This is the mail archive of the gdb-patches@sourceware.org mailing list for the GDB project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

[PATCH v2 08/11] s390: Split up s390-linux-tdep.c into two files


Currently all target dependent code for s390 is in one file
(s390-linux-tdep.c).  This includes code general for the architecture as
well as code specific for uses in GNU/Linux (user space).  Up until now
this was ok as GNU/Linux was the only supported OS.  In preparation to
support the new Linux kernel 'OS' split up the existing s390 code into a
general s390-tdep and a GNU/Linux specific s390-linux-tdep.

gdb/ChangeLog:

	* s390-tdep.h: New file.
	* s390-tdep.c: New file.
	* s390-linux-nat.c (s390-tdep.h): new include.
	* Makefile.in (ALL_TARGET_OBS): Add s390-tdep.o.
	(HFILES_NO_SRCDIR): Add s390-tdep.h.
	(ALLDEPFILES): Add s390-tdep.c.
	* configure.tgt (s390*-*-linux*): Add s390-tdep.o.
	* s390-linux-tdep.h (HWCAP_S390_*)
	(S390_*_REGNUM): Move to s390-tdep.h
	* s390-linux-tdep.c (s390-tdep.h): New include.
	(_initialize_s390_tdep): Rename to...
	(_initialize_s390_linux_tdep): ...this and adjust.
	(s390_abi_kind, s390_vector_abi_kind, gdbarch_tdep)
	(enum named opcodes, s390_prologue_data)
	(S390_NUM_GPRS, S390_NUM_FPRS): Move to s390-tdep.h
	(s390_readinstruction, is_ri, is_ril, is_rr, is_rre, is_rs, is_rsy)
	(is_rx, is_rxy, s390_break_insn, s390_breakpoint)
	(s390_is_partial_instruction, s390_software_single_step)
	(is_non_branch_ril, s390_displaced_step_copy_insn)
	(s390_displaced_step_fixup, s390_displaced_step_hw_singlestep)
	(s390_addr, s390_store, s390_load, s390_check_for_saved)
	(s390_analyze_prologue, s390_skip_prologue)
	(s390_register_call_saved, s390_register_name, s390_dwarf_regmap)
	(s390_dwarf_reg_to_regnum, regnum_is_gpr_full, regnum_is_vxr_full)
	(s390_value_from_register, s390_pseudo_register_name)
	(s390_pseudo_register_type, s390_pseudo_register_read)
	(s390_pseudo_register_write, s390_pseudo_register_reggroup_p)
	(s390_ax_pseudo_register_collect)
	(s390_ax_pseudo_register_push_stack, s390_gen_return_address)
	(s390_addr_bits_remove, s390_address_class_type_flags)
	(s390_address_class_type_flags_to_name)
	(s390_address_class_name_to_type_flags, s390_effective_inner_type)
	(s390_function_arg_float, s390_function_arg_vector)
	(is_power_of_two, s390_function_arg_integer, s390_arg_state)
	(s390_handle_arg, s390_push_dummy_call, s390_dummy_id)
	(s390_frame_align, s390_register_return_value, s390_return_value)
	(s390_stack_frame_destroyed_p, s390_unwind_pc, s390_unwind_sp)
	(s390_unwind_pseudo_register, s390_adjust_frame_regnum)
	(s390_dwarf2_prev_register, s390_dwarf2_frame_init_reg)
	(s390_validate_reg_range, s390_tdesc_valid)
	(s390_gdbarch_tdep_alloc, s390_gdbarch_init): Move to s390-tdep.c
---
 gdb/Makefile.in       |    3 +
 gdb/configure.tgt     |    4 +-
 gdb/s390-linux-nat.c  |    1 +
 gdb/s390-linux-tdep.c | 2619 +------------------------------------------------
 gdb/s390-linux-tdep.h |  176 +---
 gdb/s390-tdep.c       | 2509 ++++++++++++++++++++++++++++++++++++++++++++++
 gdb/s390-tdep.h       |  367 +++++++
 7 files changed, 2892 insertions(+), 2787 deletions(-)
 create mode 100644 gdb/s390-tdep.c
 create mode 100644 gdb/s390-tdep.h

diff --git a/gdb/Makefile.in b/gdb/Makefile.in
index 5823098036..5893d394ab 100644
--- a/gdb/Makefile.in
+++ b/gdb/Makefile.in
@@ -754,6 +754,7 @@ ALL_TARGET_OBS = \
 	rs6000-tdep.o \
 	rx-tdep.o \
 	s390-linux-tdep.o \
+	s390-tdep.o \
 	score-tdep.o \
 	sh-linux-tdep.o \
 	sh-nbsd-tdep.o \
@@ -1331,6 +1332,7 @@ HFILES_NO_SRCDIR = \
 	rs6000-aix-tdep.h \
 	rs6000-tdep.h \
 	s390-linux-tdep.h \
+	s390-tdep.h \
 	score-tdep.h \
 	selftest-arch.h \
 	sentinel-frame.h \
@@ -2331,6 +2333,7 @@ ALLDEPFILES = \
 	rx-tdep.c \
 	s390-linux-nat.c \
 	s390-linux-tdep.c \
+	s390-tdep.c \
 	score-tdep.c \
 	ser-go32.c \
 	ser-mingw.c \
diff --git a/gdb/configure.tgt b/gdb/configure.tgt
index 701ad6c486..989ac329d0 100644
--- a/gdb/configure.tgt
+++ b/gdb/configure.tgt
@@ -513,8 +513,8 @@ powerpc*-*-*)
 
 s390*-*-linux*)
 	# Target: S390 running Linux
-	gdb_target_obs="s390-linux-tdep.o solib-svr4.o linux-tdep.o \
-			linux-record.o"
+	gdb_target_obs="s390-linux-tdep.o s390-tdep.o solib-svr4.o
+			linux-tdep.o linux-record.o"
 	build_gdbserver=yes
 	;;
 
diff --git a/gdb/s390-linux-nat.c b/gdb/s390-linux-nat.c
index 03b14a9ecc..decb68fcfb 100644
--- a/gdb/s390-linux-nat.c
+++ b/gdb/s390-linux-nat.c
@@ -30,6 +30,7 @@
 #include "nat/linux-ptrace.h"
 #include "gdbcmd.h"
 
+#include "s390-tdep.h"
 #include "s390-linux-tdep.h"
 #include "elf/common.h"
 
diff --git a/gdb/s390-linux-tdep.c b/gdb/s390-linux-tdep.c
index f8559eec49..c0283db3b4 100644
--- a/gdb/s390-linux-tdep.c
+++ b/gdb/s390-linux-tdep.c
@@ -1,4 +1,4 @@
-/* Target-dependent code for GDB, the GNU debugger.
+/* Target-dependent code for GNU/Linux on s390.
 
    Copyright (C) 2001-2017 Free Software Foundation, Inc.
 
@@ -43,6 +43,7 @@
 #include "solib-svr4.h"
 #include "prologue-value.h"
 #include "linux-tdep.h"
+#include "s390-tdep.h"
 #include "s390-linux-tdep.h"
 #include "linux-record.h"
 #include "record-full.h"
@@ -81,79 +82,6 @@
 #define XML_SYSCALL_FILENAME_S390 "syscalls/s390-linux.xml"
 #define XML_SYSCALL_FILENAME_S390X "syscalls/s390x-linux.xml"
 
-/* Holds the current set of options to be passed to the disassembler.  */
-static char *s390_disassembler_options;
-
-enum s390_abi_kind
-{
-  ABI_NONE,
-  ABI_LINUX_S390,
-  ABI_LINUX_ZSERIES
-};
-
-enum s390_vector_abi_kind
-{
-  S390_VECTOR_ABI_NONE,
-  S390_VECTOR_ABI_128
-};
-
-/* The tdep structure.  */
-
-struct gdbarch_tdep
-{
-  /* Target description.  */
-  const struct target_desc *tdesc;
-
-  /* ABI version.  */
-  enum s390_abi_kind abi;
-
-  /* Vector ABI.  */
-  enum s390_vector_abi_kind vector_abi;
-
-  /* Pseudo register numbers.  */
-  int gpr_full_regnum;
-  int pc_regnum;
-  int cc_regnum;
-  int v0_full_regnum;
-
-  bool have_upper;
-  bool have_linux_v1;
-  bool have_linux_v2;
-  bool have_tdb;
-  bool have_vx;
-  bool have_gs;
-};
-
-
-/* ABI call-saved register information.  */
-
-static int
-s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
-  switch (tdep->abi)
-    {
-    case ABI_LINUX_S390:
-      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
-	  || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
-	  || regnum == S390_A0_REGNUM)
-	return 1;
-
-      break;
-
-    case ABI_LINUX_ZSERIES:
-      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
-	  || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
-	  || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
-	return 1;
-
-      break;
-    }
-
-  return 0;
-}
-
 static int
 s390_cannot_store_register (struct gdbarch *gdbarch, int regnum)
 {
@@ -214,568 +142,6 @@ s390_guess_tracepoint_registers (struct gdbarch *gdbarch,
   regcache_raw_supply (regcache, S390_PSWM_REGNUM, reg);
 }
 
-
-/* DWARF Register Mapping.  */
-
-static const short s390_dwarf_regmap[] =
-{
-  /* 0-15: General Purpose Registers.  */
-  S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
-  S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
-  S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
-  S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
-
-  /* 16-31: Floating Point Registers / Vector Registers 0-15. */
-  S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
-  S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
-  S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
-  S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
-
-  /* 32-47: Control Registers (not mapped).  */
-  -1, -1, -1, -1, -1, -1, -1, -1,
-  -1, -1, -1, -1, -1, -1, -1, -1,
-
-  /* 48-63: Access Registers.  */
-  S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
-  S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
-  S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
-  S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
-
-  /* 64-65: Program Status Word.  */
-  S390_PSWM_REGNUM,
-  S390_PSWA_REGNUM,
-
-  /* 66-67: Reserved.  */
-  -1, -1,
-
-  /* 68-83: Vector Registers 16-31.  */
-  S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM,
-  S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM,
-  S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM,
-  S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM,
-
-  /* End of "official" DWARF registers.  The remainder of the map is
-     for GDB internal use only.  */
-
-  /* GPR Lower Half Access.  */
-  S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
-  S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
-  S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
-  S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
-};
-
-enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 };
-
-/* Convert DWARF register number REG to the appropriate register
-   number used by GDB.  */
-static int
-s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  int gdb_reg = -1;
-
-  /* In a 32-on-64 debug scenario, debug info refers to the full
-     64-bit GPRs.  Note that call frame information still refers to
-     the 32-bit lower halves, because s390_adjust_frame_regnum uses
-     special register numbers to access GPRs.  */
-  if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
-    return tdep->gpr_full_regnum + reg;
-
-  if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
-    gdb_reg = s390_dwarf_regmap[reg];
-
-  if (tdep->v0_full_regnum == -1)
-    {
-      if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM)
-	gdb_reg = -1;
-    }
-  else
-    {
-      if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM)
-	gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum;
-    }
-
-  return gdb_reg;
-}
-
-/* Translate a .eh_frame register to DWARF register, or adjust a
-   .debug_frame register.  */
-static int
-s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
-{
-  /* See s390_dwarf_reg_to_regnum for comments.  */
-  return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num;
-}
-
-
-/* Pseudo registers.  */
-
-static int
-regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum)
-{
-  return (tdep->gpr_full_regnum != -1
-	  && regnum >= tdep->gpr_full_regnum
-	  && regnum <= tdep->gpr_full_regnum + 15);
-}
-
-/* Check whether REGNUM indicates a full vector register (v0-v15).
-   These pseudo-registers are composed of f0-f15 and v0l-v15l.  */
-
-static int
-regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum)
-{
-  return (tdep->v0_full_regnum != -1
-	  && regnum >= tdep->v0_full_regnum
-	  && regnum <= tdep->v0_full_regnum + 15);
-}
-
-/* Return the name of register REGNO.  Return the empty string for
-   registers that shouldn't be visible.  */
-
-static const char *
-s390_register_name (struct gdbarch *gdbarch, int regnum)
-{
-  if (regnum >= S390_V0_LOWER_REGNUM
-      && regnum <= S390_V15_LOWER_REGNUM)
-    return "";
-  return tdesc_register_name (gdbarch, regnum);
-}
-
-static const char *
-s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
-  if (regnum == tdep->pc_regnum)
-    return "pc";
-
-  if (regnum == tdep->cc_regnum)
-    return "cc";
-
-  if (regnum_is_gpr_full (tdep, regnum))
-    {
-      static const char *full_name[] = {
-	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
-	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
-      };
-      return full_name[regnum - tdep->gpr_full_regnum];
-    }
-
-  if (regnum_is_vxr_full (tdep, regnum))
-    {
-      static const char *full_name[] = {
-	"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
-	"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
-      };
-      return full_name[regnum - tdep->v0_full_regnum];
-    }
-
-  internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static struct type *
-s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
-  if (regnum == tdep->pc_regnum)
-    return builtin_type (gdbarch)->builtin_func_ptr;
-
-  if (regnum == tdep->cc_regnum)
-    return builtin_type (gdbarch)->builtin_int;
-
-  if (regnum_is_gpr_full (tdep, regnum))
-    return builtin_type (gdbarch)->builtin_uint64;
-
-  if (regnum_is_vxr_full (tdep, regnum))
-    return tdesc_find_type (gdbarch, "vec128");
-
-  internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static enum register_status
-s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
-			   int regnum, gdb_byte *buf)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-  int regsize = register_size (gdbarch, regnum);
-  ULONGEST val;
-
-  if (regnum == tdep->pc_regnum)
-    {
-      enum register_status status;
-
-      status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
-      if (status == REG_VALID)
-	{
-	  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
-	    val &= 0x7fffffff;
-	  store_unsigned_integer (buf, regsize, byte_order, val);
-	}
-      return status;
-    }
-
-  if (regnum == tdep->cc_regnum)
-    {
-      enum register_status status;
-
-      status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
-      if (status == REG_VALID)
-	{
-	  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
-	    val = (val >> 12) & 3;
-	  else
-	    val = (val >> 44) & 3;
-	  store_unsigned_integer (buf, regsize, byte_order, val);
-	}
-      return status;
-    }
-
-  if (regnum_is_gpr_full (tdep, regnum))
-    {
-      enum register_status status;
-      ULONGEST val_upper;
-
-      regnum -= tdep->gpr_full_regnum;
-
-      status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
-      if (status == REG_VALID)
-	status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
-					     &val_upper);
-      if (status == REG_VALID)
-	{
-	  val |= val_upper << 32;
-	  store_unsigned_integer (buf, regsize, byte_order, val);
-	}
-      return status;
-    }
-
-  if (regnum_is_vxr_full (tdep, regnum))
-    {
-      enum register_status status;
-
-      regnum -= tdep->v0_full_regnum;
-
-      status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf);
-      if (status == REG_VALID)
-	status = regcache_raw_read (regcache,
-				    S390_V0_LOWER_REGNUM + regnum, buf + 8);
-      return status;
-    }
-
-  internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static void
-s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
-			    int regnum, const gdb_byte *buf)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-  int regsize = register_size (gdbarch, regnum);
-  ULONGEST val, psw;
-
-  if (regnum == tdep->pc_regnum)
-    {
-      val = extract_unsigned_integer (buf, regsize, byte_order);
-      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
-	{
-	  regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
-	  val = (psw & 0x80000000) | (val & 0x7fffffff);
-	}
-      regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
-      return;
-    }
-
-  if (regnum == tdep->cc_regnum)
-    {
-      val = extract_unsigned_integer (buf, regsize, byte_order);
-      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
-      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
-	val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
-      else
-	val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
-      regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
-      return;
-    }
-
-  if (regnum_is_gpr_full (tdep, regnum))
-    {
-      regnum -= tdep->gpr_full_regnum;
-      val = extract_unsigned_integer (buf, regsize, byte_order);
-      regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
-				   val & 0xffffffff);
-      regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
-				   val >> 32);
-      return;
-    }
-
-  if (regnum_is_vxr_full (tdep, regnum))
-    {
-      regnum -= tdep->v0_full_regnum;
-      regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf);
-      regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8);
-      return;
-    }
-
-  internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-/* 'float' values are stored in the upper half of floating-point
-   registers, even though we are otherwise a big-endian platform.  The
-   same applies to a 'float' value within a vector.  */
-
-static struct value *
-s390_value_from_register (struct gdbarch *gdbarch, struct type *type,
-			  int regnum, struct frame_id frame_id)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  struct value *value = default_value_from_register (gdbarch, type,
-						     regnum, frame_id);
-  check_typedef (type);
-
-  if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
-       && TYPE_LENGTH (type) < 8)
-      || regnum_is_vxr_full (tdep, regnum)
-      || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM))
-    set_value_offset (value, 0);
-
-  return value;
-}
-
-/* Register groups.  */
-
-static int
-s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
-				 struct reggroup *group)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
-  /* We usually save/restore the whole PSW, which includes PC and CC.
-     However, some older gdbservers may not support saving/restoring
-     the whole PSW yet, and will return an XML register description
-     excluding those from the save/restore register groups.  In those
-     cases, we still need to explicitly save/restore PC and CC in order
-     to push or pop frames.  Since this doesn't hurt anything if we
-     already save/restore the whole PSW (it's just redundant), we add
-     PC and CC at this point unconditionally.  */
-  if (group == save_reggroup || group == restore_reggroup)
-    return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
-
-  if (group == vector_reggroup)
-    return regnum_is_vxr_full (tdep, regnum);
-
-  if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum))
-    return 0;
-
-  return default_register_reggroup_p (gdbarch, regnum, group);
-}
-
-/* The "ax_pseudo_register_collect" gdbarch method.  */
-
-static int
-s390_ax_pseudo_register_collect (struct gdbarch *gdbarch,
-				 struct agent_expr *ax, int regnum)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  if (regnum == tdep->pc_regnum)
-    {
-      ax_reg_mask (ax, S390_PSWA_REGNUM);
-    }
-  else if (regnum == tdep->cc_regnum)
-    {
-      ax_reg_mask (ax, S390_PSWM_REGNUM);
-    }
-  else if (regnum_is_gpr_full (tdep, regnum))
-    {
-      regnum -= tdep->gpr_full_regnum;
-      ax_reg_mask (ax, S390_R0_REGNUM + regnum);
-      ax_reg_mask (ax, S390_R0_UPPER_REGNUM + regnum);
-    }
-  else if (regnum_is_vxr_full (tdep, regnum))
-    {
-      regnum -= tdep->v0_full_regnum;
-      ax_reg_mask (ax, S390_F0_REGNUM + regnum);
-      ax_reg_mask (ax, S390_V0_LOWER_REGNUM + regnum);
-    }
-  else
-    {
-      internal_error (__FILE__, __LINE__, _("invalid regnum"));
-    }
-  return 0;
-}
-
-/* The "ax_pseudo_register_push_stack" gdbarch method.  */
-
-static int
-s390_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
-				    struct agent_expr *ax, int regnum)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  if (regnum == tdep->pc_regnum)
-    {
-      ax_reg (ax, S390_PSWA_REGNUM);
-      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
-	{
-	  ax_zero_ext (ax, 31);
-	}
-    }
-  else if (regnum == tdep->cc_regnum)
-    {
-      ax_reg (ax, S390_PSWM_REGNUM);
-      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
-	ax_const_l (ax, 12);
-      else
-	ax_const_l (ax, 44);
-      ax_simple (ax, aop_rsh_unsigned);
-      ax_zero_ext (ax, 2);
-    }
-  else if (regnum_is_gpr_full (tdep, regnum))
-    {
-      regnum -= tdep->gpr_full_regnum;
-      ax_reg (ax, S390_R0_REGNUM + regnum);
-      ax_reg (ax, S390_R0_UPPER_REGNUM + regnum);
-      ax_const_l (ax, 32);
-      ax_simple (ax, aop_lsh);
-      ax_simple (ax, aop_bit_or);
-    }
-  else if (regnum_is_vxr_full (tdep, regnum))
-    {
-      /* Too large to stuff on the stack.  */
-      return 1;
-    }
-  else
-    {
-      internal_error (__FILE__, __LINE__, _("invalid regnum"));
-    }
-  return 0;
-}
-
-/* The "gen_return_address" gdbarch method.  Since this is supposed to be
-   just a best-effort method, and we don't really have the means to run
-   the full unwinder here, just collect the link register.  */
-
-static void
-s390_gen_return_address (struct gdbarch *gdbarch,
-			 struct agent_expr *ax, struct axs_value *value,
-			 CORE_ADDR scope)
-{
-  value->type = register_type (gdbarch, S390_R14_REGNUM);
-  value->kind = axs_lvalue_register;
-  value->u.reg = S390_R14_REGNUM;
-}
-
-
-/* A helper for s390_software_single_step, decides if an instruction
-   is a partial-execution instruction that needs to be executed until
-   completion when in record mode.  If it is, returns 1 and writes
-   instruction length to a pointer.  */
-
-static int
-s390_is_partial_instruction (struct gdbarch *gdbarch, CORE_ADDR loc, int *len)
-{
-  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-  uint16_t insn;
-
-  insn = read_memory_integer (loc, 2, byte_order);
-
-  switch (insn >> 8)
-    {
-    case 0xa8: /* MVCLE */
-      *len = 4;
-      return 1;
-
-    case 0xeb:
-      {
-        insn = read_memory_integer (loc + 4, 2, byte_order);
-        if ((insn & 0xff) == 0x8e)
-          {
-            /* MVCLU */
-            *len = 6;
-            return 1;
-          }
-      }
-      break;
-    }
-
-  switch (insn)
-    {
-    case 0xb255: /* MVST */
-    case 0xb263: /* CMPSC */
-    case 0xb2a5: /* TRE */
-    case 0xb2a6: /* CU21 */
-    case 0xb2a7: /* CU12 */
-    case 0xb9b0: /* CU14 */
-    case 0xb9b1: /* CU24 */
-    case 0xb9b2: /* CU41 */
-    case 0xb9b3: /* CU42 */
-    case 0xb92a: /* KMF */
-    case 0xb92b: /* KMO */
-    case 0xb92f: /* KMC */
-    case 0xb92d: /* KMCTR */
-    case 0xb92e: /* KM */
-    case 0xb93c: /* PPNO */
-    case 0xb990: /* TRTT */
-    case 0xb991: /* TRTO */
-    case 0xb992: /* TROT */
-    case 0xb993: /* TROO */
-      *len = 4;
-      return 1;
-    }
-
-  return 0;
-}
-
-/* Implement the "software_single_step" gdbarch method, needed to single step
-   through instructions like MVCLE in record mode, to make sure they are
-   executed to completion.  Without that, record will save the full length
-   of destination buffer on every iteration, even though the CPU will only
-   process about 4kiB of it each time, leading to O(n**2) memory and time
-   complexity.  */
-
-static std::vector<CORE_ADDR>
-s390_software_single_step (struct regcache *regcache)
-{
-  struct gdbarch *gdbarch = regcache->arch ();
-  CORE_ADDR loc = regcache_read_pc (regcache);
-  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-  int len;
-  uint16_t insn;
-
-  /* Special handling only if recording.  */
-  if (!record_full_is_used ())
-    return {};
-
-  /* First, match a partial instruction.  */
-  if (!s390_is_partial_instruction (gdbarch, loc, &len))
-    return {};
-
-  loc += len;
-
-  /* Second, look for a branch back to it.  */
-  insn = read_memory_integer (loc, 2, byte_order);
-  if (insn != 0xa714) /* BRC with mask 1 */
-    return {};
-
-  insn = read_memory_integer (loc + 2, 2, byte_order);
-  if (insn != (uint16_t) -(len / 2))
-    return {};
-
-  loc += 4;
-
-  /* Found it, step past the whole thing.  */
-  return {loc};
-}
-
-static int
-s390_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
-				   struct displaced_step_closure *closure)
-{
-  return 1;
-}
-
-
 /* Maps for register sets.  */
 
 static const struct regcache_map_entry s390_gregmap[] =
@@ -1056,1034 +422,6 @@ s390_core_read_description (struct gdbarch *gdbarch,
     }
 }
 
