This is the mail archive of the
gdb-patches@sourceware.org
mailing list for the GDB project.
[PATCH v2 08/11] s390: Split up s390-linux-tdep.c into two files
- From: Philipp Rudo <prudo at linux dot vnet dot ibm dot com>
- To: gdb-patches at sourceware dot org
- Cc: Andreas Arnez <arnez at linux dot vnet dot ibm dot com>, Ulrich Weigand <uweigand at de dot ibm dot com>
- Date: Tue, 5 Dec 2017 13:28:56 +0100
- Subject: [PATCH v2 08/11] s390: Split up s390-linux-tdep.c into two files
- Authentication-results: sourceware.org; auth=none
- References: <20171205122859.2919-1-prudo@linux.vnet.ibm.com>
Currently all target dependent code for s390 is in one file
(s390-linux-tdep.c). This includes code general for the architecture as
well as code specific for uses in GNU/Linux (user space). Up until now
this was ok as GNU/Linux was the only supported OS. In preparation to
support the new Linux kernel 'OS' split up the existing s390 code into a
general s390-tdep and a GNU/Linux specific s390-linux-tdep.
gdb/ChangeLog:
* s390-tdep.h: New file.
* s390-tdep.c: New file.
* s390-linux-nat.c (s390-tdep.h): new include.
* Makefile.in (ALL_TARGET_OBS): Add s390-tdep.o.
(HFILES_NO_SRCDIR): Add s390-tdep.h.
(ALLDEPFILES): Add s390-tdep.c.
* configure.tgt (s390*-*-linux*): Add s390-tdep.o.
* s390-linux-tdep.h (HWCAP_S390_*)
(S390_*_REGNUM): Move to s390-tdep.h
* s390-linux-tdep.c (s390-tdep.h): New include.
(_initialize_s390_tdep): Rename to...
(_initialize_s390_linux_tdep): ...this and adjust.
(s390_abi_kind, s390_vector_abi_kind, gdbarch_tdep)
(enum named opcodes, s390_prologue_data)
(S390_NUM_GPRS, S390_NUM_FPRS): Move to s390-tdep.h
(s390_readinstruction, is_ri, is_ril, is_rr, is_rre, is_rs, is_rsy)
(is_rx, is_rxy, s390_break_insn, s390_breakpoint)
(s390_is_partial_instruction, s390_software_single_step)
(is_non_branch_ril, s390_displaced_step_copy_insn)
(s390_displaced_step_fixup, s390_displaced_step_hw_singlestep)
(s390_addr, s390_store, s390_load, s390_check_for_saved)
(s390_analyze_prologue, s390_skip_prologue)
(s390_register_call_saved, s390_register_name, s390_dwarf_regmap)
(s390_dwarf_reg_to_regnum, regnum_is_gpr_full, regnum_is_vxr_full)
(s390_value_from_register, s390_pseudo_register_name)
(s390_pseudo_register_type, s390_pseudo_register_read)
(s390_pseudo_register_write, s390_pseudo_register_reggroup_p)
(s390_ax_pseudo_register_collect)
(s390_ax_pseudo_register_push_stack, s390_gen_return_address)
(s390_addr_bits_remove, s390_address_class_type_flags)
(s390_address_class_type_flags_to_name)
(s390_address_class_name_to_type_flags, s390_effective_inner_type)
(s390_function_arg_float, s390_function_arg_vector)
(is_power_of_two, s390_function_arg_integer, s390_arg_state)
(s390_handle_arg, s390_push_dummy_call, s390_dummy_id)
(s390_frame_align, s390_register_return_value, s390_return_value)
(s390_stack_frame_destroyed_p, s390_unwind_pc, s390_unwind_sp)
(s390_unwind_pseudo_register, s390_adjust_frame_regnum)
(s390_dwarf2_prev_register, s390_dwarf2_frame_init_reg)
(s390_validate_reg_range, s390_tdesc_valid)
(s390_gdbarch_tdep_alloc, s390_gdbarch_init): Move to s390-tdep.c
---
gdb/Makefile.in | 3 +
gdb/configure.tgt | 4 +-
gdb/s390-linux-nat.c | 1 +
gdb/s390-linux-tdep.c | 2619 +------------------------------------------------
gdb/s390-linux-tdep.h | 176 +---
gdb/s390-tdep.c | 2509 ++++++++++++++++++++++++++++++++++++++++++++++
gdb/s390-tdep.h | 367 +++++++
7 files changed, 2892 insertions(+), 2787 deletions(-)
create mode 100644 gdb/s390-tdep.c
create mode 100644 gdb/s390-tdep.h
diff --git a/gdb/Makefile.in b/gdb/Makefile.in
index 5823098036..5893d394ab 100644
--- a/gdb/Makefile.in
+++ b/gdb/Makefile.in
@@ -754,6 +754,7 @@ ALL_TARGET_OBS = \
rs6000-tdep.o \
rx-tdep.o \
s390-linux-tdep.o \
+ s390-tdep.o \
score-tdep.o \
sh-linux-tdep.o \
sh-nbsd-tdep.o \
@@ -1331,6 +1332,7 @@ HFILES_NO_SRCDIR = \
rs6000-aix-tdep.h \
rs6000-tdep.h \
s390-linux-tdep.h \
+ s390-tdep.h \
score-tdep.h \
selftest-arch.h \
sentinel-frame.h \
@@ -2331,6 +2333,7 @@ ALLDEPFILES = \
rx-tdep.c \
s390-linux-nat.c \
s390-linux-tdep.c \
+ s390-tdep.c \
score-tdep.c \
ser-go32.c \
ser-mingw.c \
diff --git a/gdb/configure.tgt b/gdb/configure.tgt
index 701ad6c486..989ac329d0 100644
--- a/gdb/configure.tgt
+++ b/gdb/configure.tgt
@@ -513,8 +513,8 @@ powerpc*-*-*)
s390*-*-linux*)
# Target: S390 running Linux
- gdb_target_obs="s390-linux-tdep.o solib-svr4.o linux-tdep.o \
- linux-record.o"
+ gdb_target_obs="s390-linux-tdep.o s390-tdep.o solib-svr4.o
+ linux-tdep.o linux-record.o"
build_gdbserver=yes
;;
diff --git a/gdb/s390-linux-nat.c b/gdb/s390-linux-nat.c
index 03b14a9ecc..decb68fcfb 100644
