triangular part of the
* input matrix.
*
* P is stored in the permutation p. Column j of P is column k of the
* identity matrix, where k = permutation->data[j]
*
* signum gives the sign of the permutation, (-1)^n, where n is the
* number of interchanges in the permutation.
*
* See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss
* Elimination with Partial Pivoting).
*/
int
gsl_linalg_complex_LU_decomp (gsl_matrix_complex * A, gsl_permutation * p, int *signum)
{
if (A->size1 != A->size2)
{
GSL_ERROR ("LU decomposition requires square matrix", GSL_ENOTSQR);
}
else if (p->size != A->size1)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else
{
const size_t N = A->size1;
size_t i, j, k;
*signum = 1;
gsl_permutation_init (p);
for (j = 0; j < N - 1; j++)
{
/* Find maximum in the j-th column */
gsl_complex ajj = gsl_matrix_complex_get (A, j, j);
double max = gsl_complex_abs (ajj);
size_t i_pivot = j;
for (i = j + 1; i < N; i++)
{
gsl_complex aij = gsl_matrix_complex_get (A, i, j);
double ai = gsl_complex_abs (aij);
if (ai > max)
{
max = ai;
i_pivot = i;
}
}
if (i_pivot != j)
{
gsl_matrix_complex_swap_rows (A, j, i_pivot);
gsl_permutation_swap (p, j, i_pivot);
*signum = -(*signum);
}
ajj = gsl_matrix_complex_get (A, j, j);
if (!(GSL_REAL(ajj) == 0.0 && GSL_IMAG(ajj) == 0.0))
{
for (i = j + 1; i < N; i++)
{
gsl_complex aij_orig = gsl_matrix_complex_get (A, i, j);
gsl_complex aij = gsl_complex_div (aij_orig, ajj);
gsl_matrix_complex_set (A, i, j, aij);
for (k = j + 1; k < N; k++)
{
gsl_complex aik = gsl_matrix_complex_get (A, i, k);
gsl_complex ajk = gsl_matrix_complex_get (A, j, k);
/* aik = aik - aij * ajk */
gsl_complex aijajk = gsl_complex_mul (aij, ajk);
gsl_complex aik_new = gsl_complex_sub (aik, aijajk);
gsl_matrix_complex_set (A, i, k, aik_new);
}
}
}
else /* If LU matrix is singular exit with error */
{
GSL_ERROR ("LU matrix must not be singular", GSL_EINVAL);
}
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_complex_LU_solve (const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x)
{
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LU->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* Copy x <- b */
gsl_vector_complex_memcpy (x, b);
/* Solve for x */
gsl_linalg_complex_LU_svx (LU, p, x);
return GSL_SUCCESS;
}
}
int
gsl_linalg_complex_LU_svx (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_vector_complex * x)
{
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != x->size)
{
GSL_ERROR ("matrix size must match solution/rhs size", GSL_EBADLEN);
}
else
{
/* Apply permutation to RHS */
gsl_permute_vector_complex (p, x);
/* Solve for c using forward-substitution, L c = P b */
gsl_blas_ztrsv (CblasLower, CblasNoTrans, CblasUnit, LU, x);
/* Perform back-substitution, U x = c */
gsl_blas_ztrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LU, x);
return GSL_SUCCESS;
}
}
int
gsl_linalg_complex_LU_refine (const gsl_matrix_complex * A, const gsl_matrix_complex * LU, const gsl_permutation * p, const gsl_vector_complex * b, gsl_vector_complex * x, gsl_vector_complex * residual)
{
if (A->size1 != A->size2)
{
GSL_ERROR ("matrix a must be square", GSL_ENOTSQR);
}
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (A->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be decomposition of a", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LU->size1 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* Compute residual, residual = (A * x - b) */
gsl_vector_complex_memcpy (residual, b);