-
-/* Decoding S/390 instructions.  */
-
-/* Named opcode values for the S/390 instructions we recognize.  Some
-   instructions have their opcode split across two fields; those are the
-   op1_* and op2_* enums.  */
-enum
-  {
-    op1_lhi  = 0xa7,   op2_lhi  = 0x08,
-    op1_lghi = 0xa7,   op2_lghi = 0x09,
-    op1_lgfi = 0xc0,   op2_lgfi = 0x01,
-    op_lr    = 0x18,
-    op_lgr   = 0xb904,
-    op_l     = 0x58,
-    op1_ly   = 0xe3,   op2_ly   = 0x58,
-    op1_lg   = 0xe3,   op2_lg   = 0x04,
-    op_lm    = 0x98,
-    op1_lmy  = 0xeb,   op2_lmy  = 0x98,
-    op1_lmg  = 0xeb,   op2_lmg  = 0x04,
-    op_st    = 0x50,
-    op1_sty  = 0xe3,   op2_sty  = 0x50,
-    op1_stg  = 0xe3,   op2_stg  = 0x24,
-    op_std   = 0x60,
-    op_stm   = 0x90,
-    op1_stmy = 0xeb,   op2_stmy = 0x90,
-    op1_stmg = 0xeb,   op2_stmg = 0x24,
-    op1_aghi = 0xa7,   op2_aghi = 0x0b,
-    op1_ahi  = 0xa7,   op2_ahi  = 0x0a,
-    op1_agfi = 0xc2,   op2_agfi = 0x08,
-    op1_afi  = 0xc2,   op2_afi  = 0x09,
-    op1_algfi= 0xc2,   op2_algfi= 0x0a,
-    op1_alfi = 0xc2,   op2_alfi = 0x0b,
-    op_ar    = 0x1a,
-    op_agr   = 0xb908,
-    op_a     = 0x5a,
-    op1_ay   = 0xe3,   op2_ay   = 0x5a,
-    op1_ag   = 0xe3,   op2_ag   = 0x08,
-    op1_slgfi= 0xc2,   op2_slgfi= 0x04,
-    op1_slfi = 0xc2,   op2_slfi = 0x05,
-    op_sr    = 0x1b,
-    op_sgr   = 0xb909,
-    op_s     = 0x5b,
-    op1_sy   = 0xe3,   op2_sy   = 0x5b,
-    op1_sg   = 0xe3,   op2_sg   = 0x09,
-    op_nr    = 0x14,
-    op_ngr   = 0xb980,
-    op_la    = 0x41,
-    op1_lay  = 0xe3,   op2_lay  = 0x71,
-    op1_larl = 0xc0,   op2_larl = 0x00,
-    op_basr  = 0x0d,
-    op_bas   = 0x4d,
-    op_bcr   = 0x07,
-    op_bc    = 0x0d,
-    op_bctr  = 0x06,
-    op_bctgr = 0xb946,
-    op_bct   = 0x46,
-    op1_bctg = 0xe3,   op2_bctg = 0x46,
-    op_bxh   = 0x86,
-    op1_bxhg = 0xeb,   op2_bxhg = 0x44,
-    op_bxle  = 0x87,
-    op1_bxleg= 0xeb,   op2_bxleg= 0x45,
-    op1_bras = 0xa7,   op2_bras = 0x05,
-    op1_brasl= 0xc0,   op2_brasl= 0x05,
-    op1_brc  = 0xa7,   op2_brc  = 0x04,
-    op1_brcl = 0xc0,   op2_brcl = 0x04,
-    op1_brct = 0xa7,   op2_brct = 0x06,
-    op1_brctg= 0xa7,   op2_brctg= 0x07,
-    op_brxh  = 0x84,
-    op1_brxhg= 0xec,   op2_brxhg= 0x44,
-    op_brxle = 0x85,
-    op1_brxlg= 0xec,   op2_brxlg= 0x45,
-    op_svc   = 0x0a,
-  };
-
-
-/* Read a single instruction from address AT.  */
-
-#define S390_MAX_INSTR_SIZE 6
-static int
-s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
-{
-  static int s390_instrlen[] = { 2, 4, 4, 6 };
-  int instrlen;
-
-  if (target_read_memory (at, &instr[0], 2))
-    return -1;
-  instrlen = s390_instrlen[instr[0] >> 6];
-  if (instrlen > 2)
-    {
-      if (target_read_memory (at + 2, &instr[2], instrlen - 2))
-	return -1;
-    }
-  return instrlen;
-}
-
-
-/* The functions below are for recognizing and decoding S/390
-   instructions of various formats.  Each of them checks whether INSN
-   is an instruction of the given format, with the specified opcodes.
-   If it is, it sets the remaining arguments to the values of the
-   instruction's fields, and returns a non-zero value; otherwise, it
-   returns zero.
-
-   These functions' arguments appear in the order they appear in the
-   instruction, not in the machine-language form.  So, opcodes always
-   come first, even though they're sometimes scattered around the
-   instructions.  And displacements appear before base and extension
-   registers, as they do in the assembly syntax, not at the end, as
-   they do in the machine language.  */
-static int
-is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
-{
-  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
-    {
-      *r1 = (insn[1] >> 4) & 0xf;
-      /* i2 is a 16-bit signed quantity.  */
-      *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
-      return 1;
-    }
-  else
-    return 0;
-}
-
-
-static int
-is_ril (bfd_byte *insn, int op1, int op2,
-	unsigned int *r1, int *i2)
-{
-  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
-    {
-      *r1 = (insn[1] >> 4) & 0xf;
-      /* i2 is a signed quantity.  If the host 'int' is 32 bits long,
-	 no sign extension is necessary, but we don't want to assume
-	 that.  */
-      *i2 = (((insn[2] << 24)
-	      | (insn[3] << 16)
-	      | (insn[4] << 8)
-	      | (insn[5])) ^ 0x80000000) - 0x80000000;
-      return 1;
-    }
-  else
-    return 0;
-}
-
-
-static int
-is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
-{
-  if (insn[0] == op)
-    {
-      *r1 = (insn[1] >> 4) & 0xf;
-      *r2 = insn[1] & 0xf;
-      return 1;
-    }
-  else
-    return 0;
-}
-
-
-static int
-is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
-{
-  if (((insn[0] << 8) | insn[1]) == op)
-    {
-      /* Yes, insn[3].  insn[2] is unused in RRE format.  */
-      *r1 = (insn[3] >> 4) & 0xf;
-      *r2 = insn[3] & 0xf;
-      return 1;
-    }
-  else
-    return 0;
-}
-
-
-static int
-is_rs (bfd_byte *insn, int op,
-       unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
-{
-  if (insn[0] == op)
-    {
-      *r1 = (insn[1] >> 4) & 0xf;
-      *r3 = insn[1] & 0xf;
-      *b2 = (insn[2] >> 4) & 0xf;
-      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
-      return 1;
-    }
-  else
-    return 0;
-}
-
-
-static int
-is_rsy (bfd_byte *insn, int op1, int op2,
-	unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
-{
-  if (insn[0] == op1
-      && insn[5] == op2)
-    {
-      *r1 = (insn[1] >> 4) & 0xf;
-      *r3 = insn[1] & 0xf;
-      *b2 = (insn[2] >> 4) & 0xf;
-      /* The 'long displacement' is a 20-bit signed integer.  */
-      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
-		^ 0x80000) - 0x80000;
-      return 1;
-    }
-  else
-    return 0;
-}
-
-
-static int
-is_rx (bfd_byte *insn, int op,
-       unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
-{
-  if (insn[0] == op)
-    {
-      *r1 = (insn[1] >> 4) & 0xf;
-      *x2 = insn[1] & 0xf;
-      *b2 = (insn[2] >> 4) & 0xf;
-      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
-      return 1;
-    }
-  else
-    return 0;
-}
-
-
-static int
-is_rxy (bfd_byte *insn, int op1, int op2,
-	unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
-{
-  if (insn[0] == op1
-      && insn[5] == op2)
-    {
-      *r1 = (insn[1] >> 4) & 0xf;
-      *x2 = insn[1] & 0xf;
-      *b2 = (insn[2] >> 4) & 0xf;
-      /* The 'long displacement' is a 20-bit signed integer.  */
-      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
-		^ 0x80000) - 0x80000;
-      return 1;
-    }
-  else
-    return 0;
-}
-
-
-/* Prologue analysis.  */
-
-#define S390_NUM_GPRS 16
-#define S390_NUM_FPRS 16
-
-struct s390_prologue_data {
-
-  /* The stack.  */
-  struct pv_area *stack;
-
-  /* The size and byte-order of a GPR or FPR.  */
-  int gpr_size;
-  int fpr_size;
-  enum bfd_endian byte_order;
-
-  /* The general-purpose registers.  */
-  pv_t gpr[S390_NUM_GPRS];
-
-  /* The floating-point registers.  */
-  pv_t fpr[S390_NUM_FPRS];
-
-  /* The offset relative to the CFA where the incoming GPR N was saved
-     by the function prologue.  0 if not saved or unknown.  */
-  int gpr_slot[S390_NUM_GPRS];
-
-  /* Likewise for FPRs.  */
-  int fpr_slot[S390_NUM_FPRS];
-
-  /* Nonzero if the backchain was saved.  This is assumed to be the
-     case when the incoming SP is saved at the current SP location.  */
-  int back_chain_saved_p;
-};
-
-/* Return the effective address for an X-style instruction, like:
-
-	L R1, D2(X2, B2)
-
-   Here, X2 and B2 are registers, and D2 is a signed 20-bit
-   constant; the effective address is the sum of all three.  If either
-   X2 or B2 are zero, then it doesn't contribute to the sum --- this
-   means that r0 can't be used as either X2 or B2.  */
-static pv_t
-s390_addr (struct s390_prologue_data *data,
-	   int d2, unsigned int x2, unsigned int b2)
-{
-  pv_t result;
-
-  result = pv_constant (d2);
-  if (x2)
-    result = pv_add (result, data->gpr[x2]);
-  if (b2)
-    result = pv_add (result, data->gpr[b2]);
-
-  return result;
-}
-
-/* Do a SIZE-byte store of VALUE to D2(X2,B2).  */
-static void
-s390_store (struct s390_prologue_data *data,
-	    int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
-	    pv_t value)
-{
-  pv_t addr = s390_addr (data, d2, x2, b2);
-  pv_t offset;
-
-  /* Check whether we are storing the backchain.  */
-  offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
-
-  if (pv_is_constant (offset) && offset.k == 0)
-    if (size == data->gpr_size
-	&& pv_is_register_k (value, S390_SP_REGNUM, 0))
-      {
-	data->back_chain_saved_p = 1;
-	return;
-      }
-
-
-  /* Check whether we are storing a register into the stack.  */
-  if (!data->stack->store_would_trash (addr))
-    data->stack->store (addr, size, value);
-
-
-  /* Note: If this is some store we cannot identify, you might think we
-     should forget our cached values, as any of those might have been hit.
-
-     However, we make the assumption that the register save areas are only
-     ever stored to once in any given function, and we do recognize these
-     stores.  Thus every store we cannot recognize does not hit our data.  */
-}
-
-/* Do a SIZE-byte load from D2(X2,B2).  */
-static pv_t
-s390_load (struct s390_prologue_data *data,
-	   int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
-
-{
-  pv_t addr = s390_addr (data, d2, x2, b2);
-
-  /* If it's a load from an in-line constant pool, then we can
-     simulate that, under the assumption that the code isn't
-     going to change between the time the processor actually
-     executed it creating the current frame, and the time when
-     we're analyzing the code to unwind past that frame.  */
-  if (pv_is_constant (addr))
-    {
-      struct target_section *secp;
-      secp = target_section_by_addr (&current_target, addr.k);
-      if (secp != NULL
-	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
-				     secp->the_bfd_section)
-	      & SEC_READONLY))
-	return pv_constant (read_memory_integer (addr.k, size,
-						 data->byte_order));
-    }
-
-  /* Check whether we are accessing one of our save slots.  */
-  return data->stack->fetch (addr, size);
-}
-
-/* Function for finding saved registers in a 'struct pv_area'; we pass
-   this to pv_area::scan.
-
-   If VALUE is a saved register, ADDR says it was saved at a constant
-   offset from the frame base, and SIZE indicates that the whole
-   register was saved, record its offset in the reg_offset table in
-   PROLOGUE_UNTYPED.  */
-static void
-s390_check_for_saved (void *data_untyped, pv_t addr,
-		      CORE_ADDR size, pv_t value)
-{
-  struct s390_prologue_data *data = (struct s390_prologue_data *) data_untyped;
-  int i, offset;
-
-  if (!pv_is_register (addr, S390_SP_REGNUM))
-    return;
-
-  offset = 16 * data->gpr_size + 32 - addr.k;
-
-  /* If we are storing the original value of a register, we want to
-     record the CFA offset.  If the same register is stored multiple
-     times, the stack slot with the highest address counts.  */
-
-  for (i = 0; i < S390_NUM_GPRS; i++)
-    if (size == data->gpr_size
-	&& pv_is_register_k (value, S390_R0_REGNUM + i, 0))
-      if (data->gpr_slot[i] == 0
-	  || data->gpr_slot[i] > offset)
-	{
-	  data->gpr_slot[i] = offset;
-	  return;
-	}
-
-  for (i = 0; i < S390_NUM_FPRS; i++)
-    if (size == data->fpr_size
-	&& pv_is_register_k (value, S390_F0_REGNUM + i, 0))
-      if (data->fpr_slot[i] == 0
-	  || data->fpr_slot[i] > offset)
-	{
-	  data->fpr_slot[i] = offset;
-	  return;
-	}
-}
-
-/* Analyze the prologue of the function starting at START_PC,
-   continuing at most until CURRENT_PC.  Initialize DATA to
-   hold all information we find out about the state of the registers
-   and stack slots.  Return the address of the instruction after
-   the last one that changed the SP, FP, or back chain; or zero
-   on error.  */
-static CORE_ADDR
-s390_analyze_prologue (struct gdbarch *gdbarch,
-		       CORE_ADDR start_pc,
-		       CORE_ADDR current_pc,
-		       struct s390_prologue_data *data)
-{
-  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-
-  /* Our return value:
-     The address of the instruction after the last one that changed
-     the SP, FP, or back chain;  zero if we got an error trying to
-     read memory.  */
-  CORE_ADDR result = start_pc;
-
-  /* The current PC for our abstract interpretation.  */
-  CORE_ADDR pc;
-
-  /* The address of the next instruction after that.  */
-  CORE_ADDR next_pc;
-
-  pv_area stack (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
-  scoped_restore restore_stack = make_scoped_restore (&data->stack, &stack);
-
-  /* Set up everything's initial value.  */
-  {
-    int i;
-
-    /* For the purpose of prologue tracking, we consider the GPR size to
-       be equal to the ABI word size, even if it is actually larger
-       (i.e. when running a 32-bit binary under a 64-bit kernel).  */
-    data->gpr_size = word_size;
-    data->fpr_size = 8;
-    data->byte_order = gdbarch_byte_order (gdbarch);
-
-    for (i = 0; i < S390_NUM_GPRS; i++)
-      data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
-
-    for (i = 0; i < S390_NUM_FPRS; i++)
-      data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
-
-    for (i = 0; i < S390_NUM_GPRS; i++)
-      data->gpr_slot[i]  = 0;
-
-    for (i = 0; i < S390_NUM_FPRS; i++)
-      data->fpr_slot[i]  = 0;
-
-    data->back_chain_saved_p = 0;
-  }
-
-  /* Start interpreting instructions, until we hit the frame's
-     current PC or the first branch instruction.  */
-  for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
-    {
-      bfd_byte insn[S390_MAX_INSTR_SIZE];
-      int insn_len = s390_readinstruction (insn, pc);
-
-      bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
-      bfd_byte *insn32 = word_size == 4 ? insn : dummy;
-      bfd_byte *insn64 = word_size == 8 ? insn : dummy;
-
-      /* Fields for various kinds of instructions.  */
-      unsigned int b2, r1, r2, x2, r3;
-      int i2, d2;
-
-      /* The values of SP and FP before this instruction,
-	 for detecting instructions that change them.  */
-      pv_t pre_insn_sp, pre_insn_fp;
-      /* Likewise for the flag whether the back chain was saved.  */
-      int pre_insn_back_chain_saved_p;
-
-      /* If we got an error trying to read the instruction, report it.  */
-      if (insn_len < 0)
-	{
-	  result = 0;
-	  break;
-	}
-
-      next_pc = pc + insn_len;
-
-      pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
-      pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
-      pre_insn_back_chain_saved_p = data->back_chain_saved_p;
-
-
-      /* LHI r1, i2 --- load halfword immediate.  */
-      /* LGHI r1, i2 --- load halfword immediate (64-bit version).  */
-      /* LGFI r1, i2 --- load fullword immediate.  */
-      if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
-	  || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
-	  || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
-	data->gpr[r1] = pv_constant (i2);
-
-      /* LR r1, r2 --- load from register.  */
-      /* LGR r1, r2 --- load from register (64-bit version).  */
-      else if (is_rr (insn32, op_lr, &r1, &r2)
-	       || is_rre (insn64, op_lgr, &r1, &r2))
-	data->gpr[r1] = data->gpr[r2];
-
-      /* L r1, d2(x2, b2) --- load.  */
-      /* LY r1, d2(x2, b2) --- load (long-displacement version).  */
-      /* LG r1, d2(x2, b2) --- load (64-bit version).  */
-      else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
-	data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
-
-      /* ST r1, d2(x2, b2) --- store.  */
-      /* STY r1, d2(x2, b2) --- store (long-displacement version).  */
-      /* STG r1, d2(x2, b2) --- store (64-bit version).  */
-      else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
-	s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
-
-      /* STD r1, d2(x2,b2) --- store floating-point register.  */
-      else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
-	s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
-
-      /* STM r1, r3, d2(b2) --- store multiple.  */
-      /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
-	 version).  */
-      /* STMG r1, r3, d2(b2) --- store multiple (64-bit version).  */
-      else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
-	       || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
-	       || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
-	{
-	  for (; r1 <= r3; r1++, d2 += data->gpr_size)
-	    s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
-	}
-
-      /* AHI r1, i2 --- add halfword immediate.  */
-      /* AGHI r1, i2 --- add halfword immediate (64-bit version).  */
-      /* AFI r1, i2 --- add fullword immediate.  */
-      /* AGFI r1, i2 --- add fullword immediate (64-bit version).  */
-      else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
-	       || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
-	       || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
-	       || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
-	data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
-
-      /* ALFI r1, i2 --- add logical immediate.  */
-      /* ALGFI r1, i2 --- add logical immediate (64-bit version).  */
-      else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
-	       || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
-	data->gpr[r1] = pv_add_constant (data->gpr[r1],
-					 (CORE_ADDR)i2 & 0xffffffff);
-
-      /* AR r1, r2 -- add register.  */
-      /* AGR r1, r2 -- add register (64-bit version).  */
-      else if (is_rr (insn32, op_ar, &r1, &r2)
-	       || is_rre (insn64, op_agr, &r1, &r2))
-	data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
-
-      /* A r1, d2(x2, b2) -- add.  */
-      /* AY r1, d2(x2, b2) -- add (long-displacement version).  */
-      /* AG r1, d2(x2, b2) -- add (64-bit version).  */
-      else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
-	data->gpr[r1] = pv_add (data->gpr[r1],
-				s390_load (data, d2, x2, b2, data->gpr_size));
-
-      /* SLFI r1, i2 --- subtract logical immediate.  */
-      /* SLGFI r1, i2 --- subtract logical immediate (64-bit version).  */
-      else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
-	       || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
-	data->gpr[r1] = pv_add_constant (data->gpr[r1],
-					 -((CORE_ADDR)i2 & 0xffffffff));
-
-      /* SR r1, r2 -- subtract register.  */
-      /* SGR r1, r2 -- subtract register (64-bit version).  */
-      else if (is_rr (insn32, op_sr, &r1, &r2)
-	       || is_rre (insn64, op_sgr, &r1, &r2))
-	data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
-
-      /* S r1, d2(x2, b2) -- subtract.  */
-      /* SY r1, d2(x2, b2) -- subtract (long-displacement version).  */
-      /* SG r1, d2(x2, b2) -- subtract (64-bit version).  */
-      else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
-	data->gpr[r1] = pv_subtract (data->gpr[r1],
-				s390_load (data, d2, x2, b2, data->gpr_size));
-
-      /* LA r1, d2(x2, b2) --- load address.  */
-      /* LAY r1, d2(x2, b2) --- load address (long-displacement version).  */
-      else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
-	       || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
-	data->gpr[r1] = s390_addr (data, d2, x2, b2);
-
-      /* LARL r1, i2 --- load address relative long.  */
-      else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
-	data->gpr[r1] = pv_constant (pc + i2 * 2);
-
-      /* BASR r1, 0 --- branch and save.
-	 Since r2 is zero, this saves the PC in r1, but doesn't branch.  */
-      else if (is_rr (insn, op_basr, &r1, &r2)
-	       && r2 == 0)
-	data->gpr[r1] = pv_constant (next_pc);
-
-      /* BRAS r1, i2 --- branch relative and save.  */
-      else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
-	{
-	  data->gpr[r1] = pv_constant (next_pc);
-	  next_pc = pc + i2 * 2;
-
-	  /* We'd better not interpret any backward branches.  We'll
-	     never terminate.  */
-	  if (next_pc <= pc)
-	    break;
-	}
-
-      /* BRC/BRCL -- branch relative on condition.  Ignore "branch
-	 never", branch to following instruction, and "conditional
-	 trap" (BRC +2).  Otherwise terminate search.  */
-      else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2))
-	{
-	  if (r1 != 0 && i2 != 1 && i2 != 2)
-	    break;
-	}
-      else if (is_ril (insn, op1_brcl, op2_brcl, &r1, &i2))
-	{
-	  if (r1 != 0 && i2 != 3)
-	    break;
-	}
-
-      /* Terminate search when hitting any other branch instruction.  */
-      else if (is_rr (insn, op_basr, &r1, &r2)
-	       || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
-	       || is_rr (insn, op_bcr, &r1, &r2)
-	       || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
-	       || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
-	break;
-
-      else
-	{
-	  /* An instruction we don't know how to simulate.  The only
-	     safe thing to do would be to set every value we're tracking
-	     to 'unknown'.  Instead, we'll be optimistic: we assume that
-	     we *can* interpret every instruction that the compiler uses
-	     to manipulate any of the data we're interested in here --
-	     then we can just ignore anything else.  */
-	}
-
-      /* Record the address after the last instruction that changed
-	 the FP, SP, or backlink.  Ignore instructions that changed
-	 them back to their original values --- those are probably
-	 restore instructions.  (The back chain is never restored,
-	 just popped.)  */
-      {
-	pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
-	pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
-
-	if ((! pv_is_identical (pre_insn_sp, sp)
-	     && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
-	     && sp.kind != pvk_unknown)
-	    || (! pv_is_identical (pre_insn_fp, fp)
-		&& ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
-		&& fp.kind != pvk_unknown)
-	    || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
-	  result = next_pc;
-      }
-    }
-
-  /* Record where all the registers were saved.  */
-  data->stack->scan (s390_check_for_saved, data);
-
-  return result;
-}
-
-/* Advance PC across any function entry prologue instructions to reach
-   some "real" code.  */
-static CORE_ADDR
-s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
-  struct s390_prologue_data data;
-  CORE_ADDR skip_pc, func_addr;
-
-  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
-    {
-      CORE_ADDR post_prologue_pc
-	= skip_prologue_using_sal (gdbarch, func_addr);
-      if (post_prologue_pc != 0)
-	return std::max (pc, post_prologue_pc);
-    }
-
-  skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
-  return skip_pc ? skip_pc : pc;
-}
-
-/* Implmement the stack_frame_destroyed_p gdbarch method.  */
-static int
-s390_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
-  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-
-  /* In frameless functions, there's not frame to destroy and thus
-     we don't care about the epilogue.
-
-     In functions with frame, the epilogue sequence is a pair of
-     a LM-type instruction that restores (amongst others) the
-     return register %r14 and the stack pointer %r15, followed
-     by a branch 'br %r14' --or equivalent-- that effects the
-     actual return.
-
-     In that situation, this function needs to return 'true' in
-     exactly one case: when pc points to that branch instruction.
-
-     Thus we try to disassemble the one instructions immediately
-     preceding pc and check whether it is an LM-type instruction
-     modifying the stack pointer.
-
-     Note that disassembling backwards is not reliable, so there
-     is a slight chance of false positives here ...  */
-
-  bfd_byte insn[6];
-  unsigned int r1, r3, b2;
-  int d2;
-
-  if (word_size == 4
-      && !target_read_memory (pc - 4, insn, 4)
-      && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
-      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
-    return 1;
-
-  if (word_size == 4
-      && !target_read_memory (pc - 6, insn, 6)
-      && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
-      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
-    return 1;
-
-  if (word_size == 8
-      && !target_read_memory (pc - 6, insn, 6)
-      && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
-      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
-    return 1;
-
-  return 0;
-}
-
-/* Displaced stepping.  */
-
-/* Return true if INSN is a non-branch RIL-b or RIL-c format
-   instruction.  */
-
-static int
-is_non_branch_ril (gdb_byte *insn)
-{
-  gdb_byte op1 = insn[0];
-
-  if (op1 == 0xc4)
-    {
-      gdb_byte op2 = insn[1] & 0x0f;
-
-      switch (op2)
-	{
-	case 0x02: /* llhrl */
-	case 0x04: /* lghrl */
-	case 0x05: /* lhrl */
-	case 0x06: /* llghrl */
-	case 0x07: /* sthrl */
-	case 0x08: /* lgrl */
-	case 0x0b: /* stgrl */
-	case 0x0c: /* lgfrl */
-	case 0x0d: /* lrl */
-	case 0x0e: /* llgfrl */
-	case 0x0f: /* strl */
-	  return 1;
-	}
-    }
-  else if (op1 == 0xc6)
-    {
-      gdb_byte op2 = insn[1] & 0x0f;
-
-      switch (op2)
-	{
-	case 0x00: /* exrl */
-	case 0x02: /* pfdrl */
-	case 0x04: /* cghrl */
-	case 0x05: /* chrl */
-	case 0x06: /* clghrl */
-	case 0x07: /* clhrl */
-	case 0x08: /* cgrl */
-	case 0x0a: /* clgrl */
-	case 0x0c: /* cgfrl */
-	case 0x0d: /* crl */
-	case 0x0e: /* clgfrl */
-	case 0x0f: /* clrl */
-	  return 1;
-	}
-    }
-
-  return 0;
-}
-
-typedef buf_displaced_step_closure s390_displaced_step_closure;
-
-/* Implementation of gdbarch_displaced_step_copy_insn.  */
-
-static struct displaced_step_closure *
-s390_displaced_step_copy_insn (struct gdbarch *gdbarch,
-			       CORE_ADDR from, CORE_ADDR to,
-			       struct regcache *regs)
-{
-  size_t len = gdbarch_max_insn_length (gdbarch);
-  std::unique_ptr<s390_displaced_step_closure> closure
-    (new s390_displaced_step_closure (len));
-  gdb_byte *buf = closure->buf.data ();
-
-  read_memory (from, buf, len);
-
-  /* Adjust the displacement field of PC-relative RIL instructions,
-     except branches.  The latter are handled in the fixup hook.  */
-  if (is_non_branch_ril (buf))
-    {
-      LONGEST offset;
-
-      offset = extract_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG);
-      offset = (from - to + offset * 2) / 2;
-
-      /* If the instruction is too far from the jump pad, punt.  This
-	 will usually happen with instructions in shared libraries.
-	 We could probably support these by rewriting them to be
-	 absolute or fully emulating them.  */
-      if (offset < INT32_MIN || offset > INT32_MAX)
-	{
-	  /* Let the core fall back to stepping over the breakpoint
-	     in-line.  */
-	  if (debug_displaced)
-	    {
-	      fprintf_unfiltered (gdb_stdlog,
-				  "displaced: can't displaced step "
-				  "RIL instruction: offset %s out of range\n",
-				  plongest (offset));
-	    }
-
-	  return NULL;
-	}
-
-      store_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG, offset);
-    }
-
-  write_memory (to, buf, len);
-
-  if (debug_displaced)
-    {
-      fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
-                          paddress (gdbarch, from), paddress (gdbarch, to));
-      displaced_step_dump_bytes (gdb_stdlog, buf, len);
-    }
-
-  return closure.release ();
-}
-
-/* Fix up the state of registers and memory after having single-stepped
-   a displaced instruction.  */
-static void
-s390_displaced_step_fixup (struct gdbarch *gdbarch,
-			   struct displaced_step_closure *closure_,
-			   CORE_ADDR from, CORE_ADDR to,
-			   struct regcache *regs)
-{
-  /* Our closure is a copy of the instruction.  */
-  s390_displaced_step_closure *closure
-    = (s390_displaced_step_closure *) closure_;
-  gdb_byte *insn = closure->buf.data ();
-  static int s390_instrlen[] = { 2, 4, 4, 6 };
-  int insnlen = s390_instrlen[insn[0] >> 6];
-
-  /* Fields for various kinds of instructions.  */
-  unsigned int b2, r1, r2, x2, r3;
-  int i2, d2;
-
-  /* Get current PC and addressing mode bit.  */
-  CORE_ADDR pc = regcache_read_pc (regs);
-  ULONGEST amode = 0;
-
-  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
-    {
-      regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
-      amode &= 0x80000000;
-    }
-
-  if (debug_displaced)
-    fprintf_unfiltered (gdb_stdlog,
-			"displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
-			paddress (gdbarch, from), paddress (gdbarch, to),
-			paddress (gdbarch, pc), insnlen, (int) amode);
-
-  /* Handle absolute branch and save instructions.  */
-  if (is_rr (insn, op_basr, &r1, &r2)
-      || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
-    {
-      /* Recompute saved return address in R1.  */
-      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
-				      amode | (from + insnlen));
-    }
-
-  /* Handle absolute branch instructions.  */
-  else if (is_rr (insn, op_bcr, &r1, &r2)
-	   || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
-	   || is_rr (insn, op_bctr, &r1, &r2)
-	   || is_rre (insn, op_bctgr, &r1, &r2)
-	   || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
-	   || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
-	   || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
-	   || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
-	   || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
-	   || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
-    {
-      /* Update PC iff branch was *not* taken.  */
-      if (pc == to + insnlen)
-	regcache_write_pc (regs, from + insnlen);
-    }
-
-  /* Handle PC-relative branch and save instructions.  */
-  else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
-	   || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
-    {
-      /* Update PC.  */
-      regcache_write_pc (regs, pc - to + from);
-      /* Recompute saved return address in R1.  */
-      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
-				      amode | (from + insnlen));
-    }
-
-  /* Handle LOAD ADDRESS RELATIVE LONG.  */
-  else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
-    {
-      /* Update PC.  */
-      regcache_write_pc (regs, from + insnlen);
-      /* Recompute output address in R1.  */
-      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
-				      amode | (from + i2 * 2));
-    }
-
-  /* If we executed a breakpoint instruction, point PC right back at it.  */
-  else if (insn[0] == 0x0 && insn[1] == 0x1)
-    regcache_write_pc (regs, from);
-
-  /* For any other insn, adjust PC by negated displacement.  PC then
-     points right after the original instruction, except for PC-relative
-     branches, where it points to the adjusted branch target.  */
-  else
-    regcache_write_pc (regs, pc - to + from);
-
-  if (debug_displaced)
-    fprintf_unfiltered (gdb_stdlog,
-			"displaced: (s390) pc is now %s\n",
-			paddress (gdbarch, regcache_read_pc (regs)));
-}
-
-
-/* Helper routine to unwind pseudo registers.  */
-
-static struct value *
-s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
-{
-  struct gdbarch *gdbarch = get_frame_arch (this_frame);
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  struct type *type = register_type (gdbarch, regnum);
-
-  /* Unwind PC via PSW address.  */
-  if (regnum == tdep->pc_regnum)
-    {
-      struct value *val;
-
-      val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
-      if (!value_optimized_out (val))
-	{
-	  LONGEST pswa = value_as_long (val);
-
-	  if (TYPE_LENGTH (type) == 4)
-	    return value_from_pointer (type, pswa & 0x7fffffff);
-	  else
-	    return value_from_pointer (type, pswa);
-	}
-    }
-
-  /* Unwind CC via PSW mask.  */
-  if (regnum == tdep->cc_regnum)
-    {
-      struct value *val;
-
-      val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
-      if (!value_optimized_out (val))
-	{
-	  LONGEST pswm = value_as_long (val);
-
-	  if (TYPE_LENGTH (type) == 4)
-	    return value_from_longest (type, (pswm >> 12) & 3);
-	  else
-	    return value_from_longest (type, (pswm >> 44) & 3);
-	}
-    }
-
-  /* Unwind full GPRs to show at least the lower halves (as the
-     upper halves are undefined).  */
-  if (regnum_is_gpr_full (tdep, regnum))
-    {
-      int reg = regnum - tdep->gpr_full_regnum;
-      struct value *val;
-
-      val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
-      if (!value_optimized_out (val))
-	return value_cast (type, val);
-    }
-
-  return allocate_optimized_out_value (type);
-}
-
 static struct value *
 s390_trad_frame_prev_register (struct frame_info *this_frame,
 			       struct trad_frame_saved_reg saved_regs[],
@@ -3015,598 +1353,6 @@ static const struct frame_base s390_frame_base = {
   s390_local_base_address
 };
 