--- a/gdb/s390-linux-nat.c
+++ b/gdb/s390-linux-nat.c
@@ -30,6 +30,7 @@
#include "nat/linux-ptrace.h"
#include "gdbcmd.h"
+#include "s390-tdep.h"
#include "s390-linux-tdep.h"
#include "elf/common.h"
diff --git a/gdb/s390-linux-tdep.c b/gdb/s390-linux-tdep.c
index f8559eec49..c0283db3b4 100644
--- a/gdb/s390-linux-tdep.c
+++ b/gdb/s390-linux-tdep.c
@@ -1,4 +1,4 @@
-/* Target-dependent code for GDB, the GNU debugger.
+/* Target-dependent code for GNU/Linux on s390.
Copyright (C) 2001-2017 Free Software Foundation, Inc.
@@ -43,6 +43,7 @@
#include "solib-svr4.h"
#include "prologue-value.h"
#include "linux-tdep.h"
+#include "s390-tdep.h"
#include "s390-linux-tdep.h"
#include "linux-record.h"
#include "record-full.h"
@@ -81,79 +82,6 @@
#define XML_SYSCALL_FILENAME_S390 "syscalls/s390-linux.xml"
#define XML_SYSCALL_FILENAME_S390X "syscalls/s390x-linux.xml"
-/* Holds the current set of options to be passed to the disassembler. */
-static char *s390_disassembler_options;
-
-enum s390_abi_kind
-{
- ABI_NONE,
- ABI_LINUX_S390,
- ABI_LINUX_ZSERIES
-};
-
-enum s390_vector_abi_kind
-{
- S390_VECTOR_ABI_NONE,
- S390_VECTOR_ABI_128
-};
-
-/* The tdep structure. */
-
-struct gdbarch_tdep
-{
- /* Target description. */
- const struct target_desc *tdesc;
-
- /* ABI version. */
- enum s390_abi_kind abi;
-
- /* Vector ABI. */
- enum s390_vector_abi_kind vector_abi;
-
- /* Pseudo register numbers. */
- int gpr_full_regnum;
- int pc_regnum;
- int cc_regnum;
- int v0_full_regnum;
-
- bool have_upper;
- bool have_linux_v1;
- bool have_linux_v2;
- bool have_tdb;
- bool have_vx;
- bool have_gs;
-};
-
-
-/* ABI call-saved register information. */
-
-static int
-s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- switch (tdep->abi)
- {
- case ABI_LINUX_S390:
- if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
- || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
- || regnum == S390_A0_REGNUM)
- return 1;
-
- break;
-
- case ABI_LINUX_ZSERIES:
- if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
- || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
- || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
- return 1;
-
- break;
- }
-
- return 0;
-}
-
static int
s390_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
@@ -214,568 +142,6 @@ s390_guess_tracepoint_registers (struct gdbarch *gdbarch,
regcache_raw_supply (regcache, S390_PSWM_REGNUM, reg);
}
-
-/* DWARF Register Mapping. */
-
-static const short s390_dwarf_regmap[] =
-{
- /* 0-15: General Purpose Registers. */
- S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
- S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
- S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
- S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
-
- /* 16-31: Floating Point Registers / Vector Registers 0-15. */
- S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
- S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
- S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
- S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
-
- /* 32-47: Control Registers (not mapped). */
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
-
- /* 48-63: Access Registers. */
- S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
- S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
- S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
- S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
-
- /* 64-65: Program Status Word. */
- S390_PSWM_REGNUM,
- S390_PSWA_REGNUM,
-
- /* 66-67: Reserved. */
- -1, -1,
-
- /* 68-83: Vector Registers 16-31. */
- S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM,
- S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM,
- S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM,
- S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM,
-
- /* End of "official" DWARF registers. The remainder of the map is
- for GDB internal use only. */
-
- /* GPR Lower Half Access. */
- S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
- S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
- S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
- S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
-};
-
-enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 };
-
-/* Convert DWARF register number REG to the appropriate register
- number used by GDB. */
-static int
-s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int gdb_reg = -1;
-
- /* In a 32-on-64 debug scenario, debug info refers to the full
- 64-bit GPRs. Note that call frame information still refers to
- the 32-bit lower halves, because s390_adjust_frame_regnum uses
- special register numbers to access GPRs. */