{
gsl_complex one = GSL_COMPLEX_ONE;
gsl_complex negone = GSL_COMPLEX_NEGONE;
gsl_blas_zgemv (CblasNoTrans, one, A, x, negone, residual);
}
/* Find correction, delta = - (A^-1) * residual, and apply it */
gsl_linalg_complex_LU_svx (LU, p, residual);
{
gsl_complex negone= GSL_COMPLEX_NEGONE;
gsl_blas_zaxpy (negone, residual, x);
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_complex_LU_invert (const gsl_matrix_complex * LU, const gsl_permutation * p, gsl_matrix_complex * inverse)
{
size_t i, n = LU->size1;
int status = GSL_SUCCESS;
gsl_matrix_complex_set_identity (inverse);
for (i = 0; i < n; i++)
{
gsl_vector_complex_view c = gsl_matrix_complex_column (inverse, i);
int status_i = gsl_linalg_complex_LU_svx (LU, p, &(c.vector));
if (status_i)
status = status_i;
}
return status;
}
gsl_complex
gsl_linalg_complex_LU_det (gsl_matrix_complex * LU, int signum)
{
size_t i, n = LU->size1;
gsl_complex det = gsl_complex_rect((double) signum, 0.0);
for (i = 0; i < n; i++)
{
gsl_complex zi = gsl_matrix_complex_get (LU, i, i);
det = gsl_complex_mul (det, zi);
}
return det;
}
double
gsl_linalg_complex_LU_lndet (gsl_matrix_complex * LU)
{
size_t i, n = LU->size1;
double lndet = 0.0;
for (i = 0; i < n; i++)
{
gsl_complex z = gsl_matrix_complex_get (LU, i, i);
lndet += log (gsl_complex_abs (z));
}
return lndet;
}
gsl_complex
gsl_linalg_complex_LU_sgndet (gsl_matrix_complex * LU, int signum)
{
size_t i, n = LU->size1;
gsl_complex phase = gsl_complex_rect((double) signum, 0.0);
for (i = 0; i < n; i++)
{
gsl_complex z = gsl_matrix_complex_get (LU, i, i);
double r = gsl_complex_abs(z);
if (r == 0)
{
phase = gsl_complex_rect(0.0, 0.0);
break;
}
else
{
z = gsl_complex_div_real(z, r);
phase = gsl_complex_mul(phase, z);
}
}
return phase;
}
/* linalg/lu.c
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman, Brian Gough
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* Author: G. Jungman */
#include <config.h>
#include <stdlib.h>
#include <string.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_vector.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_permute_vector.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#define REAL double
/* Factorise a general N x N matrix A into,
*
* P A = L U
*
* where P is a permutation matrix, L is unit lower triangular and U
* is upper triangular.
*
* L is stored in the strict lower triangular part of the input
* matrix. The diagonal elements of L are unity and are not stored.
*
* U is stored in the diagonal and upper triangular part of the
* input matrix.
*
* P is stored in the permutation p. Column j of P is column k of the
* identity matrix, where k = permutation->data[j]
*
* signum gives the sign of the permutation, (-1)^n, where n is the
* number of interchanges in the permutation.
*
* See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss
* Elimination with Partial Pivoting).
*/
int
gsl_linalg_LU_decomp (gsl_matrix * A, gsl_permutation * p, int *signum)
{
if (A->size1 != A->size2)
{
GSL_ERROR ("LU decomposition requires square matrix", GSL_ENOTSQR);
}
else if (p->size != A->size1)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else
{
const size_t N = A->size1;
size_t i, j, k;
*signum = 1;
gsl_permutation_init (p);
for (j = 0; j < N - 1; j++)
{
/* Find maximum in the j-th column */
REAL ajj, max = fabs (gsl_matrix_get (A, j, j));
size_t i_pivot = j;
for (i = j + 1; i < N; i++)
{
REAL aij = fabs (gsl_matrix_get (A, i, j));
if (aij > max)
{
max = aij;