-static CORE_ADDR
-s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  ULONGEST pc;
-  pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
-  return gdbarch_addr_bits_remove (gdbarch, pc);
-}
-
-static CORE_ADDR
-s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
-  ULONGEST sp;
-  sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
-  return gdbarch_addr_bits_remove (gdbarch, sp);
-}
-
-
-/* DWARF-2 frame support.  */
-
-static struct value *
-s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
-			   int regnum)
-{
-  return s390_unwind_pseudo_register (this_frame, regnum);
-}
-
-static void
-s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
-			    struct dwarf2_frame_state_reg *reg,
-			    struct frame_info *this_frame)
-{
-  /* The condition code (and thus PSW mask) is call-clobbered.  */
-  if (regnum == S390_PSWM_REGNUM)
-    reg->how = DWARF2_FRAME_REG_UNDEFINED;
-
-  /* The PSW address unwinds to the return address.  */
-  else if (regnum == S390_PSWA_REGNUM)
-    reg->how = DWARF2_FRAME_REG_RA;
-
-  /* Fixed registers are call-saved or call-clobbered
-     depending on the ABI in use.  */
-  else if (regnum < S390_NUM_REGS)
-    {
-      if (s390_register_call_saved (gdbarch, regnum))
-	reg->how = DWARF2_FRAME_REG_SAME_VALUE;
-      else
-	reg->how = DWARF2_FRAME_REG_UNDEFINED;
-    }
-
-  /* We install a special function to unwind pseudos.  */
-  else
-    {
-      reg->how = DWARF2_FRAME_REG_FN;
-      reg->loc.fn = s390_dwarf2_prev_register;
-    }
-}
-
-
-/* Dummy function calls.  */
-
-/* Unwrap any single-field structs in TYPE and return the effective
-   "inner" type.  E.g., yield "float" for all these cases:
-
-     float x;
-     struct { float x };
-     struct { struct { float x; } x; };
-     struct { struct { struct { float x; } x; } x; };
-
-   However, if an inner type is smaller than MIN_SIZE, abort the
-   unwrapping.  */
-
-static struct type *
-s390_effective_inner_type (struct type *type, unsigned int min_size)
-{
-  while (TYPE_CODE (type) == TYPE_CODE_STRUCT
-	 && TYPE_NFIELDS (type) == 1)
-    {
-      struct type *inner = check_typedef (TYPE_FIELD_TYPE (type, 0));
-
-      if (TYPE_LENGTH (inner) < min_size)
-	break;
-      type = inner;
-    }
-
-  return type;
-}
-
-/* Return non-zero if TYPE should be passed like "float" or
-   "double".  */
-
-static int
-s390_function_arg_float (struct type *type)
-{
-  /* Note that long double as well as complex types are intentionally
-     excluded. */
-  if (TYPE_LENGTH (type) > 8)
-    return 0;
-
-  /* A struct containing just a float or double is passed like a float
-     or double.  */
-  type = s390_effective_inner_type (type, 0);
-
-  return (TYPE_CODE (type) == TYPE_CODE_FLT
-	  || TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
-}
-
-/* Return non-zero if TYPE should be passed like a vector.  */
-
-static int
-s390_function_arg_vector (struct type *type)
-{
-  if (TYPE_LENGTH (type) > 16)
-    return 0;
-
-  /* Structs containing just a vector are passed like a vector.  */
-  type = s390_effective_inner_type (type, TYPE_LENGTH (type));
-
-  return TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type);
-}
-
-/* Determine whether N is a power of two.  */
-
-static int
-is_power_of_two (unsigned int n)
-{
-  return n && ((n & (n - 1)) == 0);
-}
-
-/* For an argument whose type is TYPE and which is not passed like a
-   float or vector, return non-zero if it should be passed like "int"
-   or "long long".  */
-
-static int
-s390_function_arg_integer (struct type *type)
-{
-  enum type_code code = TYPE_CODE (type);
-
-  if (TYPE_LENGTH (type) > 8)
-    return 0;
-
-  if (code == TYPE_CODE_INT
-      || code == TYPE_CODE_ENUM
-      || code == TYPE_CODE_RANGE
-      || code == TYPE_CODE_CHAR
-      || code == TYPE_CODE_BOOL
-      || code == TYPE_CODE_PTR
-      || TYPE_IS_REFERENCE (type))
-    return 1;
-
-  return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT)
-	  && is_power_of_two (TYPE_LENGTH (type)));
-}
-
-/* Argument passing state: Internal data structure passed to helper
-   routines of s390_push_dummy_call.  */
-
-struct s390_arg_state
-  {
-    /* Register cache, or NULL, if we are in "preparation mode".  */
-    struct regcache *regcache;
-    /* Next available general/floating-point/vector register for
-       argument passing.  */
-    int gr, fr, vr;
-    /* Current pointer to copy area (grows downwards).  */
-    CORE_ADDR copy;
-    /* Current pointer to parameter area (grows upwards).  */
-    CORE_ADDR argp;
-  };
-
-/* Prepare one argument ARG for a dummy call and update the argument
-   passing state AS accordingly.  If the regcache field in AS is set,
-   operate in "write mode" and write ARG into the inferior.  Otherwise
-   run "preparation mode" and skip all updates to the inferior.  */
-
-static void
-s390_handle_arg (struct s390_arg_state *as, struct value *arg,
-		 struct gdbarch_tdep *tdep, int word_size,
-		 enum bfd_endian byte_order, int is_unnamed)
-{
-  struct type *type = check_typedef (value_type (arg));
-  unsigned int length = TYPE_LENGTH (type);
-  int write_mode = as->regcache != NULL;
-
-  if (s390_function_arg_float (type))
-    {
-      /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass
-	 arguments.  The GNU/Linux for zSeries ABI uses 0, 2, 4, and
-	 6.  */
-      if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
-	{
-	  /* When we store a single-precision value in an FP register,
-	     it occupies the leftmost bits.  */
-	  if (write_mode)
-	    regcache_cooked_write_part (as->regcache,
-					S390_F0_REGNUM + as->fr,
-					0, length,
-					value_contents (arg));
-	  as->fr += 2;
-	}
-      else
-	{
-	  /* When we store a single-precision value in a stack slot,
-	     it occupies the rightmost bits.  */
-	  as->argp = align_up (as->argp + length, word_size);
-	  if (write_mode)
-	    write_memory (as->argp - length, value_contents (arg),
-			  length);
-	}
-    }
-  else if (tdep->vector_abi == S390_VECTOR_ABI_128
-	   && s390_function_arg_vector (type))
-    {
-      static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31};
-
-      if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr))
-	{
-	  int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24;
-
-	  if (write_mode)
-	    regcache_cooked_write_part (as->regcache, regnum,
-					0, length,
-					value_contents (arg));
-	  as->vr++;
-	}
-      else
-	{
-	  if (write_mode)
-	    write_memory (as->argp, value_contents (arg), length);
-	  as->argp = align_up (as->argp + length, word_size);
-	}
-    }
-  else if (s390_function_arg_integer (type) && length <= word_size)
-    {
-      /* Initialize it just to avoid a GCC false warning.  */
-      ULONGEST val = 0;
-
-      if (write_mode)
-	{
-	  /* Place value in least significant bits of the register or
-	     memory word and sign- or zero-extend to full word size.
-	     This also applies to a struct or union.  */
-	  val = TYPE_UNSIGNED (type)
-	    ? extract_unsigned_integer (value_contents (arg),
-					length, byte_order)
-	    : extract_signed_integer (value_contents (arg),
-				      length, byte_order);
-	}
-
-      if (as->gr <= 6)
-	{
-	  if (write_mode)
-	    regcache_cooked_write_unsigned (as->regcache,
-					    S390_R0_REGNUM + as->gr,
-					    val);
-	  as->gr++;
-	}
-      else
-	{
-	  if (write_mode)
-	    write_memory_unsigned_integer (as->argp, word_size,
-					   byte_order, val);
-	  as->argp += word_size;
-	}
-    }
-  else if (s390_function_arg_integer (type) && length == 8)
-    {
-      if (as->gr <= 5)
-	{
-	  if (write_mode)
-	    {
-	      regcache_cooked_write (as->regcache,
-				     S390_R0_REGNUM + as->gr,
-				     value_contents (arg));
-	      regcache_cooked_write (as->regcache,
-				     S390_R0_REGNUM + as->gr + 1,
-				     value_contents (arg) + word_size);
-	    }
-	  as->gr += 2;
-	}
-      else
-	{
-	  /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
-	     in it, then don't go back and use it again later.  */
-	  as->gr = 7;
-
-	  if (write_mode)
-	    write_memory (as->argp, value_contents (arg), length);
-	  as->argp += length;
-	}
-    }
-  else
-    {
-      /* This argument type is never passed in registers.  Place the
-	 value in the copy area and pass a pointer to it.  Use 8-byte
-	 alignment as a conservative assumption.  */
-      as->copy = align_down (as->copy - length, 8);
-      if (write_mode)
-	write_memory (as->copy, value_contents (arg), length);
-
-      if (as->gr <= 6)
-	{
-	  if (write_mode)
-	    regcache_cooked_write_unsigned (as->regcache,
-					    S390_R0_REGNUM + as->gr,
-					    as->copy);
-	  as->gr++;
-	}
-      else
-	{
-	  if (write_mode)
-	    write_memory_unsigned_integer (as->argp, word_size,
-					   byte_order, as->copy);
-	  as->argp += word_size;
-	}
-    }
-}
-
-/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
-   place to be passed to a function, as specified by the "GNU/Linux
-   for S/390 ELF Application Binary Interface Supplement".
-
-   SP is the current stack pointer.  We must put arguments, links,
-   padding, etc. whereever they belong, and return the new stack
-   pointer value.
-
-   If STRUCT_RETURN is non-zero, then the function we're calling is
-   going to return a structure by value; STRUCT_ADDR is the address of
-   a block we've allocated for it on the stack.
-
-   Our caller has taken care of any type promotions needed to satisfy
-   prototypes or the old K&R argument-passing rules.  */
-
-static CORE_ADDR
-s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
-		      struct regcache *regcache, CORE_ADDR bp_addr,
-		      int nargs, struct value **args, CORE_ADDR sp,
-		      int struct_return, CORE_ADDR struct_addr)
-{
-  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-  int i;
-  struct s390_arg_state arg_state, arg_prep;
-  CORE_ADDR param_area_start, new_sp;
-  struct type *ftype = check_typedef (value_type (function));
-
-  if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
-    ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
-
-  arg_prep.copy = sp;
-  arg_prep.gr = struct_return ? 3 : 2;
-  arg_prep.fr = 0;
-  arg_prep.vr = 0;
-  arg_prep.argp = 0;
-  arg_prep.regcache = NULL;
-
-  /* Initialize arg_state for "preparation mode".  */
-  arg_state = arg_prep;
-
-  /* Update arg_state.copy with the start of the reference-to-copy area
-     and arg_state.argp with the size of the parameter area.  */
-  for (i = 0; i < nargs; i++)
-    s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
-		     TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
-
-  param_area_start = align_down (arg_state.copy - arg_state.argp, 8);
-
-  /* Allocate the standard frame areas: the register save area, the
-     word reserved for the compiler, and the back chain pointer.  */
-  new_sp = param_area_start - (16 * word_size + 32);
-
-  /* Now we have the final stack pointer.  Make sure we didn't
-     underflow; on 31-bit, this would result in addresses with the
-     high bit set, which causes confusion elsewhere.  Note that if we
-     error out here, stack and registers remain untouched.  */
-  if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp)
-    error (_("Stack overflow"));
-
-  /* Pass the structure return address in general register 2.  */
-  if (struct_return)
-    regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr);
-
-  /* Initialize arg_state for "write mode".  */
-  arg_state = arg_prep;
-  arg_state.argp = param_area_start;
-  arg_state.regcache = regcache;
-
-  /* Write all parameters.  */
-  for (i = 0; i < nargs; i++)
-    s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
-		     TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
-
-  /* Store return PSWA.  In 31-bit mode, keep addressing mode bit.  */
-  if (word_size == 4)
-    {
-      ULONGEST pswa;
-      regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
-      bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
-    }
-  regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
-
-  /* Store updated stack pointer.  */
-  regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp);
-
-  /* We need to return the 'stack part' of the frame ID,
-     which is actually the top of the register save area.  */
-  return param_area_start;
-}
-
-/* Assuming THIS_FRAME is a dummy, return the frame ID of that
-   dummy frame.  The frame ID's base needs to match the TOS value
-   returned by push_dummy_call, and the PC match the dummy frame's
-   breakpoint.  */
-static struct frame_id
-s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
-{
-  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-  CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
-  sp = gdbarch_addr_bits_remove (gdbarch, sp);
-
-  return frame_id_build (sp + 16*word_size + 32,
-			 get_frame_pc (this_frame));
-}
-
-static CORE_ADDR
-s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
-  /* Both the 32- and 64-bit ABI's say that the stack pointer should
-     always be aligned on an eight-byte boundary.  */
-  return (addr & -8);
-}
-
-
-/* Helper for s390_return_value: Set or retrieve a function return
-   value if it resides in a register.  */
-
-static void
-s390_register_return_value (struct gdbarch *gdbarch, struct type *type,
-			    struct regcache *regcache,
-			    gdb_byte *out, const gdb_byte *in)
-{
-  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
-  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-  int length = TYPE_LENGTH (type);
-  int code = TYPE_CODE (type);
-
-  if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
-    {
-      /* Float-like value: left-aligned in f0.  */
-      if (in != NULL)
-	regcache_cooked_write_part (regcache, S390_F0_REGNUM,
-				    0, length, in);
-      else
-	regcache_cooked_read_part (regcache, S390_F0_REGNUM,
-				   0, length, out);
-    }
-  else if (code == TYPE_CODE_ARRAY)
-    {
-      /* Vector: left-aligned in v24.  */
-      if (in != NULL)
-	regcache_cooked_write_part (regcache, S390_V24_REGNUM,
-				    0, length, in);
-      else
-	regcache_cooked_read_part (regcache, S390_V24_REGNUM,
-				   0, length, out);
-    }
-  else if (length <= word_size)
-    {
-      /* Integer: zero- or sign-extended in r2.  */
-      if (out != NULL)
-	regcache_cooked_read_part (regcache, S390_R2_REGNUM,
-				   word_size - length, length, out);
-      else if (TYPE_UNSIGNED (type))
-	regcache_cooked_write_unsigned
-	  (regcache, S390_R2_REGNUM,
-	   extract_unsigned_integer (in, length, byte_order));
-      else
-	regcache_cooked_write_signed
-	  (regcache, S390_R2_REGNUM,
-	   extract_signed_integer (in, length, byte_order));
-    }
-  else if (length == 2 * word_size)
-    {
-      /* Double word: in r2 and r3.  */
-      if (in != NULL)
-	{
-	  regcache_cooked_write (regcache, S390_R2_REGNUM, in);
-	  regcache_cooked_write (regcache, S390_R3_REGNUM,
-				 in + word_size);
-	}
-      else
-	{
-	  regcache_cooked_read (regcache, S390_R2_REGNUM, out);
-	  regcache_cooked_read (regcache, S390_R3_REGNUM,
-				out + word_size);
-	}
-    }
-  else
-    internal_error (__FILE__, __LINE__, _("invalid return type"));
-}
-
-
-/* Implement the 'return_value' gdbarch method.  */
-
-static enum return_value_convention
-s390_return_value (struct gdbarch *gdbarch, struct value *function,
-		   struct type *type, struct regcache *regcache,
-		   gdb_byte *out, const gdb_byte *in)
-{
-  enum return_value_convention rvc;
-
-  type = check_typedef (type);
-
-  switch (TYPE_CODE (type))
-    {
-    case TYPE_CODE_STRUCT:
-    case TYPE_CODE_UNION:
-    case TYPE_CODE_COMPLEX:
-      rvc = RETURN_VALUE_STRUCT_CONVENTION;
-      break;
-    case TYPE_CODE_ARRAY:
-      rvc = (gdbarch_tdep (gdbarch)->vector_abi == S390_VECTOR_ABI_128
-	     && TYPE_LENGTH (type) <= 16 && TYPE_VECTOR (type))
-	? RETURN_VALUE_REGISTER_CONVENTION
-	: RETURN_VALUE_STRUCT_CONVENTION;
-      break;
-    default:
-      rvc = TYPE_LENGTH (type) <= 8
-	? RETURN_VALUE_REGISTER_CONVENTION
-	: RETURN_VALUE_STRUCT_CONVENTION;
-    }
-
-  if (in != NULL || out != NULL)
-    {
-      if (rvc == RETURN_VALUE_REGISTER_CONVENTION)
-	s390_register_return_value (gdbarch, type, regcache, out, in);
-      else if (in != NULL)
-	error (_("Cannot set function return value."));
-      else
-	error (_("Function return value unknown."));
-    }
-
-  return rvc;
-}
-
-
-/* Breakpoints.  */
-constexpr gdb_byte s390_break_insn[] = { 0x0, 0x1 };
-
-typedef BP_MANIPULATION (s390_break_insn) s390_breakpoint;
-
-/* Address handling.  */
-
-static CORE_ADDR
-s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
-  return addr & 0x7fffffff;
-}
-
-static int
-s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
-{
-  if (byte_size == 4)
-    return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
-  else
-    return 0;
-}
-
-static const char *
-s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
-{
-  if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
-    return "mode32";
-  else
-    return NULL;
-}
-
-static int
-s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
-				       const char *name,
-				       int *type_flags_ptr)
-{
-  if (strcmp (name, "mode32") == 0)
-    {
-      *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
-      return 1;
-    }
-  else
-    return 0;
-}
-
 /* Implement gdbarch_gcc_target_options.  GCC does not know "-m32" or
    "-mcmodel=large".  */
 