- if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
- return tdep->gpr_full_regnum + reg;
-
- if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
- gdb_reg = s390_dwarf_regmap[reg];
-
- if (tdep->v0_full_regnum == -1)
- {
- if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM)
- gdb_reg = -1;
- }
- else
- {
- if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM)
- gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum;
- }
-
- return gdb_reg;
-}
-
-/* Translate a .eh_frame register to DWARF register, or adjust a
- .debug_frame register. */
-static int
-s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
-{
- /* See s390_dwarf_reg_to_regnum for comments. */
- return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num;
-}
-
-
-/* Pseudo registers. */
-
-static int
-regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum)
-{
- return (tdep->gpr_full_regnum != -1
- && regnum >= tdep->gpr_full_regnum
- && regnum <= tdep->gpr_full_regnum + 15);
-}
-
-/* Check whether REGNUM indicates a full vector register (v0-v15).
- These pseudo-registers are composed of f0-f15 and v0l-v15l. */
-
-static int
-regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum)
-{
- return (tdep->v0_full_regnum != -1
- && regnum >= tdep->v0_full_regnum
- && regnum <= tdep->v0_full_regnum + 15);
-}
-
-/* Return the name of register REGNO. Return the empty string for
- registers that shouldn't be visible. */
-
-static const char *
-s390_register_name (struct gdbarch *gdbarch, int regnum)
-{
- if (regnum >= S390_V0_LOWER_REGNUM
- && regnum <= S390_V15_LOWER_REGNUM)
- return "";
- return tdesc_register_name (gdbarch, regnum);
-}
-
-static const char *
-s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (regnum == tdep->pc_regnum)
- return "pc";
-
- if (regnum == tdep->cc_regnum)
- return "cc";
-
- if (regnum_is_gpr_full (tdep, regnum))
- {
- static const char *full_name[] = {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
- };
- return full_name[regnum - tdep->gpr_full_regnum];
- }
-
- if (regnum_is_vxr_full (tdep, regnum))
- {
- static const char *full_name[] = {
- "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
- "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
- };
- return full_name[regnum - tdep->v0_full_regnum];
- }
-
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static struct type *
-s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- if (regnum == tdep->pc_regnum)
- return builtin_type (gdbarch)->builtin_func_ptr;
-
- if (regnum == tdep->cc_regnum)
- return builtin_type (gdbarch)->builtin_int;
-
- if (regnum_is_gpr_full (tdep, regnum))
- return builtin_type (gdbarch)->builtin_uint64;
-
- if (regnum_is_vxr_full (tdep, regnum))
- return tdesc_find_type (gdbarch, "vec128");
-
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static enum register_status
-s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
- int regnum, gdb_byte *buf)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int regsize = register_size (gdbarch, regnum);
- ULONGEST val;
-
- if (regnum == tdep->pc_regnum)
- {
- enum register_status status;
-
- status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
- if (status == REG_VALID)
- {
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- val &= 0x7fffffff;
- store_unsigned_integer (buf, regsize, byte_order, val);
- }
- return status;
- }
-
- if (regnum == tdep->cc_regnum)
- {
- enum register_status status;
-
- status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
- if (status == REG_VALID)
- {
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- val = (val >> 12) & 3;
- else
- val = (val >> 44) & 3;
- store_unsigned_integer (buf, regsize, byte_order, val);
- }
- return status;
- }
-
- if (regnum_is_gpr_full (tdep, regnum))
- {
- enum register_status status;
- ULONGEST val_upper;
-
- regnum -= tdep->gpr_full_regnum;
-
- status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
- if (status == REG_VALID)
- status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
- &val_upper);
- if (status == REG_VALID)
- {
- val |= val_upper << 32;
- store_unsigned_integer (buf, regsize, byte_order, val);
- }
- return status;
- }
-
- if (regnum_is_vxr_full (tdep, regnum))
- {
- enum register_status status;
-
- regnum -= tdep->v0_full_regnum;
-
- status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf);
- if (status == REG_VALID)
- status = regcache_raw_read (regcache,
- S390_V0_LOWER_REGNUM + regnum, buf + 8);
- return status;
- }
-
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-static void
-s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