i_pivot = i;
}
}
if (i_pivot != j)
{
gsl_matrix_swap_rows (A, j, i_pivot);
gsl_permutation_swap (p, j, i_pivot);
*signum = -(*signum);
}
ajj = gsl_matrix_get (A, j, j);
if (ajj != 0.0)
{
for (i = j + 1; i < N; i++)
{
REAL aij = gsl_matrix_get (A, i, j) / ajj;
gsl_matrix_set (A, i, j, aij);
for (k = j + 1; k < N; k++)
{
REAL aik = gsl_matrix_get (A, i, k);
REAL ajk = gsl_matrix_get (A, j, k);
gsl_matrix_set (A, i, k, aik - aij * ajk);
}
}
}
else /* If LU matrix is singular exit with error */
{
GSL_ERROR ("LU matrix must not be singular", GSL_EINVAL);
}
}
return GSL_SUCCESS;
}
}
int
gsl_linalg_LU_solve (const gsl_matrix * LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x)
{
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LU->size2 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* Copy x <- b */
gsl_vector_memcpy (x, b);
/* Solve for x */
gsl_linalg_LU_svx (LU, p, x);
return GSL_SUCCESS;
}
}
int
gsl_linalg_LU_svx (const gsl_matrix * LU, const gsl_permutation * p, gsl_vector * x)
{
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != x->size)
{
GSL_ERROR ("matrix size must match solution/rhs size", GSL_EBADLEN);
}
else
{
/* Apply permutation to RHS */
gsl_permute_vector (p, x);
/* Solve for c using forward-substitution, L c = P b */
gsl_blas_dtrsv (CblasLower, CblasNoTrans, CblasUnit, LU, x);
/* Perform back-substitution, U x = c */
gsl_blas_dtrsv (CblasUpper, CblasNoTrans, CblasNonUnit, LU, x);
return GSL_SUCCESS;
}
}
int
gsl_linalg_LU_refine (const gsl_matrix * A, const gsl_matrix * LU, const gsl_permutation * p, const gsl_vector * b, gsl_vector * x, gsl_vector * residual)
{
if (A->size1 != A->size2)
{
GSL_ERROR ("matrix a must be square", GSL_ENOTSQR);
}
if (LU->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be square", GSL_ENOTSQR);
}
else if (A->size1 != LU->size2)
{
GSL_ERROR ("LU matrix must be decomposition of a", GSL_ENOTSQR);
}
else if (LU->size1 != p->size)
{
GSL_ERROR ("permutation length must match matrix size", GSL_EBADLEN);
}
else if (LU->size1 != b->size)
{
GSL_ERROR ("matrix size must match b size", GSL_EBADLEN);
}
else if (LU->size1 != x->size)
{
GSL_ERROR ("matrix size must match solution size", GSL_EBADLEN);
}
else
{
/* Compute residual, residual = (A * x - b) */
gsl_vector_memcpy (residual, b);
gsl_blas_dgemv (CblasNoTrans, 1.0, A, x, -1.0, residual);
/* Find correction, delta = - (A^-1) * residual, and apply it */
gsl_linalg_LU_svx (LU, p, residual);
gsl_blas_daxpy (-1.0, residual, x);
return GSL_SUCCESS;
}
}
int
gsl_linalg_LU_invert (const gsl_matrix * LU, const gsl_permutation * p, gsl_matrix * inverse)
{
size_t i, n = LU->size1;
int status = GSL_SUCCESS;
gsl_matrix_set_identity (inverse);
for (i = 0; i < n; i++)
{
gsl_vector_view c = gsl_matrix_column (inverse, i);
int status_i = gsl_linalg_LU_svx (LU, p, &(c.vector));
if (status_i)
status = status_i;
}
return status;
}
double
gsl_linalg_LU_det (gsl_matrix * LU, int signum)
{
size_t i, n = LU->size1;
double det = (double) signum;
for (i = 0; i < n; i++)
{
det *= gsl_matrix_get (LU, i, i);
}
return det;
}
double
gsl_linalg_LU_lndet (gsl_matrix * LU)
{
size_t i, n = LU->size1;
double lndet = 0.0;
for (i = 0; i < n; i++)
{
lndet += log (fabs (gsl_matrix_get (LU, i, i)));
}
return lndet;
}
int
gsl_linalg_LU_sgndet (gsl_matrix * LU, int signum)
{
size_t i, n = LU->size1;
int s = signum;
for (i = 0; i < n; i++)
{
double u = gsl_matrix_get (LU, i, i);
if (u < 0)
{
s *= -1;
}
else if (u == 0)
{
s = 0;
break;
}
}
return s;
}