@@ -7812,361 +5558,6 @@ s390_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
   record_tdep->ioctl_FIOQSIZE = 0x545e;
 }
 
-/* Validate the range of registers.  NAMES must be known at compile time.  */
-
-#define s390_validate_reg_range(feature, tdesc_data, start, names)	\
-do									\
-{									\
-  for (int i = 0; i < ARRAY_SIZE (names); i++)				\
-    if (!tdesc_numbered_register (feature, tdesc_data, start + i, names[i])) \
-      return false;							\
-}									\
-while (0)
-
-/* Validate the target description.  Also numbers registers contained in
-   tdesc.  */
-
-static bool
-s390_tdesc_valid (struct gdbarch_tdep *tdep,
-		  struct tdesc_arch_data *tdesc_data)
-{
-  static const char *const psw[] = {
-    "pswm", "pswa"
-  };
-  static const char *const gprs[] = {
-    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
-    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
-  };
-  static const char *const fprs[] = {
-    "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
-    "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
-  };
-  static const char *const acrs[] = {
-    "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
-    "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
-  };
-  static const char *const gprs_lower[] = {
-    "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
-    "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
-  };
-  static const char *const gprs_upper[] = {
-    "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
-    "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
-  };
-  static const char *const tdb_regs[] = {
-    "tdb0", "tac", "tct", "atia",
-    "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
-    "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"
-  };
-  static const char *const vxrs_low[] = {
-    "v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l",
-    "v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l",
-  };
-  static const char *const vxrs_high[] = {
-    "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24",
-    "v25", "v26", "v27", "v28", "v29", "v30", "v31",
-  };
-  static const char *const gs_cb[] = {
-    "gsd", "gssm", "gsepla",
-  };
-  static const char *const gs_bc[] = {
-    "bc_gsd", "bc_gssm", "bc_gsepla",
-  };
-
-  const struct target_desc *tdesc = tdep->tdesc;
-  const struct tdesc_feature *feature;
-
-  /* Core registers, i.e. general purpose and PSW.  */
-  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
-  if (feature == NULL)
-    return false;
-
-  s390_validate_reg_range (feature, tdesc_data, S390_PSWM_REGNUM, psw);
-
-  if (tdesc_unnumbered_register (feature, "r0"))
-    {
-      s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM, gprs);
-    }
-  else
-    {
-      tdep->have_upper = true;
-      s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM,
-			       gprs_lower);
-      s390_validate_reg_range (feature, tdesc_data, S390_R0_UPPER_REGNUM,
-			       gprs_upper);
-    }
-
-  /* Floating point registers.  */
-  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
-  if (feature == NULL)
-    return false;
-
-  if (!tdesc_numbered_register (feature, tdesc_data, S390_FPC_REGNUM, "fpc"))
-    return false;
-
-  s390_validate_reg_range (feature, tdesc_data, S390_F0_REGNUM, fprs);
-
-  /* Access control registers.  */
-  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
-  if (feature == NULL)
-    return false;
-
-  s390_validate_reg_range (feature, tdesc_data, S390_A0_REGNUM, acrs);
-
-  /* Optional GNU/Linux-specific "registers".  */
-  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
-  if (feature)
-    {
-      tdesc_numbered_register (feature, tdesc_data,
-			       S390_ORIG_R2_REGNUM, "orig_r2");
-
-      if (tdesc_numbered_register (feature, tdesc_data,
-				   S390_LAST_BREAK_REGNUM, "last_break"))
-	tdep->have_linux_v1 = true;
-
-      if (tdesc_numbered_register (feature, tdesc_data,
-				   S390_SYSTEM_CALL_REGNUM, "system_call"))
-	tdep->have_linux_v2 = true;
-
-      if (tdep->have_linux_v2 && !tdep->have_linux_v1)
-	return false;
-    }
-
-  /* Transaction diagnostic block.  */
-  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb");
-  if (feature)
-    {
-      s390_validate_reg_range (feature, tdesc_data, S390_TDB_DWORD0_REGNUM,
-			       tdb_regs);
-      tdep->have_tdb = true;
-    }
-
-  /* Vector registers.  */
-  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx");
-  if (feature)
-    {
-      s390_validate_reg_range (feature, tdesc_data, S390_V0_LOWER_REGNUM,
-			       vxrs_low);
-      s390_validate_reg_range (feature, tdesc_data, S390_V16_REGNUM,
-			       vxrs_high);
-      tdep->have_vx = true;
-    }
-
-  /* Guarded-storage registers.  */
-  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gs");
-  if (feature)
-    {
-      s390_validate_reg_range (feature, tdesc_data, S390_GSD_REGNUM, gs_cb);
-      tdep->have_gs = true;
-    }
-
-  /* Guarded-storage broadcast control.  */
-  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gsbc");
-  if (feature)
-    {
-      if (!tdep->have_gs)
-	return false;
-      s390_validate_reg_range (feature, tdesc_data, S390_BC_GSD_REGNUM,
-			       gs_bc);
-    }
-
-  return true;
-}
-
-/* Allocate and initialize new gdbarch_tdep.  Caller is responsible to free
-   memory after use.  */
-
-static struct gdbarch_tdep *
-s390_gdbarch_tdep_alloc ()
-{
-  struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
-
-  tdep->tdesc = NULL;
-
-  tdep->abi = ABI_NONE;
-  tdep->vector_abi = S390_VECTOR_ABI_NONE;
-
-  tdep->gpr_full_regnum = -1;
-  tdep->v0_full_regnum = -1;
-  tdep->pc_regnum = -1;
-  tdep->cc_regnum = -1;
-
-  tdep->have_upper = false;
-  tdep->have_linux_v1 = false;
-  tdep->have_linux_v2 = false;
-  tdep->have_tdb = false;
-  tdep->have_vx = false;
-  tdep->have_gs = false;
-
-  return tdep;
-}
-
-/* Set up gdbarch struct.  */
-
-static struct gdbarch *
-s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
-  const struct target_desc *tdesc = info.target_desc;
-  int first_pseudo_reg, last_pseudo_reg;
-  static const char *const stap_register_prefixes[] = { "%", NULL };
-  static const char *const stap_register_indirection_prefixes[] = { "(",
-								    NULL };
-  static const char *const stap_register_indirection_suffixes[] = { ")",
-								    NULL };
-
-  /* Find a candidate among extant architectures.  */
-  arches = gdbarch_list_lookup_by_info (arches, &info);
-  if (arches != NULL)
-    return arches->gdbarch;
-
-  /* Otherwise create a new gdbarch for the specified machine type.  */
-  struct gdbarch_tdep *tdep = s390_gdbarch_tdep_alloc ();
-  struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
-  struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
-  info.tdesc_data = tdesc_data;
-
-  /* The DWARF unwinders must be appended before the ABI is initialized.
-     Otherwise it is possible that a ABI default unwinder gets called before
-     the DWARF unwinder even gets the chance.  */
-  dwarf2_append_unwinders (gdbarch);
-
-  gdbarch_init_osabi (info, gdbarch);
-
-  /* Check any target description for validity.  */
-  gdb_assert (tdesc_has_registers (tdep->tdesc));
-  if (!s390_tdesc_valid (tdep, tdesc_data))
-    {
-      tdesc_data_cleanup (tdesc_data);
-      xfree (tdep);
-      gdbarch_free (gdbarch);
-      return NULL;
-    }
-
-  /* Determine vector ABI.  */
-#ifdef HAVE_ELF
-  if (tdep->have_vx
-      && info.abfd != NULL
-      && info.abfd->format == bfd_object
-      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
-      && bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
-				   Tag_GNU_S390_ABI_Vector) == 2)
-    tdep->vector_abi = S390_VECTOR_ABI_128;
-#endif
-
-  set_gdbarch_believe_pcc_promotion (gdbarch, 0);
-  set_gdbarch_char_signed (gdbarch, 0);
-
-  /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
-     We can safely let them default to 128-bit, since the debug info
-     will give the size of type actually used in each case.  */
-  set_gdbarch_long_double_bit (gdbarch, 128);
-  set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
-
-  /* Amount PC must be decremented by after a breakpoint.  This is
-     often the number of bytes returned by gdbarch_breakpoint_from_pc but not
-     always.  */
-  set_gdbarch_decr_pc_after_break (gdbarch, 2);
-  /* Stack grows downward.  */
-  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
-  set_gdbarch_breakpoint_kind_from_pc (gdbarch, s390_breakpoint::kind_from_pc);
-  set_gdbarch_sw_breakpoint_from_kind (gdbarch, s390_breakpoint::bp_from_kind);
-  set_gdbarch_software_single_step (gdbarch, s390_software_single_step);
-  set_gdbarch_displaced_step_hw_singlestep (gdbarch, s390_displaced_step_hw_singlestep);
-  set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
-  set_gdbarch_stack_frame_destroyed_p (gdbarch, s390_stack_frame_destroyed_p);
-
-  set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
-  set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
-  set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
-  set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
-  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
-  set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
-  set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
-  set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
-  set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
-  set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
-  set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
-  set_tdesc_pseudo_register_reggroup_p (gdbarch,
-					s390_pseudo_register_reggroup_p);
-  set_gdbarch_ax_pseudo_register_collect (gdbarch,
-					  s390_ax_pseudo_register_collect);
-  set_gdbarch_ax_pseudo_register_push_stack
-      (gdbarch, s390_ax_pseudo_register_push_stack);
-  set_gdbarch_gen_return_address (gdbarch, s390_gen_return_address);
-  tdesc_use_registers (gdbarch, tdep->tdesc, tdesc_data);
-  set_gdbarch_register_name (gdbarch, s390_register_name);
-
-  /* Assign pseudo register numbers.  */
-  first_pseudo_reg = gdbarch_num_regs (gdbarch);
-  last_pseudo_reg = first_pseudo_reg;
-  if (tdep->have_upper)
-    {
-      tdep->gpr_full_regnum = last_pseudo_reg;
-      last_pseudo_reg += 16;
-    }
-  if (tdep->have_vx)
-    {
-      tdep->v0_full_regnum = last_pseudo_reg;
-      last_pseudo_reg += 16;
-    }
-  tdep->pc_regnum = last_pseudo_reg++;
-  tdep->cc_regnum = last_pseudo_reg++;
-  set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
-  set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
-
-  /* Inferior function calls.  */
-  set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
-  set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
-  set_gdbarch_frame_align (gdbarch, s390_frame_align);
-  set_gdbarch_return_value (gdbarch, s390_return_value);
-
-  /* Frame handling.  */
-  dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
-  dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
-  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
-  set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
-  set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
-
-  /* Displaced stepping.  */
-  set_gdbarch_displaced_step_copy_insn (gdbarch,
-					s390_displaced_step_copy_insn);
-  set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
-  set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
-  set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
-
-  switch (tdep->abi)
-    {
-    case ABI_LINUX_S390:
-      set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
-      break;
-
-    case ABI_LINUX_ZSERIES:
-      set_gdbarch_long_bit (gdbarch, 64);
-      set_gdbarch_long_long_bit (gdbarch, 64);
-      set_gdbarch_ptr_bit (gdbarch, 64);
-      set_gdbarch_address_class_type_flags (gdbarch,
-					    s390_address_class_type_flags);
-      set_gdbarch_address_class_type_flags_to_name (gdbarch,
-						    s390_address_class_type_flags_to_name);
-      set_gdbarch_address_class_name_to_type_flags (gdbarch,
-						    s390_address_class_name_to_type_flags);
-      break;
-    }
-
-  /* SystemTap functions.  */
-  set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
-  set_gdbarch_stap_register_indirection_prefixes (gdbarch,
-					  stap_register_indirection_prefixes);
-  set_gdbarch_stap_register_indirection_suffixes (gdbarch,
-					  stap_register_indirection_suffixes);
-
-  set_gdbarch_disassembler_options (gdbarch, &s390_disassembler_options);
-  set_gdbarch_valid_disassembler_options (gdbarch,
-					  disassembler_options_s390 ());
-
-  return gdbarch;
-}
-
 /* Initialize OSABI common for GNU/Linux on 31- and 64-bit systems.  */
 
 static void
@@ -8181,6 +5572,7 @@ s390_linux_init_abi_any (struct gdbarch_info info, struct gdbarch *gdbarch)
   set_gdbarch_guess_tracepoint_registers (gdbarch,
 					  s390_guess_tracepoint_registers);
   set_gdbarch_write_pc (gdbarch, s390_write_pc);
+  set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
 
   /* Syscall handling.  */
   set_gdbarch_get_syscall_number (gdbarch, s390_linux_get_syscall_number);
@@ -8249,11 +5641,8 @@ s390_linux_init_abi_64 (struct gdbarch_info info, struct gdbarch *gdbarch)
 }
 
 void
-_initialize_s390_tdep (void)
+_initialize_s390_linux_tdep (void)
 {
-  /* Hook us into the gdbarch mechanism.  */
-  register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
-
   /* Hook us into the OSABI mechanism.  */
   gdbarch_register_osabi (bfd_arch_s390, bfd_mach_s390_31, GDB_OSABI_LINUX,
 			  s390_linux_init_abi_31);
diff --git a/gdb/s390-linux-tdep.h b/gdb/s390-linux-tdep.h
index e8955300c5..2ecc9f8c18 100644
--- a/gdb/s390-linux-tdep.h
+++ b/gdb/s390-linux-tdep.h
@@ -1,4 +1,5 @@
-/* Target-dependent code for GDB, the GNU debugger.
+/* Target-dependent code for GNU/Linux on s390.
+
    Copyright (C) 2003-2017 Free Software Foundation, Inc.
 
    This file is part of GDB.
@@ -16,173 +17,8 @@
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
-#ifndef S390_TDEP_H
-#define S390_TDEP_H
-
-/* Hardware capabilities. */
-
-#ifndef HWCAP_S390_HIGH_GPRS
-#define HWCAP_S390_HIGH_GPRS 512
-#endif
-
-#ifndef HWCAP_S390_TE
-#define HWCAP_S390_TE 1024
-#endif
-
-#ifndef HWCAP_S390_VX
-#define HWCAP_S390_VX 2048
-#endif
-
-#ifndef HWCAP_S390_GS
-#define HWCAP_S390_GS 16384
-#endif
-
-/* Register information.  */
-
-/* Program Status Word.  */
-#define S390_PSWM_REGNUM 0
-#define S390_PSWA_REGNUM 1
-/* General Purpose Registers.  */
-#define S390_R0_REGNUM 2
-#define S390_R1_REGNUM 3
-#define S390_R2_REGNUM 4
-#define S390_R3_REGNUM 5
-#define S390_R4_REGNUM 6
-#define S390_R5_REGNUM 7
-#define S390_R6_REGNUM 8
-#define S390_R7_REGNUM 9
-#define S390_R8_REGNUM 10
-#define S390_R9_REGNUM 11
-#define S390_R10_REGNUM 12
-#define S390_R11_REGNUM 13
-#define S390_R12_REGNUM 14
-#define S390_R13_REGNUM 15
-#define S390_R14_REGNUM 16
-#define S390_R15_REGNUM 17
-/* Access Registers.  */
-#define S390_A0_REGNUM 18
-#define S390_A1_REGNUM 19
-#define S390_A2_REGNUM 20
-#define S390_A3_REGNUM 21
-#define S390_A4_REGNUM 22
-#define S390_A5_REGNUM 23
-#define S390_A6_REGNUM 24
-#define S390_A7_REGNUM 25
-#define S390_A8_REGNUM 26
-#define S390_A9_REGNUM 27
-#define S390_A10_REGNUM 28
-#define S390_A11_REGNUM 29
-#define S390_A12_REGNUM 30
-#define S390_A13_REGNUM 31
-#define S390_A14_REGNUM 32
-#define S390_A15_REGNUM 33
-/* Floating Point Control Word.  */
-#define S390_FPC_REGNUM 34
-/* Floating Point Registers.  */
-#define S390_F0_REGNUM 35
-#define S390_F1_REGNUM 36
-#define S390_F2_REGNUM 37
-#define S390_F3_REGNUM 38
-#define S390_F4_REGNUM 39
-#define S390_F5_REGNUM 40
-#define S390_F6_REGNUM 41
-#define S390_F7_REGNUM 42
-#define S390_F8_REGNUM 43
-#define S390_F9_REGNUM 44
-#define S390_F10_REGNUM 45
-#define S390_F11_REGNUM 46
-#define S390_F12_REGNUM 47
-#define S390_F13_REGNUM 48
-#define S390_F14_REGNUM 49
-#define S390_F15_REGNUM 50
-/* General Purpose Register Upper Halves.  */
-#define S390_R0_UPPER_REGNUM 51
-#define S390_R1_UPPER_REGNUM 52
-#define S390_R2_UPPER_REGNUM 53
-#define S390_R3_UPPER_REGNUM 54
-#define S390_R4_UPPER_REGNUM 55
-#define S390_R5_UPPER_REGNUM 56
-#define S390_R6_UPPER_REGNUM 57
-#define S390_R7_UPPER_REGNUM 58
-#define S390_R8_UPPER_REGNUM 59
-#define S390_R9_UPPER_REGNUM 60
-#define S390_R10_UPPER_REGNUM 61
-#define S390_R11_UPPER_REGNUM 62
-#define S390_R12_UPPER_REGNUM 63
-#define S390_R13_UPPER_REGNUM 64
-#define S390_R14_UPPER_REGNUM 65
-#define S390_R15_UPPER_REGNUM 66
-/* GNU/Linux-specific optional registers.  */
-#define S390_ORIG_R2_REGNUM 67
-#define S390_LAST_BREAK_REGNUM 68
-#define S390_SYSTEM_CALL_REGNUM 69
-/* Transaction diagnostic block.  */
-#define S390_TDB_DWORD0_REGNUM 70
-#define S390_TDB_ABORT_CODE_REGNUM 71
-#define S390_TDB_CONFLICT_TOKEN_REGNUM 72
-#define S390_TDB_ATIA_REGNUM 73
-#define S390_TDB_R0_REGNUM 74
-#define S390_TDB_R1_REGNUM 75
-#define S390_TDB_R2_REGNUM 76
-#define S390_TDB_R3_REGNUM 77
-#define S390_TDB_R4_REGNUM 78
-#define S390_TDB_R5_REGNUM 79
-#define S390_TDB_R6_REGNUM 80
-#define S390_TDB_R7_REGNUM 81
-#define S390_TDB_R8_REGNUM 82
-#define S390_TDB_R9_REGNUM 83
-#define S390_TDB_R10_REGNUM 84
-#define S390_TDB_R11_REGNUM 85
-#define S390_TDB_R12_REGNUM 86
-#define S390_TDB_R13_REGNUM 87
-#define S390_TDB_R14_REGNUM 88
-#define S390_TDB_R15_REGNUM 89
-/* Vector registers.  */
-#define S390_V0_LOWER_REGNUM 90
-#define S390_V1_LOWER_REGNUM 91
-#define S390_V2_LOWER_REGNUM 92
-#define S390_V3_LOWER_REGNUM 93
-#define S390_V4_LOWER_REGNUM 94
-#define S390_V5_LOWER_REGNUM 95
-#define S390_V6_LOWER_REGNUM 96
-#define S390_V7_LOWER_REGNUM 97
-#define S390_V8_LOWER_REGNUM 98
-#define S390_V9_LOWER_REGNUM 99
-#define S390_V10_LOWER_REGNUM 100
-#define S390_V11_LOWER_REGNUM 101
-#define S390_V12_LOWER_REGNUM 102
-#define S390_V13_LOWER_REGNUM 103
-#define S390_V14_LOWER_REGNUM 104
-#define S390_V15_LOWER_REGNUM 105
-#define S390_V16_REGNUM 106
-#define S390_V17_REGNUM 107
-#define S390_V18_REGNUM 108
-#define S390_V19_REGNUM 109
-#define S390_V20_REGNUM 110
-#define S390_V21_REGNUM 111
-#define S390_V22_REGNUM 112
-#define S390_V23_REGNUM 113
-#define S390_V24_REGNUM 114
-#define S390_V25_REGNUM 115
-#define S390_V26_REGNUM 116
-#define S390_V27_REGNUM 117
-#define S390_V28_REGNUM 118
-#define S390_V29_REGNUM 119
-#define S390_V30_REGNUM 120
-#define S390_V31_REGNUM 121
-#define S390_GSD_REGNUM 122
-#define S390_GSSM_REGNUM 123
-#define S390_GSEPLA_REGNUM 124
-#define S390_BC_GSD_REGNUM 125
-#define S390_BC_GSSM_REGNUM 126
-#define S390_BC_GSEPLA_REGNUM 127
-/* Total.  */
-#define S390_NUM_REGS 128
-
-/* Special register usage.  */
-#define S390_SP_REGNUM S390_R15_REGNUM
-#define S390_RETADDR_REGNUM S390_R14_REGNUM
-#define S390_FRAME_REGNUM S390_R11_REGNUM
+#ifndef S390_LINUX_TDEP_H
+#define S390_LINUX_TDEP_H
 
 #define S390_IS_GREGSET_REGNUM(i)					\
   (((i) >= S390_PSWM_REGNUM && (i) <= S390_A15_REGNUM)			\
@@ -195,7 +31,7 @@
 #define S390_IS_TDBREGSET_REGNUM(i)				\
   ((i) >= S390_TDB_DWORD0_REGNUM && (i) <= S390_TDB_R15_REGNUM)
 
-/* Core file register sets, defined in s390-tdep.c.  */
+/* Core file register sets, defined in s390-linux-tdep.c.  */
 #define s390_sizeof_gregset 0x90
 #define s390x_sizeof_gregset 0xd8
 extern const struct regset s390_gregset;
@@ -230,4 +66,4 @@ extern struct target_desc *tdesc_s390x_vx_linux64;
 extern struct target_desc *tdesc_s390x_tevx_linux64;
 extern struct target_desc *tdesc_s390x_gs_linux64;
 
-#endif
+#endif /* S390_LINUX_TDEP_H */
diff --git a/gdb/s390-tdep.c b/gdb/s390-tdep.c
new file mode 100644
index 0000000000..0961c5d8c7
--- /dev/null
+++ b/gdb/s390-tdep.c
@@ -0,0 +1,2509 @@
+/* Target-dependent code for s390.
+
+   Copyright (C) 2001-2017 Free Software Foundation, Inc.
+
+   This file is part of GDB.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 3 of the License, or
+   (at your option) any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
+
+#include "defs.h"
+
+#include "arch-utils.h"
+#include "ax-gdb.h"
+#include "dwarf2-frame.h"
+#include "elf/s390.h"
+#include "elf-bfd.h"
+#include "frame-base.h"
+#include "gdbarch.h"
+#include "gdbcore.h"
+#include "infrun.h"
+#include "linux-tdep.h"
+#include "osabi.h"
+#include "record-full.h"
+#include "regcache.h"
+#include "reggroups.h"
+#include "s390-tdep.h"
+#include "target-descriptions.h"
+#include "value.h"
+
+/* Holds the current set of options to be passed to the disassembler.  */
+static char *s390_disassembler_options;
+
+/* Breakpoints.  */
+
+constexpr gdb_byte s390_break_insn[] = { 0x0, 0x1 };
+
+typedef BP_MANIPULATION (s390_break_insn) s390_breakpoint;
+
+/* Decoding S/390 instructions.  */
+
+/* See s390-tdep.h.  */
+
+int
+s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
+{
+  static int s390_instrlen[] = { 2, 4, 4, 6 };
+  int instrlen;
+
+  if (target_read_memory (at, &instr[0], 2))
+    return -1;
+  instrlen = s390_instrlen[instr[0] >> 6];
+  if (instrlen > 2)
+    {
+      if (target_read_memory (at + 2, &instr[2], instrlen - 2))
+	return -1;
+    }
+  return instrlen;
+}
+
+/* The functions below are for recognizing and decoding S/390
+   instructions of various formats.  Each of them checks whether INSN
+   is an instruction of the given format, with the specified opcodes.
+   If it is, it sets the remaining arguments to the values of the
+   instruction's fields, and returns a non-zero value; otherwise, it
+   returns zero.
+
+   These functions' arguments appear in the order they appear in the
+   instruction, not in the machine-language form.  So, opcodes always
+   come first, even though they're sometimes scattered around the
+   instructions.  And displacements appear before base and extension
+   registers, as they do in the assembly syntax, not at the end, as
+   they do in the machine language.  */
+
+static int
+is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
+{
+  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
+    {
+      *r1 = (insn[1] >> 4) & 0xf;
+      /* i2 is a 16-bit signed quantity.  */
+      *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
+      return 1;
+    }
+  else
+    return 0;
+}
+
+static int
+is_ril (bfd_byte *insn, int op1, int op2,
+	unsigned int *r1, int *i2)
+{
+  if (insn[0] == op1 && (insn[1] & 0xf) == op2)
+    {
+      *r1 = (insn[1] >> 4) & 0xf;
+      /* i2 is a signed quantity.  If the host 'int' is 32 bits long,
+	 no sign extension is necessary, but we don't want to assume
+	 that.  */
+      *i2 = (((insn[2] << 24)
+	      | (insn[3] << 16)
+	      | (insn[4] << 8)
+	      | (insn[5])) ^ 0x80000000) - 0x80000000;
+      return 1;
+    }
+  else
+    return 0;
+}
+
+static int
+is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
+{
+  if (insn[0] == op)
+    {
+      *r1 = (insn[1] >> 4) & 0xf;
+      *r2 = insn[1] & 0xf;
+      return 1;
+    }
+  else
+    return 0;
+}
+
+static int
+is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
+{
+  if (((insn[0] << 8) | insn[1]) == op)
+    {
+      /* Yes, insn[3].  insn[2] is unused in RRE format.  */
+      *r1 = (insn[3] >> 4) & 0xf;
+      *r2 = insn[3] & 0xf;
+      return 1;
+    }
+  else
+    return 0;
+}
+
+static int
+is_rs (bfd_byte *insn, int op,
+       unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
+{
+  if (insn[0] == op)
+    {
+      *r1 = (insn[1] >> 4) & 0xf;
+      *r3 = insn[1] & 0xf;
+      *b2 = (insn[2] >> 4) & 0xf;
+      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
+      return 1;
+    }
+  else
+    return 0;
+}
+
+static int
+is_rsy (bfd_byte *insn, int op1, int op2,
+	unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
+{
+  if (insn[0] == op1
+      && insn[5] == op2)
+    {
+      *r1 = (insn[1] >> 4) & 0xf;
+      *r3 = insn[1] & 0xf;
+      *b2 = (insn[2] >> 4) & 0xf;
+      /* The 'long displacement' is a 20-bit signed integer.  */
+      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
+		^ 0x80000) - 0x80000;
+      return 1;
+    }
+  else
+    return 0;
+}
+
+static int
+is_rx (bfd_byte *insn, int op,
+       unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
+{
+  if (insn[0] == op)
+    {
+      *r1 = (insn[1] >> 4) & 0xf;
+      *x2 = insn[1] & 0xf;
+      *b2 = (insn[2] >> 4) & 0xf;
+      *d2 = ((insn[2] & 0xf) << 8) | insn[3];
+      return 1;
+    }
+  else
+    return 0;
+}
+
+static int
+is_rxy (bfd_byte *insn, int op1, int op2,
+	unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
+{
+  if (insn[0] == op1
+      && insn[5] == op2)
+    {
+      *r1 = (insn[1] >> 4) & 0xf;
+      *x2 = insn[1] & 0xf;
+      *b2 = (insn[2] >> 4) & 0xf;
+      /* The 'long displacement' is a 20-bit signed integer.  */
+      *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
+		^ 0x80000) - 0x80000;
+      return 1;
+    }
+  else
+    return 0;
+}
+
+/* A helper for s390_software_single_step, decides if an instruction
+   is a partial-execution instruction that needs to be executed until
+   completion when in record mode.  If it is, returns 1 and writes
+   instruction length to a pointer.  */
+
+static int
+s390_is_partial_instruction (struct gdbarch *gdbarch, CORE_ADDR loc, int *len)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  uint16_t insn;
+
+  insn = read_memory_integer (loc, 2, byte_order);
+
+  switch (insn >> 8)
+    {
+    case 0xa8: /* MVCLE */
+      *len = 4;
+      return 1;
+
+    case 0xeb:
+      {
+	insn = read_memory_integer (loc + 4, 2, byte_order);
+	if ((insn & 0xff) == 0x8e)
+	  {
+	    /* MVCLU */
+	    *len = 6;
+	    return 1;
+	  }
+      }
+      break;
+    }
+
+  switch (insn)
+    {
+    case 0xb255: /* MVST */
+    case 0xb263: /* CMPSC */
+    case 0xb2a5: /* TRE */
+    case 0xb2a6: /* CU21 */
+    case 0xb2a7: /* CU12 */
+    case 0xb9b0: /* CU14 */
+    case 0xb9b1: /* CU24 */
+    case 0xb9b2: /* CU41 */
+    case 0xb9b3: /* CU42 */
+    case 0xb92a: /* KMF */
+    case 0xb92b: /* KMO */
+    case 0xb92f: /* KMC */
+    case 0xb92d: /* KMCTR */
+    case 0xb92e: /* KM */
+    case 0xb93c: /* PPNO */
+    case 0xb990: /* TRTT */
+    case 0xb991: /* TRTO */
+    case 0xb992: /* TROT */
+    case 0xb993: /* TROO */
+      *len = 4;
+      return 1;
+    }
+
+  return 0;
+}
+
+/* Implement the "software_single_step" gdbarch method, needed to single step
+   through instructions like MVCLE in record mode, to make sure they are
+   executed to completion.  Without that, record will save the full length
+   of destination buffer on every iteration, even though the CPU will only
+   process about 4kiB of it each time, leading to O(n**2) memory and time
+   complexity.  */
+
+static std::vector<CORE_ADDR>
+s390_software_single_step (struct regcache *regcache)
+{
+  struct gdbarch *gdbarch = regcache->arch ();
+  CORE_ADDR loc = regcache_read_pc (regcache);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int len;
+  uint16_t insn;
+
+  /* Special handling only if recording.  */
+  if (!record_full_is_used ())
+    return {};
+
+  /* First, match a partial instruction.  */
+  if (!s390_is_partial_instruction (gdbarch, loc, &len))
+    return {};
+
+  loc += len;
+
+  /* Second, look for a branch back to it.  */
+  insn = read_memory_integer (loc, 2, byte_order);
+  if (insn != 0xa714) /* BRC with mask 1 */
+    return {};
+
+  insn = read_memory_integer (loc + 2, 2, byte_order);
+  if (insn != (uint16_t) -(len / 2))
+    return {};
+
+  loc += 4;
+
+  /* Found it, step past the whole thing.  */
+  return {loc};
+}
+
+/* Displaced stepping.  */
+
+/* Return true if INSN is a non-branch RIL-b or RIL-c format
+   instruction.  */
+
+static int
+is_non_branch_ril (gdb_byte *insn)
+{
+  gdb_byte op1 = insn[0];
+
+  if (op1 == 0xc4)
+    {
+      gdb_byte op2 = insn[1] & 0x0f;
+
+      switch (op2)
+	{
+	case 0x02: /* llhrl */
+	case 0x04: /* lghrl */
+	case 0x05: /* lhrl */
+	case 0x06: /* llghrl */
+	case 0x07: /* sthrl */
+	case 0x08: /* lgrl */
+	case 0x0b: /* stgrl */
+	case 0x0c: /* lgfrl */
+	case 0x0d: /* lrl */
+	case 0x0e: /* llgfrl */
+	case 0x0f: /* strl */
+	  return 1;
+	}
+    }
+  else if (op1 == 0xc6)
+    {
+      gdb_byte op2 = insn[1] & 0x0f;
+
+      switch (op2)
+	{
+	case 0x00: /* exrl */
+	case 0x02: /* pfdrl */
+	case 0x04: /* cghrl */
+	case 0x05: /* chrl */
+	case 0x06: /* clghrl */
+	case 0x07: /* clhrl */
+	case 0x08: /* cgrl */
+	case 0x0a: /* clgrl */
+	case 0x0c: /* cgfrl */
+	case 0x0d: /* crl */
+	case 0x0e: /* clgfrl */
+	case 0x0f: /* clrl */
+	  return 1;
+	}
+    }
+
+  return 0;
+}
+
+typedef buf_displaced_step_closure s390_displaced_step_closure;
+
+/* Implementation of gdbarch_displaced_step_copy_insn.  */
+
+static struct displaced_step_closure *
+s390_displaced_step_copy_insn (struct gdbarch *gdbarch,
+			       CORE_ADDR from, CORE_ADDR to,
+			       struct regcache *regs)
+{
+  size_t len = gdbarch_max_insn_length (gdbarch);
+  std::unique_ptr<s390_displaced_step_closure> closure
+    (new s390_displaced_step_closure (len));
+  gdb_byte *buf = closure->buf.data ();
+
+  read_memory (from, buf, len);
+
+  /* Adjust the displacement field of PC-relative RIL instructions,
+     except branches.  The latter are handled in the fixup hook.  */
+  if (is_non_branch_ril (buf))
+    {
+      LONGEST offset;
+
+      offset = extract_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG);
+      offset = (from - to + offset * 2) / 2;
+
+      /* If the instruction is too far from the jump pad, punt.  This
+	 will usually happen with instructions in shared libraries.
+	 We could probably support these by rewriting them to be
+	 absolute or fully emulating them.  */
+      if (offset < INT32_MIN || offset > INT32_MAX)
+	{
+	  /* Let the core fall back to stepping over the breakpoint
+	     in-line.  */
+	  if (debug_displaced)
+	    {
+	      fprintf_unfiltered (gdb_stdlog,
+				  "displaced: can't displaced step "
+				  "RIL instruction: offset %s out of range\n",
+				  plongest (offset));
+	    }
+
+	  return NULL;
+	}
+
+      store_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG, offset);
+    }
+
+  write_memory (to, buf, len);
+
+  if (debug_displaced)
+    {
+      fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
+			  paddress (gdbarch, from), paddress (gdbarch, to));
+      displaced_step_dump_bytes (gdb_stdlog, buf, len);
+    }
+
+  return closure.release ();
+}
+
+/* Fix up the state of registers and memory after having single-stepped
+   a displaced instruction.  */
+
+static void
+s390_displaced_step_fixup (struct gdbarch *gdbarch,
+			   struct displaced_step_closure *closure_,
+			   CORE_ADDR from, CORE_ADDR to,
+			   struct regcache *regs)
+{
+  /* Our closure is a copy of the instruction.  */
+  s390_displaced_step_closure *closure
+    = (s390_displaced_step_closure *) closure_;
+  gdb_byte *insn = closure->buf.data ();
+  static int s390_instrlen[] = { 2, 4, 4, 6 };
+  int insnlen = s390_instrlen[insn[0] >> 6];
+
+  /* Fields for various kinds of instructions.  */
+  unsigned int b2, r1, r2, x2, r3;
+  int i2, d2;
+
+  /* Get current PC and addressing mode bit.  */
+  CORE_ADDR pc = regcache_read_pc (regs);
+  ULONGEST amode = 0;
+
+  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+    {
+      regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
+      amode &= 0x80000000;
+    }
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+			"displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
+			paddress (gdbarch, from), paddress (gdbarch, to),
+			paddress (gdbarch, pc), insnlen, (int) amode);
+
+  /* Handle absolute branch and save instructions.  */
+  if (is_rr (insn, op_basr, &r1, &r2)
+      || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
+    {
+      /* Recompute saved return address in R1.  */
+      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+				      amode | (from + insnlen));
+    }
+
+  /* Handle absolute branch instructions.  */
+  else if (is_rr (insn, op_bcr, &r1, &r2)
+	   || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
+	   || is_rr (insn, op_bctr, &r1, &r2)
+	   || is_rre (insn, op_bctgr, &r1, &r2)
+	   || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
+	   || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
+	   || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
+	   || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
+	   || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
+	   || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
+    {
+      /* Update PC iff branch was *not* taken.  */
+      if (pc == to + insnlen)
+	regcache_write_pc (regs, from + insnlen);
+    }
+
+  /* Handle PC-relative branch and save instructions.  */
+  else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
+	   || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
+    {
+      /* Update PC.  */
+      regcache_write_pc (regs, pc - to + from);
+      /* Recompute saved return address in R1.  */
+      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+				      amode | (from + insnlen));
+    }
+
+  /* Handle LOAD ADDRESS RELATIVE LONG.  */
+  else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
+    {
+      /* Update PC.  */
+      regcache_write_pc (regs, from + insnlen);
+      /* Recompute output address in R1.  */
+      regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+				      amode | (from + i2 * 2));
+    }
+
+  /* If we executed a breakpoint instruction, point PC right back at it.  */
+  else if (insn[0] == 0x0 && insn[1] == 0x1)
+    regcache_write_pc (regs, from);
+
+  /* For any other insn, adjust PC by negated displacement.  PC then
+     points right after the original instruction, except for PC-relative
+     branches, where it points to the adjusted branch target.  */
+  else
+    regcache_write_pc (regs, pc - to + from);
+
+  if (debug_displaced)
+    fprintf_unfiltered (gdb_stdlog,
+			"displaced: (s390) pc is now %s\n",
+			paddress (gdbarch, regcache_read_pc (regs)));
+}
+
+static int
+s390_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
+				   struct displaced_step_closure *closure)
+{
+  return 1;
+}
+
+/* Prologue analysis.  */
+
+/* Return the effective address for an X-style instruction, like:
+
+	L R1, D2(X2, B2)
+
+   Here, X2 and B2 are registers, and D2 is a signed 20-bit
+   constant; the effective address is the sum of all three.  If either
+   X2 or B2 are zero, then it doesn't contribute to the sum --- this
+   means that r0 can't be used as either X2 or B2.  */
+
+static pv_t
+s390_addr (struct s390_prologue_data *data,
+	   int d2, unsigned int x2, unsigned int b2)
+{
+  pv_t result;
+
+  result = pv_constant (d2);
+  if (x2)
+    result = pv_add (result, data->gpr[x2]);
+  if (b2)
+    result = pv_add (result, data->gpr[b2]);
+
+  return result;
+}
+
+/* Do a SIZE-byte store of VALUE to D2(X2,B2).  */
+
+static void
+s390_store (struct s390_prologue_data *data,
+	    int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
+	    pv_t value)
+{
+  pv_t addr = s390_addr (data, d2, x2, b2);
+  pv_t offset;
+
+  /* Check whether we are storing the backchain.  */
+  offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
+
+  if (pv_is_constant (offset) && offset.k == 0)
+    if (size == data->gpr_size
+	&& pv_is_register_k (value, S390_SP_REGNUM, 0))
+      {
+	data->back_chain_saved_p = 1;
+	return;
+      }
+
+  /* Check whether we are storing a register into the stack.  */
+  if (!data->stack->store_would_trash (addr))
+    data->stack->store (addr, size, value);
+
+  /* Note: If this is some store we cannot identify, you might think we
+     should forget our cached values, as any of those might have been hit.
+
+     However, we make the assumption that the register save areas are only
+     ever stored to once in any given function, and we do recognize these
+     stores.  Thus every store we cannot recognize does not hit our data.  */
+}
+
+/* Do a SIZE-byte load from D2(X2,B2).  */
+
+static pv_t
+s390_load (struct s390_prologue_data *data,
+	   int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
+
+{
+  pv_t addr = s390_addr (data, d2, x2, b2);
+
+  /* If it's a load from an in-line constant pool, then we can
+     simulate that, under the assumption that the code isn't
+     going to change between the time the processor actually
+     executed it creating the current frame, and the time when
+     we're analyzing the code to unwind past that frame.  */
+  if (pv_is_constant (addr))
+    {
+      struct target_section *secp;
+      secp = target_section_by_addr (&current_target, addr.k);
+      if (secp != NULL
+	  && (bfd_get_section_flags (secp->the_bfd_section->owner,
+				     secp->the_bfd_section)
+	      & SEC_READONLY))
+	return pv_constant (read_memory_integer (addr.k, size,
+						 data->byte_order));
+    }
+
+  /* Check whether we are accessing one of our save slots.  */
+  return data->stack->fetch (addr, size);
+}
+
+/* Function for finding saved registers in a 'struct pv_area'; we pass
+   this to pv_area::scan.
+
+   If VALUE is a saved register, ADDR says it was saved at a constant
+   offset from the frame base, and SIZE indicates that the whole
+   register was saved, record its offset in the reg_offset table in
+   PROLOGUE_UNTYPED.  */
+
+static void
+s390_check_for_saved (void *data_untyped, pv_t addr,
+		      CORE_ADDR size, pv_t value)
+{
+  struct s390_prologue_data *data = (struct s390_prologue_data *) data_untyped;
+  int i, offset;
+
+  if (!pv_is_register (addr, S390_SP_REGNUM))
+    return;
+
+  offset = 16 * data->gpr_size + 32 - addr.k;
+
+  /* If we are storing the original value of a register, we want to
+     record the CFA offset.  If the same register is stored multiple
+     times, the stack slot with the highest address counts.  */
+
+  for (i = 0; i < S390_NUM_GPRS; i++)
+    if (size == data->gpr_size
+	&& pv_is_register_k (value, S390_R0_REGNUM + i, 0))
+      if (data->gpr_slot[i] == 0
+	  || data->gpr_slot[i] > offset)
+	{
+	  data->gpr_slot[i] = offset;
+	  return;
+	}
+
+  for (i = 0; i < S390_NUM_FPRS; i++)
+    if (size == data->fpr_size
+	&& pv_is_register_k (value, S390_F0_REGNUM + i, 0))
+      if (data->fpr_slot[i] == 0
+	  || data->fpr_slot[i] > offset)
+	{
+	  data->fpr_slot[i] = offset;
+	  return;
+	}
+}
+
+/* See s390-tdep.h.  */
+
+CORE_ADDR
+s390_analyze_prologue (struct gdbarch *gdbarch,
+		       CORE_ADDR start_pc,
+		       CORE_ADDR current_pc,
+		       struct s390_prologue_data *data)
+{
+  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+
+  /* Our return value:
+     The address of the instruction after the last one that changed
+     the SP, FP, or back chain;  zero if we got an error trying to
+     read memory.  */
+  CORE_ADDR result = start_pc;
+
+  /* The current PC for our abstract interpretation.  */
+  CORE_ADDR pc;
+
+  /* The address of the next instruction after that.  */
+  CORE_ADDR next_pc;
+
+  pv_area stack (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
+  scoped_restore restore_stack = make_scoped_restore (&data->stack, &stack);
+
+  /* Set up everything's initial value.  */
+  {
+    int i;
+
+    /* For the purpose of prologue tracking, we consider the GPR size to
+       be equal to the ABI word size, even if it is actually larger
+       (i.e. when running a 32-bit binary under a 64-bit kernel).  */
+    data->gpr_size = word_size;
+    data->fpr_size = 8;
+    data->byte_order = gdbarch_byte_order (gdbarch);
+
+    for (i = 0; i < S390_NUM_GPRS; i++)
+      data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
+
+    for (i = 0; i < S390_NUM_FPRS; i++)
+      data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
+
+    for (i = 0; i < S390_NUM_GPRS; i++)
+      data->gpr_slot[i]  = 0;
+
+    for (i = 0; i < S390_NUM_FPRS; i++)
+      data->fpr_slot[i]  = 0;
+
+    data->back_chain_saved_p = 0;
+  }
+
+  /* Start interpreting instructions, until we hit the frame's
+     current PC or the first branch instruction.  */
+  for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
+    {
+      bfd_byte insn[S390_MAX_INSTR_SIZE];
+      int insn_len = s390_readinstruction (insn, pc);
+
+      bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
+      bfd_byte *insn32 = word_size == 4 ? insn : dummy;
+      bfd_byte *insn64 = word_size == 8 ? insn : dummy;
+
+      /* Fields for various kinds of instructions.  */
+      unsigned int b2, r1, r2, x2, r3;
+      int i2, d2;
+
+      /* The values of SP and FP before this instruction,
+	 for detecting instructions that change them.  */
+      pv_t pre_insn_sp, pre_insn_fp;
+      /* Likewise for the flag whether the back chain was saved.  */
+      int pre_insn_back_chain_saved_p;
+
+      /* If we got an error trying to read the instruction, report it.  */
+      if (insn_len < 0)
+	{
+	  result = 0;
+	  break;
+	}
+
+      next_pc = pc + insn_len;
+
+      pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+      pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+      pre_insn_back_chain_saved_p = data->back_chain_saved_p;
+
+      /* LHI r1, i2 --- load halfword immediate.  */
+      /* LGHI r1, i2 --- load halfword immediate (64-bit version).  */
+      /* LGFI r1, i2 --- load fullword immediate.  */
+      if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
+	  || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
+	  || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
+	data->gpr[r1] = pv_constant (i2);
+
+      /* LR r1, r2 --- load from register.  */
+      /* LGR r1, r2 --- load from register (64-bit version).  */
+      else if (is_rr (insn32, op_lr, &r1, &r2)
+	       || is_rre (insn64, op_lgr, &r1, &r2))
+	data->gpr[r1] = data->gpr[r2];
+
+      /* L r1, d2(x2, b2) --- load.  */
+      /* LY r1, d2(x2, b2) --- load (long-displacement version).  */
+      /* LG r1, d2(x2, b2) --- load (64-bit version).  */
+      else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
+	data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
+
+      /* ST r1, d2(x2, b2) --- store.  */
+      /* STY r1, d2(x2, b2) --- store (long-displacement version).  */
+      /* STG r1, d2(x2, b2) --- store (64-bit version).  */
+      else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
+	s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
+
+      /* STD r1, d2(x2,b2) --- store floating-point register.  */
+      else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
+	s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
+
+      /* STM r1, r3, d2(b2) --- store multiple.  */
+      /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
+	 version).  */
+      /* STMG r1, r3, d2(b2) --- store multiple (64-bit version).  */
+      else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
+	       || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
+	       || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
+	{
+	  for (; r1 <= r3; r1++, d2 += data->gpr_size)
+	    s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
+	}
+
+      /* AHI r1, i2 --- add halfword immediate.  */
+      /* AGHI r1, i2 --- add halfword immediate (64-bit version).  */
+      /* AFI r1, i2 --- add fullword immediate.  */
+      /* AGFI r1, i2 --- add fullword immediate (64-bit version).  */
+      else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
+	       || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
+	       || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
+	       || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
+	data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
+
+      /* ALFI r1, i2 --- add logical immediate.  */
+      /* ALGFI r1, i2 --- add logical immediate (64-bit version).  */
+      else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
+	       || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
+	data->gpr[r1] = pv_add_constant (data->gpr[r1],
+					 (CORE_ADDR)i2 & 0xffffffff);
+
+      /* AR r1, r2 -- add register.  */
+      /* AGR r1, r2 -- add register (64-bit version).  */
+      else if (is_rr (insn32, op_ar, &r1, &r2)
+	       || is_rre (insn64, op_agr, &r1, &r2))
+	data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
+
+      /* A r1, d2(x2, b2) -- add.  */
+      /* AY r1, d2(x2, b2) -- add (long-displacement version).  */
+      /* AG r1, d2(x2, b2) -- add (64-bit version).  */
+      else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
+	data->gpr[r1] = pv_add (data->gpr[r1],
+				s390_load (data, d2, x2, b2, data->gpr_size));
+
+      /* SLFI r1, i2 --- subtract logical immediate.  */
+      /* SLGFI r1, i2 --- subtract logical immediate (64-bit version).  */
+      else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
+	       || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
+	data->gpr[r1] = pv_add_constant (data->gpr[r1],
+					 -((CORE_ADDR)i2 & 0xffffffff));
+
+      /* SR r1, r2 -- subtract register.  */
+      /* SGR r1, r2 -- subtract register (64-bit version).  */
+      else if (is_rr (insn32, op_sr, &r1, &r2)
+	       || is_rre (insn64, op_sgr, &r1, &r2))
+	data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
+
+      /* S r1, d2(x2, b2) -- subtract.  */
+      /* SY r1, d2(x2, b2) -- subtract (long-displacement version).  */
+      /* SG r1, d2(x2, b2) -- subtract (64-bit version).  */
+      else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
+	data->gpr[r1] = pv_subtract (data->gpr[r1],
+				s390_load (data, d2, x2, b2, data->gpr_size));
+
+      /* LA r1, d2(x2, b2) --- load address.  */
+      /* LAY r1, d2(x2, b2) --- load address (long-displacement version).  */
+      else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
+	       || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
+	data->gpr[r1] = s390_addr (data, d2, x2, b2);
+
+      /* LARL r1, i2 --- load address relative long.  */
+      else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
+	data->gpr[r1] = pv_constant (pc + i2 * 2);
+
+      /* BASR r1, 0 --- branch and save.
+	 Since r2 is zero, this saves the PC in r1, but doesn't branch.  */
+      else if (is_rr (insn, op_basr, &r1, &r2)
+	       && r2 == 0)
+	data->gpr[r1] = pv_constant (next_pc);
+
+      /* BRAS r1, i2 --- branch relative and save.  */
+      else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
+	{
+	  data->gpr[r1] = pv_constant (next_pc);
+	  next_pc = pc + i2 * 2;
+
+	  /* We'd better not interpret any backward branches.  We'll
+	     never terminate.  */
+	  if (next_pc <= pc)
+	    break;
+	}
+
+      /* BRC/BRCL -- branch relative on condition.  Ignore "branch
+	 never", branch to following instruction, and "conditional
+	 trap" (BRC +2).  Otherwise terminate search.  */
+      else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2))
+	{
+	  if (r1 != 0 && i2 != 1 && i2 != 2)
+	    break;
+	}
+      else if (is_ril (insn, op1_brcl, op2_brcl, &r1, &i2))
+	{
+	  if (r1 != 0 && i2 != 3)
+	    break;
+	}
+
+      /* Terminate search when hitting any other branch instruction.  */
+      else if (is_rr (insn, op_basr, &r1, &r2)
+	       || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
+	       || is_rr (insn, op_bcr, &r1, &r2)
+	       || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
+	       || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
+	break;
+
+      else
+	{
+	  /* An instruction we don't know how to simulate.  The only
+	     safe thing to do would be to set every value we're tracking
+	     to 'unknown'.  Instead, we'll be optimistic: we assume that
+	     we *can* interpret every instruction that the compiler uses
+	     to manipulate any of the data we're interested in here --
+	     then we can just ignore anything else.  */
+	}
+
+      /* Record the address after the last instruction that changed
+	 the FP, SP, or backlink.  Ignore instructions that changed
+	 them back to their original values --- those are probably
+	 restore instructions.  (The back chain is never restored,
+	 just popped.)  */
+      {
+	pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+	pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+
+	if ((! pv_is_identical (pre_insn_sp, sp)
+	     && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
+	     && sp.kind != pvk_unknown)
+	    || (! pv_is_identical (pre_insn_fp, fp)
+		&& ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
+		&& fp.kind != pvk_unknown)
+	    || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
+	  result = next_pc;
+      }
+    }
+
+  /* Record where all the registers were saved.  */
+  data->stack->scan (s390_check_for_saved, data);
+
+  return result;
+}
+
+/* Advance PC across any function entry prologue instructions to reach
+   some "real" code.  */
+
+static CORE_ADDR
+s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  struct s390_prologue_data data;
+  CORE_ADDR skip_pc, func_addr;
+
+  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
+    {
+      CORE_ADDR post_prologue_pc
+	= skip_prologue_using_sal (gdbarch, func_addr);
+      if (post_prologue_pc != 0)
+	return std::max (pc, post_prologue_pc);
+    }
+
+  skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
+  return skip_pc ? skip_pc : pc;
+}
+
+/* Register handling.  */
+
+/* See s390-tdep.h.  */
+
+int
+s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  switch (tdep->abi)
+    {
+    case ABI_LINUX_S390:
+      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
+	  || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
+	  || regnum == S390_A0_REGNUM)
+	return 1;
+
+      break;
+
+    case ABI_LINUX_ZSERIES:
+      if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
+	  || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
+	  || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
+	return 1;
+
+      break;
+    }
+
+  return 0;
+}
+
+/* Return the name of register REGNO.  Return the empty string for
+   registers that shouldn't be visible.  */
+
+static const char *
+s390_register_name (struct gdbarch *gdbarch, int regnum)
+{
+  if (regnum >= S390_V0_LOWER_REGNUM
+      && regnum <= S390_V15_LOWER_REGNUM)
+    return "";
+  return tdesc_register_name (gdbarch, regnum);
+}
+
+/* DWARF Register Mapping.  */
+
+static const short s390_dwarf_regmap[] =
+{
+  /* 0-15: General Purpose Registers.  */
+  S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
+  S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
+  S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
+  S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
+
+  /* 16-31: Floating Point Registers / Vector Registers 0-15. */
+  S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
+  S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
+  S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
+  S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
+
+  /* 32-47: Control Registers (not mapped).  */
+  -1, -1, -1, -1, -1, -1, -1, -1,
+  -1, -1, -1, -1, -1, -1, -1, -1,
+
+  /* 48-63: Access Registers.  */
+  S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
+  S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
+  S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
+  S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
+
+  /* 64-65: Program Status Word.  */
+  S390_PSWM_REGNUM,
+  S390_PSWA_REGNUM,
+
+  /* 66-67: Reserved.  */
+  -1, -1,
+
+  /* 68-83: Vector Registers 16-31.  */
+  S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM,
+  S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM,
+  S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM,
+  S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM,
+
+  /* End of "official" DWARF registers.  The remainder of the map is
+     for GDB internal use only.  */
+
+  /* GPR Lower Half Access.  */
+  S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
+  S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
+  S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
+  S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
+};
+
+enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 };
+
+/* Convert DWARF register number REG to the appropriate register
+   number used by GDB.  */
+
+static int
+s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int gdb_reg = -1;
+
+  /* In a 32-on-64 debug scenario, debug info refers to the full
+     64-bit GPRs.  Note that call frame information still refers to
+     the 32-bit lower halves, because s390_adjust_frame_regnum uses
+     special register numbers to access GPRs.  */
+  if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
+    return tdep->gpr_full_regnum + reg;
+
+  if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
+    gdb_reg = s390_dwarf_regmap[reg];
+
+  if (tdep->v0_full_regnum == -1)
+    {
+      if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM)
+	gdb_reg = -1;
+    }
+  else
+    {
+      if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM)
+	gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum;
+    }
+
+  return gdb_reg;
+}
+
+/* Pseudo registers.  */
+
+static int
+regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum)
+{
+  return (tdep->gpr_full_regnum != -1
+	  && regnum >= tdep->gpr_full_regnum
+	  && regnum <= tdep->gpr_full_regnum + 15);
+}
+
+/* Check whether REGNUM indicates a full vector register (v0-v15).
+   These pseudo-registers are composed of f0-f15 and v0l-v15l.  */
+
+static int
+regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum)
+{
+  return (tdep->v0_full_regnum != -1
+	  && regnum >= tdep->v0_full_regnum
+	  && regnum <= tdep->v0_full_regnum + 15);
+}
+
+/* 'float' values are stored in the upper half of floating-point
+   registers, even though we are otherwise a big-endian platform.  The
+   same applies to a 'float' value within a vector.  */
+
+static struct value *
+s390_value_from_register (struct gdbarch *gdbarch, struct type *type,
+			  int regnum, struct frame_id frame_id)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  struct value *value = default_value_from_register (gdbarch, type,
+						     regnum, frame_id);
+  check_typedef (type);
+
+  if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
+       && TYPE_LENGTH (type) < 8)
+      || regnum_is_vxr_full (tdep, regnum)
+      || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM))
+    set_value_offset (value, 0);
+
+  return value;
+}
+
+static const char *
+s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  if (regnum == tdep->pc_regnum)
+    return "pc";
+
+  if (regnum == tdep->cc_regnum)
+    return "cc";
+
+  if (regnum_is_gpr_full (tdep, regnum))
+    {
+      static const char *full_name[] = {
+	"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+      };
+      return full_name[regnum - tdep->gpr_full_regnum];
+    }
+
+  if (regnum_is_vxr_full (tdep, regnum))
+    {
+      static const char *full_name[] = {
+	"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
+	"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
+      };
+      return full_name[regnum - tdep->v0_full_regnum];
+    }
+
+  internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static struct type *
+s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  if (regnum == tdep->pc_regnum)
+    return builtin_type (gdbarch)->builtin_func_ptr;
+
+  if (regnum == tdep->cc_regnum)
+    return builtin_type (gdbarch)->builtin_int;
+
+  if (regnum_is_gpr_full (tdep, regnum))
+    return builtin_type (gdbarch)->builtin_uint64;
+
+  if (regnum_is_vxr_full (tdep, regnum))
+    return tdesc_find_type (gdbarch, "vec128");
+
+  internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static enum register_status
+s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+			   int regnum, gdb_byte *buf)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int regsize = register_size (gdbarch, regnum);
+  ULONGEST val;
+
+  if (regnum == tdep->pc_regnum)
+    {
+      enum register_status status;
+
+      status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
+      if (status == REG_VALID)
+	{
+	  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+	    val &= 0x7fffffff;
+	  store_unsigned_integer (buf, regsize, byte_order, val);
+	}
+      return status;
+    }
+
+  if (regnum == tdep->cc_regnum)
+    {
+      enum register_status status;
+
+      status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
+      if (status == REG_VALID)
+	{
+	  if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+	    val = (val >> 12) & 3;
+	  else
+	    val = (val >> 44) & 3;
+	  store_unsigned_integer (buf, regsize, byte_order, val);
+	}
+      return status;
+    }
+
+  if (regnum_is_gpr_full (tdep, regnum))
+    {
+      enum register_status status;
+      ULONGEST val_upper;
+
+      regnum -= tdep->gpr_full_regnum;
+
+      status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
+      if (status == REG_VALID)
+	status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
+					     &val_upper);
+      if (status == REG_VALID)
+	{
+	  val |= val_upper << 32;
+	  store_unsigned_integer (buf, regsize, byte_order, val);
+	}
+      return status;
+    }
+
+  if (regnum_is_vxr_full (tdep, regnum))
+    {
+      enum register_status status;
+
+      regnum -= tdep->v0_full_regnum;
+
+      status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf);
+      if (status == REG_VALID)
+	status = regcache_raw_read (regcache,
+				    S390_V0_LOWER_REGNUM + regnum, buf + 8);
+      return status;
+    }
+
+  internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static void
+s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+			    int regnum, const gdb_byte *buf)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int regsize = register_size (gdbarch, regnum);
+  ULONGEST val, psw;
+
+  if (regnum == tdep->pc_regnum)
+    {
+      val = extract_unsigned_integer (buf, regsize, byte_order);
+      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+	{
+	  regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
+	  val = (psw & 0x80000000) | (val & 0x7fffffff);
+	}
+      regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
+      return;
+    }
+
+  if (regnum == tdep->cc_regnum)
+    {
+      val = extract_unsigned_integer (buf, regsize, byte_order);
+      regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
+      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+	val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
+      else
+	val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
+      regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
+      return;
+    }
+
+  if (regnum_is_gpr_full (tdep, regnum))
+    {
+      regnum -= tdep->gpr_full_regnum;
+      val = extract_unsigned_integer (buf, regsize, byte_order);
+      regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
+				   val & 0xffffffff);
+      regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
+				   val >> 32);
+      return;
+    }
+
+  if (regnum_is_vxr_full (tdep, regnum))
+    {
+      regnum -= tdep->v0_full_regnum;
+      regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf);
+      regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8);
+      return;
+    }
+
+  internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+/* Register groups.  */
+
+static int
+s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+				 struct reggroup *group)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  /* We usually save/restore the whole PSW, which includes PC and CC.
+     However, some older gdbservers may not support saving/restoring
+     the whole PSW yet, and will return an XML register description
+     excluding those from the save/restore register groups.  In those
+     cases, we still need to explicitly save/restore PC and CC in order
+     to push or pop frames.  Since this doesn't hurt anything if we
+     already save/restore the whole PSW (it's just redundant), we add
+     PC and CC at this point unconditionally.  */
+  if (group == save_reggroup || group == restore_reggroup)
+    return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
+
+  if (group == vector_reggroup)
+    return regnum_is_vxr_full (tdep, regnum);
+
+  if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum))
+    return 0;
+
+  return default_register_reggroup_p (gdbarch, regnum, group);
+}
+
+/* The "ax_pseudo_register_collect" gdbarch method.  */
+
+static int
+s390_ax_pseudo_register_collect (struct gdbarch *gdbarch,
+				 struct agent_expr *ax, int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  if (regnum == tdep->pc_regnum)
+    {
+      ax_reg_mask (ax, S390_PSWA_REGNUM);
+    }
+  else if (regnum == tdep->cc_regnum)
+    {
+      ax_reg_mask (ax, S390_PSWM_REGNUM);
+    }
+  else if (regnum_is_gpr_full (tdep, regnum))
+    {
+      regnum -= tdep->gpr_full_regnum;
+      ax_reg_mask (ax, S390_R0_REGNUM + regnum);
+      ax_reg_mask (ax, S390_R0_UPPER_REGNUM + regnum);
+    }
+  else if (regnum_is_vxr_full (tdep, regnum))
+    {
+      regnum -= tdep->v0_full_regnum;
+      ax_reg_mask (ax, S390_F0_REGNUM + regnum);
+      ax_reg_mask (ax, S390_V0_LOWER_REGNUM + regnum);
+    }
+  else
+    {
+      internal_error (__FILE__, __LINE__, _("invalid regnum"));
+    }
+  return 0;
+}
+
+/* The "ax_pseudo_register_push_stack" gdbarch method.  */
+
+static int
+s390_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
+				    struct agent_expr *ax, int regnum)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  if (regnum == tdep->pc_regnum)
+    {
+      ax_reg (ax, S390_PSWA_REGNUM);
+      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+	{
+	  ax_zero_ext (ax, 31);
+	}
+    }
+  else if (regnum == tdep->cc_regnum)
+    {
+      ax_reg (ax, S390_PSWM_REGNUM);
+      if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+	ax_const_l (ax, 12);
+      else
+	ax_const_l (ax, 44);
+      ax_simple (ax, aop_rsh_unsigned);
+      ax_zero_ext (ax, 2);
+    }
+  else if (regnum_is_gpr_full (tdep, regnum))
+    {
+      regnum -= tdep->gpr_full_regnum;
+      ax_reg (ax, S390_R0_REGNUM + regnum);
+      ax_reg (ax, S390_R0_UPPER_REGNUM + regnum);
+      ax_const_l (ax, 32);
+      ax_simple (ax, aop_lsh);
+      ax_simple (ax, aop_bit_or);
+    }
+  else if (regnum_is_vxr_full (tdep, regnum))
+    {
+      /* Too large to stuff on the stack.  */
+      return 1;
+    }
+  else
+    {
+      internal_error (__FILE__, __LINE__, _("invalid regnum"));
+    }
+  return 0;
+}
+
+/* The "gen_return_address" gdbarch method.  Since this is supposed to be
+   just a best-effort method, and we don't really have the means to run
+   the full unwinder here, just collect the link register.  */
+
+static void
+s390_gen_return_address (struct gdbarch *gdbarch,
+			 struct agent_expr *ax, struct axs_value *value,
+			 CORE_ADDR scope)
+{
+  value->type = register_type (gdbarch, S390_R14_REGNUM);
+  value->kind = axs_lvalue_register;
+  value->u.reg = S390_R14_REGNUM;
+}
+
+
+/* Address handling.  */
+
+static CORE_ADDR
+s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+  return addr & 0x7fffffff;
+}
+
+static int
+s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
+{
+  if (byte_size == 4)
+    return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
+  else
+    return 0;
+}
+
+static const char *
+s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
+{
+  if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
+    return "mode32";
+  else
+    return NULL;
+}
+
+static int
+s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
+				       const char *name,
+				       int *type_flags_ptr)
+{
+  if (strcmp (name, "mode32") == 0)
+    {
+      *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
+      return 1;
+    }
+  else
+    return 0;
+}
+
+/* Inferior function calls.  */
+
+/* Dummy function calls.  */
+
+/* Unwrap any single-field structs in TYPE and return the effective
+   "inner" type.  E.g., yield "float" for all these cases:
+
+     float x;
+     struct { float x };
+     struct { struct { float x; } x; };
+     struct { struct { struct { float x; } x; } x; };
+
+   However, if an inner type is smaller than MIN_SIZE, abort the
+   unwrapping.  */
+
+static struct type *
+s390_effective_inner_type (struct type *type, unsigned int min_size)
+{
+  while (TYPE_CODE (type) == TYPE_CODE_STRUCT
+	 && TYPE_NFIELDS (type) == 1)
+    {
+      struct type *inner = check_typedef (TYPE_FIELD_TYPE (type, 0));
+
+      if (TYPE_LENGTH (inner) < min_size)
+	break;
+      type = inner;
+    }
+
+  return type;
+}
+
+/* Return non-zero if TYPE should be passed like "float" or
+   "double".  */
+
+static int
+s390_function_arg_float (struct type *type)
+{
+  /* Note that long double as well as complex types are intentionally
+     excluded. */
+  if (TYPE_LENGTH (type) > 8)
+    return 0;
+
+  /* A struct containing just a float or double is passed like a float
+     or double.  */
+  type = s390_effective_inner_type (type, 0);
+
+  return (TYPE_CODE (type) == TYPE_CODE_FLT
+	  || TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
+}
+
+/* Return non-zero if TYPE should be passed like a vector.  */
+
+static int
+s390_function_arg_vector (struct type *type)
+{
+  if (TYPE_LENGTH (type) > 16)
+    return 0;
+
+  /* Structs containing just a vector are passed like a vector.  */
+  type = s390_effective_inner_type (type, TYPE_LENGTH (type));
+
+  return TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type);
+}
+
+/* Determine whether N is a power of two.  */
+
+static int
+is_power_of_two (unsigned int n)
+{
+  return n && ((n & (n - 1)) == 0);
+}
+
+/* For an argument whose type is TYPE and which is not passed like a
+   float or vector, return non-zero if it should be passed like "int"
+   or "long long".  */
+
+static int
+s390_function_arg_integer (struct type *type)
+{
+  enum type_code code = TYPE_CODE (type);
+
+  if (TYPE_LENGTH (type) > 8)
+    return 0;
+
+  if (code == TYPE_CODE_INT
+      || code == TYPE_CODE_ENUM
+      || code == TYPE_CODE_RANGE
+      || code == TYPE_CODE_CHAR
+      || code == TYPE_CODE_BOOL
+      || code == TYPE_CODE_PTR
+      || TYPE_IS_REFERENCE (type))
+    return 1;
+
+  return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT)
+	  && is_power_of_two (TYPE_LENGTH (type)));
+}
+
+/* Argument passing state: Internal data structure passed to helper
+   routines of s390_push_dummy_call.  */
+
+struct s390_arg_state
+  {
+    /* Register cache, or NULL, if we are in "preparation mode".  */
+    struct regcache *regcache;
+    /* Next available general/floating-point/vector register for
+       argument passing.  */
+    int gr, fr, vr;
+    /* Current pointer to copy area (grows downwards).  */
+    CORE_ADDR copy;
+    /* Current pointer to parameter area (grows upwards).  */
+    CORE_ADDR argp;
+  };
+
+/* Prepare one argument ARG for a dummy call and update the argument
+   passing state AS accordingly.  If the regcache field in AS is set,
+   operate in "write mode" and write ARG into the inferior.  Otherwise
+   run "preparation mode" and skip all updates to the inferior.  */
+
+static void
+s390_handle_arg (struct s390_arg_state *as, struct value *arg,
+		 struct gdbarch_tdep *tdep, int word_size,
+		 enum bfd_endian byte_order, int is_unnamed)
+{
+  struct type *type = check_typedef (value_type (arg));
+  unsigned int length = TYPE_LENGTH (type);
+  int write_mode = as->regcache != NULL;
+
+  if (s390_function_arg_float (type))
+    {
+      /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass
+	 arguments.  The GNU/Linux for zSeries ABI uses 0, 2, 4, and
+	 6.  */
+      if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
+	{
+	  /* When we store a single-precision value in an FP register,
+	     it occupies the leftmost bits.  */
+	  if (write_mode)
+	    regcache_cooked_write_part (as->regcache,
+					S390_F0_REGNUM + as->fr,
+					0, length,
+					value_contents (arg));
+	  as->fr += 2;
+	}
+      else
+	{
+	  /* When we store a single-precision value in a stack slot,
+	     it occupies the rightmost bits.  */
+	  as->argp = align_up (as->argp + length, word_size);
+	  if (write_mode)
+	    write_memory (as->argp - length, value_contents (arg),
+			  length);
+	}
+    }
+  else if (tdep->vector_abi == S390_VECTOR_ABI_128
+	   && s390_function_arg_vector (type))
+    {
+      static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31};
+
+      if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr))
+	{
+	  int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24;
+
+	  if (write_mode)
+	    regcache_cooked_write_part (as->regcache, regnum,
+					0, length,
+					value_contents (arg));
+	  as->vr++;
+	}
+      else
+	{
+	  if (write_mode)
+	    write_memory (as->argp, value_contents (arg), length);
+	  as->argp = align_up (as->argp + length, word_size);
+	}
+    }
+  else if (s390_function_arg_integer (type) && length <= word_size)
+    {
+      /* Initialize it just to avoid a GCC false warning.  */
+      ULONGEST val = 0;
+
+      if (write_mode)
+	{
+	  /* Place value in least significant bits of the register or
+	     memory word and sign- or zero-extend to full word size.
+	     This also applies to a struct or union.  */
+	  val = TYPE_UNSIGNED (type)
+	    ? extract_unsigned_integer (value_contents (arg),
+					length, byte_order)
+	    : extract_signed_integer (value_contents (arg),
+				      length, byte_order);
+	}
+
+      if (as->gr <= 6)
+	{
+	  if (write_mode)
+	    regcache_cooked_write_unsigned (as->regcache,
+					    S390_R0_REGNUM + as->gr,
+					    val);
+	  as->gr++;
+	}
+      else
+	{
+	  if (write_mode)
+	    write_memory_unsigned_integer (as->argp, word_size,
+					   byte_order, val);
+	  as->argp += word_size;
+	}
+    }
+  else if (s390_function_arg_integer (type) && length == 8)
+    {
+      if (as->gr <= 5)
+	{
+	  if (write_mode)
+	    {
+	      regcache_cooked_write (as->regcache,
+				     S390_R0_REGNUM + as->gr,
+				     value_contents (arg));
+	      regcache_cooked_write (as->regcache,
+				     S390_R0_REGNUM + as->gr + 1,
+				     value_contents (arg) + word_size);
+	    }
+	  as->gr += 2;
+	}
+      else
+	{
+	  /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
+	     in it, then don't go back and use it again later.  */
+	  as->gr = 7;
+
+	  if (write_mode)
+	    write_memory (as->argp, value_contents (arg), length);
+	  as->argp += length;
+	}
+    }
+  else
+    {
+      /* This argument type is never passed in registers.  Place the
+	 value in the copy area and pass a pointer to it.  Use 8-byte
+	 alignment as a conservative assumption.  */
+      as->copy = align_down (as->copy - length, 8);
+      if (write_mode)
+	write_memory (as->copy, value_contents (arg), length);
+
+      if (as->gr <= 6)
+	{
+	  if (write_mode)
+	    regcache_cooked_write_unsigned (as->regcache,
+					    S390_R0_REGNUM + as->gr,
+					    as->copy);
+	  as->gr++;
+	}
+      else
+	{
+	  if (write_mode)
+	    write_memory_unsigned_integer (as->argp, word_size,
+					   byte_order, as->copy);
+	  as->argp += word_size;
+	}
+    }
+}
+
+/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
+   place to be passed to a function, as specified by the "GNU/Linux
+   for S/390 ELF Application Binary Interface Supplement".
+
+   SP is the current stack pointer.  We must put arguments, links,
+   padding, etc. whereever they belong, and return the new stack
+   pointer value.
+
+   If STRUCT_RETURN is non-zero, then the function we're calling is
+   going to return a structure by value; STRUCT_ADDR is the address of
+   a block we've allocated for it on the stack.
+
+   Our caller has taken care of any type promotions needed to satisfy
+   prototypes or the old K&R argument-passing rules.  */
+
+static CORE_ADDR
+s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+		      struct regcache *regcache, CORE_ADDR bp_addr,
+		      int nargs, struct value **args, CORE_ADDR sp,
+		      int struct_return, CORE_ADDR struct_addr)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int i;
+  struct s390_arg_state arg_state, arg_prep;
+  CORE_ADDR param_area_start, new_sp;
+  struct type *ftype = check_typedef (value_type (function));
+
+  if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
+    ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
+
+  arg_prep.copy = sp;
+  arg_prep.gr = struct_return ? 3 : 2;
+  arg_prep.fr = 0;
+  arg_prep.vr = 0;
+  arg_prep.argp = 0;
+  arg_prep.regcache = NULL;
+
+  /* Initialize arg_state for "preparation mode".  */
+  arg_state = arg_prep;
+
+  /* Update arg_state.copy with the start of the reference-to-copy area
+     and arg_state.argp with the size of the parameter area.  */
+  for (i = 0; i < nargs; i++)
+    s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
+		     TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
+
+  param_area_start = align_down (arg_state.copy - arg_state.argp, 8);
+
+  /* Allocate the standard frame areas: the register save area, the
+     word reserved for the compiler, and the back chain pointer.  */
+  new_sp = param_area_start - (16 * word_size + 32);
+
+  /* Now we have the final stack pointer.  Make sure we didn't
+     underflow; on 31-bit, this would result in addresses with the
+     high bit set, which causes confusion elsewhere.  Note that if we
+     error out here, stack and registers remain untouched.  */
+  if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp)
+    error (_("Stack overflow"));
+
+  /* Pass the structure return address in general register 2.  */
+  if (struct_return)
+    regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr);
+
+  /* Initialize arg_state for "write mode".  */
+  arg_state = arg_prep;
+  arg_state.argp = param_area_start;
+  arg_state.regcache = regcache;
+
+  /* Write all parameters.  */
+  for (i = 0; i < nargs; i++)
+    s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
+		     TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
+
+  /* Store return PSWA.  In 31-bit mode, keep addressing mode bit.  */
+  if (word_size == 4)
+    {
+      ULONGEST pswa;
+      regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
+      bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
+    }
+  regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
+
+  /* Store updated stack pointer.  */
+  regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp);
+
+  /* We need to return the 'stack part' of the frame ID,
+     which is actually the top of the register save area.  */
+  return param_area_start;
+}
+
+/* Assuming THIS_FRAME is a dummy, return the frame ID of that
+   dummy frame.  The frame ID's base needs to match the TOS value
+   returned by push_dummy_call, and the PC match the dummy frame's
+   breakpoint.  */
+
+static struct frame_id
+s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+  CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
+  sp = gdbarch_addr_bits_remove (gdbarch, sp);
+
+  return frame_id_build (sp + 16*word_size + 32,
+			 get_frame_pc (this_frame));
+}
+
+static CORE_ADDR
+s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+  /* Both the 32- and 64-bit ABI's say that the stack pointer should
+     always be aligned on an eight-byte boundary.  */
+  return (addr & -8);
+}
+
+/* Helper for s390_return_value: Set or retrieve a function return
+   value if it resides in a register.  */
+
+static void
+s390_register_return_value (struct gdbarch *gdbarch, struct type *type,
+			    struct regcache *regcache,
+			    gdb_byte *out, const gdb_byte *in)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+  int length = TYPE_LENGTH (type);
+  int code = TYPE_CODE (type);
+
+  if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
+    {
+      /* Float-like value: left-aligned in f0.  */
+      if (in != NULL)
+	regcache_cooked_write_part (regcache, S390_F0_REGNUM,
+				    0, length, in);
+      else
+	regcache_cooked_read_part (regcache, S390_F0_REGNUM,
+				   0, length, out);
+    }
+  else if (code == TYPE_CODE_ARRAY)
+    {
+      /* Vector: left-aligned in v24.  */
+      if (in != NULL)
+	regcache_cooked_write_part (regcache, S390_V24_REGNUM,
+				    0, length, in);
+      else
+	regcache_cooked_read_part (regcache, S390_V24_REGNUM,
+				   0, length, out);
+    }
+  else if (length <= word_size)
+    {
+      /* Integer: zero- or sign-extended in r2.  */
+      if (out != NULL)
+	regcache_cooked_read_part (regcache, S390_R2_REGNUM,
+				   word_size - length, length, out);
+      else if (TYPE_UNSIGNED (type))
+	regcache_cooked_write_unsigned
+	  (regcache, S390_R2_REGNUM,
+	   extract_unsigned_integer (in, length, byte_order));
+      else
+	regcache_cooked_write_signed
+	  (regcache, S390_R2_REGNUM,
+	   extract_signed_integer (in, length, byte_order));
+    }
+  else if (length == 2 * word_size)
+    {
+      /* Double word: in r2 and r3.  */
+      if (in != NULL)
+	{
+	  regcache_cooked_write (regcache, S390_R2_REGNUM, in);
+	  regcache_cooked_write (regcache, S390_R3_REGNUM,
+				 in + word_size);
+	}
+      else
+	{
+	  regcache_cooked_read (regcache, S390_R2_REGNUM, out);
+	  regcache_cooked_read (regcache, S390_R3_REGNUM,
+				out + word_size);
+	}
+    }
+  else
+    internal_error (__FILE__, __LINE__, _("invalid return type"));
+}
+
+/* Implement the 'return_value' gdbarch method.  */
+
+static enum return_value_convention
+s390_return_value (struct gdbarch *gdbarch, struct value *function,
+		   struct type *type, struct regcache *regcache,
+		   gdb_byte *out, const gdb_byte *in)
+{
+  enum return_value_convention rvc;
+
+  type = check_typedef (type);
+
+  switch (TYPE_CODE (type))
+    {
+    case TYPE_CODE_STRUCT:
+    case TYPE_CODE_UNION:
+    case TYPE_CODE_COMPLEX:
+      rvc = RETURN_VALUE_STRUCT_CONVENTION;
+      break;
+    case TYPE_CODE_ARRAY:
+      rvc = (gdbarch_tdep (gdbarch)->vector_abi == S390_VECTOR_ABI_128
+	     && TYPE_LENGTH (type) <= 16 && TYPE_VECTOR (type))
+	? RETURN_VALUE_REGISTER_CONVENTION
+	: RETURN_VALUE_STRUCT_CONVENTION;
+      break;
+    default:
+      rvc = TYPE_LENGTH (type) <= 8
+	? RETURN_VALUE_REGISTER_CONVENTION
+	: RETURN_VALUE_STRUCT_CONVENTION;
+    }
+
+  if (in != NULL || out != NULL)
+    {
+      if (rvc == RETURN_VALUE_REGISTER_CONVENTION)
+	s390_register_return_value (gdbarch, type, regcache, out, in);
+      else if (in != NULL)
+	error (_("Cannot set function return value."));
+      else
+	error (_("Function return value unknown."));
+    }
+
+  return rvc;
+}
+
+/* Frame unwinding.  */
+
+/* See s390-tdep.h.  */
+
+int
+s390_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+
+  /* In frameless functions, there's not frame to destroy and thus
+     we don't care about the epilogue.
+
+     In functions with frame, the epilogue sequence is a pair of
+     a LM-type instruction that restores (amongst others) the
+     return register %r14 and the stack pointer %r15, followed
+     by a branch 'br %r14' --or equivalent-- that effects the
+     actual return.
+
+     In that situation, this function needs to return 'true' in
+     exactly one case: when pc points to that branch instruction.
+
+     Thus we try to disassemble the one instructions immediately
+     preceding pc and check whether it is an LM-type instruction
+     modifying the stack pointer.
+
+     Note that disassembling backwards is not reliable, so there
+     is a slight chance of false positives here ...  */
+
+  bfd_byte insn[6];
+  unsigned int r1, r3, b2;
+  int d2;
+
+  if (word_size == 4
+      && !target_read_memory (pc - 4, insn, 4)
+      && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
+      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+    return 1;
+
+  if (word_size == 4
+      && !target_read_memory (pc - 6, insn, 6)
+      && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
+      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+    return 1;
+
+  if (word_size == 8
+      && !target_read_memory (pc - 6, insn, 6)
+      && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
+      && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+    return 1;
+
+  return 0;
+}
+
+static CORE_ADDR
+s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  ULONGEST pc;
+  pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
+  return gdbarch_addr_bits_remove (gdbarch, pc);
+}
+
+static CORE_ADDR
+s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+  ULONGEST sp;
+  sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
+  return gdbarch_addr_bits_remove (gdbarch, sp);
+}
+
+/* See s390-tdep.h.  */
+
+struct value *
+s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
+{
+  struct gdbarch *gdbarch = get_frame_arch (this_frame);
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+  struct type *type = register_type (gdbarch, regnum);
+
+  /* Unwind PC via PSW address.  */
+  if (regnum == tdep->pc_regnum)
+    {
+      struct value *val;
+
+      val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
+      if (!value_optimized_out (val))
+	{
+	  LONGEST pswa = value_as_long (val);
+
+	  if (TYPE_LENGTH (type) == 4)
+	    return value_from_pointer (type, pswa & 0x7fffffff);
+	  else
+	    return value_from_pointer (type, pswa);
+	}
+    }
+
+  /* Unwind CC via PSW mask.  */
+  if (regnum == tdep->cc_regnum)
+    {
+      struct value *val;
+
+      val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
+      if (!value_optimized_out (val))
+	{
+	  LONGEST pswm = value_as_long (val);
+
+	  if (TYPE_LENGTH (type) == 4)
+	    return value_from_longest (type, (pswm >> 12) & 3);
+	  else
+	    return value_from_longest (type, (pswm >> 44) & 3);
+	}
+    }
+
+  /* Unwind full GPRs to show at least the lower halves (as the
+     upper halves are undefined).  */
+  if (regnum_is_gpr_full (tdep, regnum))
+    {
+      int reg = regnum - tdep->gpr_full_regnum;
+      struct value *val;
+
+      val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
+      if (!value_optimized_out (val))
+	return value_cast (type, val);
+    }
+
+  return allocate_optimized_out_value (type);
+}
+
+/* Translate a .eh_frame register to DWARF register, or adjust a
+   .debug_frame register.  */
+
+static int
+s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
+{
+  /* See s390_dwarf_reg_to_regnum for comments.  */
+  return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num;
+}
+
+/* DWARF-2 frame unwinding.  */
+
+static struct value *
+s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
+			   int regnum)
+{
+  return s390_unwind_pseudo_register (this_frame, regnum);
+}
+
+static void
+s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
+			    struct dwarf2_frame_state_reg *reg,
+			    struct frame_info *this_frame)
+{
+  /* The condition code (and thus PSW mask) is call-clobbered.  */
+  if (regnum == S390_PSWM_REGNUM)
+    reg->how = DWARF2_FRAME_REG_UNDEFINED;
+
+  /* The PSW address unwinds to the return address.  */
+  else if (regnum == S390_PSWA_REGNUM)
+    reg->how = DWARF2_FRAME_REG_RA;
+
+  /* Fixed registers are call-saved or call-clobbered
+     depending on the ABI in use.  */
+  else if (regnum < S390_NUM_REGS)
+    {
+      if (s390_register_call_saved (gdbarch, regnum))
+	reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+      else
+	reg->how = DWARF2_FRAME_REG_UNDEFINED;
+    }
+
+  /* We install a special function to unwind pseudos.  */
+  else
+    {
+      reg->how = DWARF2_FRAME_REG_FN;
+      reg->loc.fn = s390_dwarf2_prev_register;
+    }
+}
+
+/* gdbarch init.  */
+
+/* Validate the range of registers.  NAMES must be known at compile time.  */
+
+#define s390_validate_reg_range(feature, tdesc_data, start, names)	\
+do									\
+{									\
+  for (int i = 0; i < ARRAY_SIZE (names); i++)				\
+    if (!tdesc_numbered_register (feature, tdesc_data, start + i, names[i])) \
+      return false;							\
+}									\
+while (0)
+
+/* Validate the target description.  Also numbers registers contained in
+   tdesc.  */
+
+static bool
+s390_tdesc_valid (struct gdbarch_tdep *tdep,
+		  struct tdesc_arch_data *tdesc_data)
+{
+  static const char *const psw[] = {
+    "pswm", "pswa"
+  };
+  static const char *const gprs[] = {
+    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+  };
+  static const char *const fprs[] = {
+    "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+    "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
+  };
+  static const char *const acrs[] = {
+    "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
+    "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
+  };
+  static const char *const gprs_lower[] = {
+    "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
+    "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
+  };
+  static const char *const gprs_upper[] = {
+    "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
+    "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
+  };
+  static const char *const tdb_regs[] = {
+    "tdb0", "tac", "tct", "atia",
+    "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
+    "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"
+  };
+  static const char *const vxrs_low[] = {
+    "v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l",
+    "v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l",
+  };
+  static const char *const vxrs_high[] = {
+    "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24",
+    "v25", "v26", "v27", "v28", "v29", "v30", "v31",
+  };
+  static const char *const gs_cb[] = {
+    "gsd", "gssm", "gsepla",
+  };
+  static const char *const gs_bc[] = {
+    "bc_gsd", "bc_gssm", "bc_gsepla",
+  };
+
+  const struct target_desc *tdesc = tdep->tdesc;
+  const struct tdesc_feature *feature;
+
+  /* Core registers, i.e. general purpose and PSW.  */
+  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
+  if (feature == NULL)
+    return false;
+
+  s390_validate_reg_range (feature, tdesc_data, S390_PSWM_REGNUM, psw);
+
+  if (tdesc_unnumbered_register (feature, "r0"))
+    {
+      s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM, gprs);
+    }
+  else
+    {
+      tdep->have_upper = true;
+      s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM,
+			       gprs_lower);
+      s390_validate_reg_range (feature, tdesc_data, S390_R0_UPPER_REGNUM,
+			       gprs_upper);
+    }
+
+  /* Floating point registers.  */
+  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
+  if (feature == NULL)
+    return false;
+
+  if (!tdesc_numbered_register (feature, tdesc_data, S390_FPC_REGNUM, "fpc"))
+    return false;
+
+  s390_validate_reg_range (feature, tdesc_data, S390_F0_REGNUM, fprs);
+
+  /* Access control registers.  */
+  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
+  if (feature == NULL)
+    return false;
+
+  s390_validate_reg_range (feature, tdesc_data, S390_A0_REGNUM, acrs);
+
+  /* Optional GNU/Linux-specific "registers".  */
+  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
+  if (feature)
+    {
+      tdesc_numbered_register (feature, tdesc_data,
+			       S390_ORIG_R2_REGNUM, "orig_r2");
+
+      if (tdesc_numbered_register (feature, tdesc_data,
+				   S390_LAST_BREAK_REGNUM, "last_break"))
+	tdep->have_linux_v1 = true;
+
+      if (tdesc_numbered_register (feature, tdesc_data,
+				   S390_SYSTEM_CALL_REGNUM, "system_call"))
+	tdep->have_linux_v2 = true;
+
+      if (tdep->have_linux_v2 && !tdep->have_linux_v1)
+	return false;
+    }
+
+  /* Transaction diagnostic block.  */
+  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb");
+  if (feature)
+    {
+      s390_validate_reg_range (feature, tdesc_data, S390_TDB_DWORD0_REGNUM,
+			       tdb_regs);
+      tdep->have_tdb = true;
+    }
+
+  /* Vector registers.  */
+  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx");
+  if (feature)
+    {
+      s390_validate_reg_range (feature, tdesc_data, S390_V0_LOWER_REGNUM,
+			       vxrs_low);
+      s390_validate_reg_range (feature, tdesc_data, S390_V16_REGNUM,
+			       vxrs_high);
+      tdep->have_vx = true;
+    }
+
+  /* Guarded-storage registers.  */
+  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gs");
+  if (feature)
+    {
+      s390_validate_reg_range (feature, tdesc_data, S390_GSD_REGNUM, gs_cb);
+      tdep->have_gs = true;
+    }
+
+  /* Guarded-storage broadcast control.  */
+  feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gsbc");
+  if (feature)
+    {
+      if (!tdep->have_gs)
+	return false;
+      s390_validate_reg_range (feature, tdesc_data, S390_BC_GSD_REGNUM,
+			       gs_bc);
+    }
+
+  return true;
+}
+
+/* Allocate and initialize new gdbarch_tdep.  Caller is responsible to free
+   memory after use.  */
+
+static struct gdbarch_tdep *
+s390_gdbarch_tdep_alloc ()
+{
+  struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
+
+  tdep->tdesc = NULL;
+
+  tdep->abi = ABI_NONE;
+  tdep->vector_abi = S390_VECTOR_ABI_NONE;
+
+  tdep->gpr_full_regnum = -1;
+  tdep->v0_full_regnum = -1;
+  tdep->pc_regnum = -1;
+  tdep->cc_regnum = -1;
+
+  tdep->have_upper = false;
+  tdep->have_linux_v1 = false;
+  tdep->have_linux_v2 = false;
+  tdep->have_tdb = false;
+  tdep->have_vx = false;
+  tdep->have_gs = false;
+
+  return tdep;
+}
+
+/* Set up gdbarch struct.  */
+
+static struct gdbarch *
+s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+  const struct target_desc *tdesc = info.target_desc;
+  int first_pseudo_reg, last_pseudo_reg;
+  static const char *const stap_register_prefixes[] = { "%", NULL };
+  static const char *const stap_register_indirection_prefixes[] = { "(",
+								    NULL };
+  static const char *const stap_register_indirection_suffixes[] = { ")",
+								    NULL };
+
+  /* Find a candidate among extant architectures.  */
+  arches = gdbarch_list_lookup_by_info (arches, &info);
+  if (arches != NULL)
+    return arches->gdbarch;
+
+  /* Otherwise create a new gdbarch for the specified machine type.  */
+  struct gdbarch_tdep *tdep = s390_gdbarch_tdep_alloc ();
+  struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
+  struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
+  info.tdesc_data = tdesc_data;
+
+  /* The DWARF unwinders must be appended before the ABI is initialized.
+     Otherwise it is possible that a ABI default unwinder gets called before
+     the DWARF unwinder even gets the chance.  */
+  dwarf2_append_unwinders (gdbarch);
+
+  gdbarch_init_osabi (info, gdbarch);
+
+  /* Check any target description for validity.  */
+  gdb_assert (tdesc_has_registers (tdep->tdesc));
+  if (!s390_tdesc_valid (tdep, tdesc_data))
+    {
+      tdesc_data_cleanup (tdesc_data);
+      xfree (tdep);
+      gdbarch_free (gdbarch);
+      return NULL;
+    }
+
+  /* Determine vector ABI.  */
+#ifdef HAVE_ELF
+  if (tdep->have_vx
+      && info.abfd != NULL
+      && info.abfd->format == bfd_object
+      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
+      && bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
+				   Tag_GNU_S390_ABI_Vector) == 2)
+    tdep->vector_abi = S390_VECTOR_ABI_128;
+#endif
+
+  set_gdbarch_believe_pcc_promotion (gdbarch, 0);
+  set_gdbarch_char_signed (gdbarch, 0);
+
+  /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
+     We can safely let them default to 128-bit, since the debug info
+     will give the size of type actually used in each case.  */
+  set_gdbarch_long_double_bit (gdbarch, 128);
+  set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
+
+  /* Breakpoints.  */
+  /* Amount PC must be decremented by after a breakpoint.  This is
+     often the number of bytes returned by gdbarch_breakpoint_from_pc but not
+     always.  */
+  set_gdbarch_decr_pc_after_break (gdbarch, 2);
+  set_gdbarch_breakpoint_kind_from_pc (gdbarch, s390_breakpoint::kind_from_pc);
+  set_gdbarch_sw_breakpoint_from_kind (gdbarch, s390_breakpoint::bp_from_kind);
+
+  /* Displaced stepping.  */
+  set_gdbarch_displaced_step_copy_insn (gdbarch,
+					s390_displaced_step_copy_insn);
+  set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
+  set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
+  set_gdbarch_displaced_step_hw_singlestep (gdbarch, s390_displaced_step_hw_singlestep);
+  set_gdbarch_software_single_step (gdbarch, s390_software_single_step);
+  set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
+
+  /* Prologue analysis.  */
+  set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
+
+  /* Register handling.  */
+  set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
+  set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
+  set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
+  set_gdbarch_register_name (gdbarch, s390_register_name);
+  set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
+  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
+  set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
+
+  /* Pseudo registers.  */
+  set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
+  set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
+  set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
+  set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
+  set_tdesc_pseudo_register_reggroup_p (gdbarch,
+					s390_pseudo_register_reggroup_p);
+  set_gdbarch_ax_pseudo_register_collect (gdbarch,
+					  s390_ax_pseudo_register_collect);
+  set_gdbarch_ax_pseudo_register_push_stack
+      (gdbarch, s390_ax_pseudo_register_push_stack);
+  set_gdbarch_gen_return_address (gdbarch, s390_gen_return_address);
+  tdesc_use_registers (gdbarch, tdep->tdesc, tdesc_data);
+
+  /* Assign pseudo register numbers.  */
+  first_pseudo_reg = gdbarch_num_regs (gdbarch);
+  last_pseudo_reg = first_pseudo_reg;
+  if (tdep->have_upper)
+    {
+      tdep->gpr_full_regnum = last_pseudo_reg;
+      last_pseudo_reg += 16;
+    }
+  if (tdep->have_vx)
+    {
+      tdep->v0_full_regnum = last_pseudo_reg;
+      last_pseudo_reg += 16;
+    }
+  tdep->pc_regnum = last_pseudo_reg++;
+  tdep->cc_regnum = last_pseudo_reg++;
+  set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
+  set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
+
+  /* Inferior function calls.  */
+  set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
+  set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
+  set_gdbarch_frame_align (gdbarch, s390_frame_align);
+  set_gdbarch_return_value (gdbarch, s390_return_value);
+
+  /* Frame handling.  */
+  /* Stack grows downward.  */
+  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+  set_gdbarch_stack_frame_destroyed_p (gdbarch, s390_stack_frame_destroyed_p);
+  dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
+  dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
+  frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
+  set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
+  set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
+
+  switch (tdep->abi)
+    {
+    case ABI_LINUX_S390:
+      set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
+      break;
+
+    case ABI_LINUX_ZSERIES:
+      set_gdbarch_long_bit (gdbarch, 64);
+      set_gdbarch_long_long_bit (gdbarch, 64);
+      set_gdbarch_ptr_bit (gdbarch, 64);
+      set_gdbarch_address_class_type_flags (gdbarch,
+					    s390_address_class_type_flags);
+      set_gdbarch_address_class_type_flags_to_name (gdbarch,
+						    s390_address_class_type_flags_to_name);
+      set_gdbarch_address_class_name_to_type_flags (gdbarch,
+						    s390_address_class_name_to_type_flags);
+      break;
+    }
+
+  /* SystemTap functions.  */
+  set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
+  set_gdbarch_stap_register_indirection_prefixes (gdbarch,
+						  stap_register_indirection_prefixes);
+  set_gdbarch_stap_register_indirection_suffixes (gdbarch,
+						  stap_register_indirection_suffixes);
+
+  set_gdbarch_disassembler_options (gdbarch, &s390_disassembler_options);
+  set_gdbarch_valid_disassembler_options (gdbarch,
+					  disassembler_options_s390 ());
+
+  return gdbarch;
+}
+
+void
+_initialize_s390_tdep (void)
+{
+  /* Hook us into the gdbarch mechanism.  */
+  register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
+}
diff --git a/gdb/s390-tdep.h b/gdb/s390-tdep.h
new file mode 100644
index 0000000000..5f20bcd572
--- /dev/null
+++ b/gdb/s390-tdep.h
@@ -0,0 +1,367 @@
+/* Target-dependent code for s390.
+
+   Copyright (C) 2003-2017 Free Software Foundation, Inc.
+
+   This file is part of GDB.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 3 of the License, or
+   (at your option) any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
+
+#ifndef S390_TDEP_H
+#define S390_TDEP_H
+
+#include "prologue-value.h"
+
+enum s390_abi_kind
+{
+  ABI_NONE,
+  ABI_LINUX_S390,
+  ABI_LINUX_ZSERIES
+};
+
+enum s390_vector_abi_kind
+{
+  S390_VECTOR_ABI_NONE,
+  S390_VECTOR_ABI_128
+};
+
+/* The tdep structure.  */
+
+struct gdbarch_tdep
+{
+  /* Target description.  */
+  const struct target_desc *tdesc;
+
+  /* ABI version.  */
+  enum s390_abi_kind abi;
+
+  /* Vector ABI.  */
+  enum s390_vector_abi_kind vector_abi;
+
+  /* Pseudo register numbers.  */
+  int gpr_full_regnum;
+  int pc_regnum;
+  int cc_regnum;
+  int v0_full_regnum;
+
+  bool have_upper;
+  bool have_linux_v1;
+  bool have_linux_v2;
+  bool have_tdb;
+  bool have_vx;
+  bool have_gs;
+};
+
+/* Decoding S/390 instructions.  */
+
+/* Named opcode values for the S/390 instructions we recognize.  Some
+   instructions have their opcode split across two fields; those are the
+   op1_* and op2_* enums.  */
+
+enum
+  {
+    op1_lhi  = 0xa7,   op2_lhi  = 0x08,
+    op1_lghi = 0xa7,   op2_lghi = 0x09,
+    op1_lgfi = 0xc0,   op2_lgfi = 0x01,
+    op_lr    = 0x18,
+    op_lgr   = 0xb904,
+    op_l     = 0x58,
+    op1_ly   = 0xe3,   op2_ly   = 0x58,
+    op1_lg   = 0xe3,   op2_lg   = 0x04,
+    op_lm    = 0x98,
+    op1_lmy  = 0xeb,   op2_lmy  = 0x98,
+    op1_lmg  = 0xeb,   op2_lmg  = 0x04,
+    op_st    = 0x50,
+    op1_sty  = 0xe3,   op2_sty  = 0x50,
+    op1_stg  = 0xe3,   op2_stg  = 0x24,
+    op_std   = 0x60,
+    op_stm   = 0x90,
+    op1_stmy = 0xeb,   op2_stmy = 0x90,
+    op1_stmg = 0xeb,   op2_stmg = 0x24,
+    op1_aghi = 0xa7,   op2_aghi = 0x0b,
+    op1_ahi  = 0xa7,   op2_ahi  = 0x0a,
+    op1_agfi = 0xc2,   op2_agfi = 0x08,
+    op1_afi  = 0xc2,   op2_afi  = 0x09,
+    op1_algfi= 0xc2,   op2_algfi= 0x0a,
+    op1_alfi = 0xc2,   op2_alfi = 0x0b,
+    op_ar    = 0x1a,
+    op_agr   = 0xb908,
+    op_a     = 0x5a,
+    op1_ay   = 0xe3,   op2_ay   = 0x5a,
+    op1_ag   = 0xe3,   op2_ag   = 0x08,
+    op1_slgfi= 0xc2,   op2_slgfi= 0x04,
+    op1_slfi = 0xc2,   op2_slfi = 0x05,
+    op_sr    = 0x1b,
+    op_sgr   = 0xb909,
+    op_s     = 0x5b,
+    op1_sy   = 0xe3,   op2_sy   = 0x5b,
+    op1_sg   = 0xe3,   op2_sg   = 0x09,
+    op_nr    = 0x14,
+    op_ngr   = 0xb980,
+    op_la    = 0x41,
+    op1_lay  = 0xe3,   op2_lay  = 0x71,
+    op1_larl = 0xc0,   op2_larl = 0x00,
+    op_basr  = 0x0d,
+    op_bas   = 0x4d,
+    op_bcr   = 0x07,
+    op_bc    = 0x0d,
+    op_bctr  = 0x06,
+    op_bctgr = 0xb946,
+    op_bct   = 0x46,
+    op1_bctg = 0xe3,   op2_bctg = 0x46,
+    op_bxh   = 0x86,
+    op1_bxhg = 0xeb,   op2_bxhg = 0x44,
+    op_bxle  = 0x87,
+    op1_bxleg= 0xeb,   op2_bxleg= 0x45,
+    op1_bras = 0xa7,   op2_bras = 0x05,
+    op1_brasl= 0xc0,   op2_brasl= 0x05,
+    op1_brc  = 0xa7,   op2_brc  = 0x04,
+    op1_brcl = 0xc0,   op2_brcl = 0x04,
+    op1_brct = 0xa7,   op2_brct = 0x06,
+    op1_brctg= 0xa7,   op2_brctg= 0x07,
+    op_brxh  = 0x84,
+    op1_brxhg= 0xec,   op2_brxhg= 0x44,
+    op_brxle = 0x85,
+    op1_brxlg= 0xec,   op2_brxlg= 0x45,
+    op_svc   = 0x0a,
+  };
+
+/* Read a single instruction from address AT.  */
+extern int s390_readinstruction (bfd_byte instr[], CORE_ADDR at);
+
+/* Hardware capabilities. */
+
+#ifndef HWCAP_S390_HIGH_GPRS
+#define HWCAP_S390_HIGH_GPRS 512
+#endif
+
+#ifndef HWCAP_S390_TE
+#define HWCAP_S390_TE 1024
+#endif
+
+#ifndef HWCAP_S390_VX
+#define HWCAP_S390_VX 2048
+#endif
+
+#ifndef HWCAP_S390_GS
+#define HWCAP_S390_GS 16384
+#endif
+
+/* Register information.  */
+
+/* Program Status Word.  */
+#define S390_PSWM_REGNUM 0
+#define S390_PSWA_REGNUM 1
+/* General Purpose Registers.  */
+#define S390_R0_REGNUM 2
+#define S390_R1_REGNUM 3
+#define S390_R2_REGNUM 4
+#define S390_R3_REGNUM 5
+#define S390_R4_REGNUM 6
+#define S390_R5_REGNUM 7
+#define S390_R6_REGNUM 8
+#define S390_R7_REGNUM 9
+#define S390_R8_REGNUM 10
+#define S390_R9_REGNUM 11
+#define S390_R10_REGNUM 12
+#define S390_R11_REGNUM 13
+#define S390_R12_REGNUM 14
+#define S390_R13_REGNUM 15
+#define S390_R14_REGNUM 16
+#define S390_R15_REGNUM 17
+/* Access Registers.  */
+#define S390_A0_REGNUM 18
+#define S390_A1_REGNUM 19
+#define S390_A2_REGNUM 20
+#define S390_A3_REGNUM 21
+#define S390_A4_REGNUM 22
+#define S390_A5_REGNUM 23
+#define S390_A6_REGNUM 24
+#define S390_A7_REGNUM 25
+#define S390_A8_REGNUM 26
+#define S390_A9_REGNUM 27
+#define S390_A10_REGNUM 28
+#define S390_A11_REGNUM 29
+#define S390_A12_REGNUM 30
+#define S390_A13_REGNUM 31
+#define S390_A14_REGNUM 32
+#define S390_A15_REGNUM 33
+/* Floating Point Control Word.  */
+#define S390_FPC_REGNUM 34
+/* Floating Point Registers.  */
+#define S390_F0_REGNUM 35
+#define S390_F1_REGNUM 36
+#define S390_F2_REGNUM 37
+#define S390_F3_REGNUM 38
+#define S390_F4_REGNUM 39
+#define S390_F5_REGNUM 40
+#define S390_F6_REGNUM 41
+#define S390_F7_REGNUM 42
+#define S390_F8_REGNUM 43
+#define S390_F9_REGNUM 44
+#define S390_F10_REGNUM 45
+#define S390_F11_REGNUM 46
+#define S390_F12_REGNUM 47
+#define S390_F13_REGNUM 48
+#define S390_F14_REGNUM 49
+#define S390_F15_REGNUM 50
+/* General Purpose Register Upper Halves.  */
+#define S390_R0_UPPER_REGNUM 51
+#define S390_R1_UPPER_REGNUM 52
+#define S390_R2_UPPER_REGNUM 53
+#define S390_R3_UPPER_REGNUM 54
+#define S390_R4_UPPER_REGNUM 55
+#define S390_R5_UPPER_REGNUM 56
+#define S390_R6_UPPER_REGNUM 57
+#define S390_R7_UPPER_REGNUM 58
+#define S390_R8_UPPER_REGNUM 59
+#define S390_R9_UPPER_REGNUM 60
+#define S390_R10_UPPER_REGNUM 61
+#define S390_R11_UPPER_REGNUM 62
+#define S390_R12_UPPER_REGNUM 63
+#define S390_R13_UPPER_REGNUM 64
+#define S390_R14_UPPER_REGNUM 65
+#define S390_R15_UPPER_REGNUM 66
+/* GNU/Linux-specific optional registers.  */
+#define S390_ORIG_R2_REGNUM 67
+#define S390_LAST_BREAK_REGNUM 68
+#define S390_SYSTEM_CALL_REGNUM 69
+/* Transaction diagnostic block.  */
+#define S390_TDB_DWORD0_REGNUM 70
+#define S390_TDB_ABORT_CODE_REGNUM 71
+#define S390_TDB_CONFLICT_TOKEN_REGNUM 72
+#define S390_TDB_ATIA_REGNUM 73
+#define S390_TDB_R0_REGNUM 74
+#define S390_TDB_R1_REGNUM 75
+#define S390_TDB_R2_REGNUM 76
+#define S390_TDB_R3_REGNUM 77
+#define S390_TDB_R4_REGNUM 78
+#define S390_TDB_R5_REGNUM 79
+#define S390_TDB_R6_REGNUM 80
+#define S390_TDB_R7_REGNUM 81
+#define S390_TDB_R8_REGNUM 82
+#define S390_TDB_R9_REGNUM 83
+#define S390_TDB_R10_REGNUM 84
+#define S390_TDB_R11_REGNUM 85
+#define S390_TDB_R12_REGNUM 86
+#define S390_TDB_R13_REGNUM 87
+#define S390_TDB_R14_REGNUM 88
+#define S390_TDB_R15_REGNUM 89
+/* Vector registers.  */
+#define S390_V0_LOWER_REGNUM 90
+#define S390_V1_LOWER_REGNUM 91
+#define S390_V2_LOWER_REGNUM 92
+#define S390_V3_LOWER_REGNUM 93
+#define S390_V4_LOWER_REGNUM 94
+#define S390_V5_LOWER_REGNUM 95
+#define S390_V6_LOWER_REGNUM 96
+#define S390_V7_LOWER_REGNUM 97
+#define S390_V8_LOWER_REGNUM 98
+#define S390_V9_LOWER_REGNUM 99
+#define S390_V10_LOWER_REGNUM 100
+#define S390_V11_LOWER_REGNUM 101
+#define S390_V12_LOWER_REGNUM 102
+#define S390_V13_LOWER_REGNUM 103
+#define S390_V14_LOWER_REGNUM 104
+#define S390_V15_LOWER_REGNUM 105
+#define S390_V16_REGNUM 106
+#define S390_V17_REGNUM 107
+#define S390_V18_REGNUM 108
+#define S390_V19_REGNUM 109
+#define S390_V20_REGNUM 110
+#define S390_V21_REGNUM 111
+#define S390_V22_REGNUM 112
+#define S390_V23_REGNUM 113
+#define S390_V24_REGNUM 114
+#define S390_V25_REGNUM 115
+#define S390_V26_REGNUM 116
+#define S390_V27_REGNUM 117
+#define S390_V28_REGNUM 118
+#define S390_V29_REGNUM 119
+#define S390_V30_REGNUM 120
+#define S390_V31_REGNUM 121
+#define S390_GSD_REGNUM 122
+#define S390_GSSM_REGNUM 123
+#define S390_GSEPLA_REGNUM 124
+#define S390_BC_GSD_REGNUM 125
+#define S390_BC_GSSM_REGNUM 126
+#define S390_BC_GSEPLA_REGNUM 127
+/* Total.  */
+#define S390_NUM_REGS 128
+
+#define S390_NUM_GPRS 16
+#define S390_NUM_FPRS 16
+
+#define S390_MAX_INSTR_SIZE 6
+
+/* Special register usage.  */
+#define S390_SP_REGNUM S390_R15_REGNUM
+#define S390_RETADDR_REGNUM S390_R14_REGNUM
+#define S390_FRAME_REGNUM S390_R11_REGNUM
+
+/* Prologue analysis.  */
+
+struct s390_prologue_data {
+
+  /* The stack.  */
+  struct pv_area *stack;
+
+  /* The size and byte-order of a GPR or FPR.  */
+  int gpr_size;
+  int fpr_size;
+  enum bfd_endian byte_order;
+
+  /* The general-purpose registers.  */
+  pv_t gpr[S390_NUM_GPRS];
+
+  /* The floating-point registers.  */
+  pv_t fpr[S390_NUM_FPRS];
+
+  /* The offset relative to the CFA where the incoming GPR N was saved
+     by the function prologue.  0 if not saved or unknown.  */
+  int gpr_slot[S390_NUM_GPRS];
+
+  /* Likewise for FPRs.  */
+  int fpr_slot[S390_NUM_FPRS];
+
+  /* Nonzero if the backchain was saved.  This is assumed to be the
+     case when the incoming SP is saved at the current SP location.  */
+  int back_chain_saved_p;
+};
+
+/* Analyze the prologue of the function starting at START_PC, continuing at
+   most until CURRENT_PC.  Initialize DATA to hold all information we find
+   out about the state of the registers and stack slots.  Return the address
+   of the instruction after the last one that changed the SP, FP, or back
+   chain; or zero on error.  */
+extern CORE_ADDR s390_analyze_prologue (struct gdbarch *gdbarch,
+					CORE_ADDR start_pc,
+					CORE_ADDR current_pc,
+					struct s390_prologue_data *data);
+
+/* Register handling.  */
+
+/* ABI call-saved register information.  */
+extern int s390_register_call_saved (struct gdbarch *gdbarch, int regnum);
+
+/* Frame unwinding.  */
+
+/* Implmement the stack_frame_destroyed_p gdbarch method.  */
+extern int s390_stack_frame_destroyed_p (struct gdbarch *gdbarch,
+					 CORE_ADDR pc);
+
+/* Helper routine to unwind pseudo registers.  */
+extern struct value *s390_unwind_pseudo_register (struct frame_info *this_frame,
+						  int regnum);
+
+#endif /* S390_TDEP_H */
-- 
2.13.5


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]