- int regnum, const gdb_byte *buf)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int regsize = register_size (gdbarch, regnum);
- ULONGEST val, psw;
-
- if (regnum == tdep->pc_regnum)
- {
- val = extract_unsigned_integer (buf, regsize, byte_order);
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- {
- regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
- val = (psw & 0x80000000) | (val & 0x7fffffff);
- }
- regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
- return;
- }
-
- if (regnum == tdep->cc_regnum)
- {
- val = extract_unsigned_integer (buf, regsize, byte_order);
- regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
- else
- val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
- regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
- return;
- }
-
- if (regnum_is_gpr_full (tdep, regnum))
- {
- regnum -= tdep->gpr_full_regnum;
- val = extract_unsigned_integer (buf, regsize, byte_order);
- regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
- val & 0xffffffff);
- regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
- val >> 32);
- return;
- }
-
- if (regnum_is_vxr_full (tdep, regnum))
- {
- regnum -= tdep->v0_full_regnum;
- regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf);
- regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8);
- return;
- }
-
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
-}
-
-/* 'float' values are stored in the upper half of floating-point
- registers, even though we are otherwise a big-endian platform. The
- same applies to a 'float' value within a vector. */
-
-static struct value *
-s390_value_from_register (struct gdbarch *gdbarch, struct type *type,
- int regnum, struct frame_id frame_id)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- struct value *value = default_value_from_register (gdbarch, type,
- regnum, frame_id);
- check_typedef (type);
-
- if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
- && TYPE_LENGTH (type) < 8)
- || regnum_is_vxr_full (tdep, regnum)
- || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM))
- set_value_offset (value, 0);
-
- return value;
-}
-
-/* Register groups. */
-
-static int
-s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
- struct reggroup *group)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
-
- /* We usually save/restore the whole PSW, which includes PC and CC.
- However, some older gdbservers may not support saving/restoring
- the whole PSW yet, and will return an XML register description
- excluding those from the save/restore register groups. In those
- cases, we still need to explicitly save/restore PC and CC in order
- to push or pop frames. Since this doesn't hurt anything if we
- already save/restore the whole PSW (it's just redundant), we add
- PC and CC at this point unconditionally. */
- if (group == save_reggroup || group == restore_reggroup)
- return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
-
- if (group == vector_reggroup)
- return regnum_is_vxr_full (tdep, regnum);
-
- if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum))
- return 0;
-
- return default_register_reggroup_p (gdbarch, regnum, group);
-}
-
-/* The "ax_pseudo_register_collect" gdbarch method. */
-
-static int
-s390_ax_pseudo_register_collect (struct gdbarch *gdbarch,
- struct agent_expr *ax, int regnum)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- if (regnum == tdep->pc_regnum)
- {
- ax_reg_mask (ax, S390_PSWA_REGNUM);
- }
- else if (regnum == tdep->cc_regnum)
- {
- ax_reg_mask (ax, S390_PSWM_REGNUM);
- }
- else if (regnum_is_gpr_full (tdep, regnum))
- {
- regnum -= tdep->gpr_full_regnum;
- ax_reg_mask (ax, S390_R0_REGNUM + regnum);
- ax_reg_mask (ax, S390_R0_UPPER_REGNUM + regnum);
- }
- else if (regnum_is_vxr_full (tdep, regnum))
- {
- regnum -= tdep->v0_full_regnum;
- ax_reg_mask (ax, S390_F0_REGNUM + regnum);
- ax_reg_mask (ax, S390_V0_LOWER_REGNUM + regnum);
- }
- else
- {
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
- }
- return 0;
-}
-
-/* The "ax_pseudo_register_push_stack" gdbarch method. */
-
-static int
-s390_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
- struct agent_expr *ax, int regnum)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- if (regnum == tdep->pc_regnum)
- {
- ax_reg (ax, S390_PSWA_REGNUM);
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- {
- ax_zero_ext (ax, 31);
- }
- }
- else if (regnum == tdep->cc_regnum)
- {
- ax_reg (ax, S390_PSWM_REGNUM);
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- ax_const_l (ax, 12);
- else
- ax_const_l (ax, 44);
- ax_simple (ax, aop_rsh_unsigned);
- ax_zero_ext (ax, 2);
- }
- else if (regnum_is_gpr_full (tdep, regnum))
- {
- regnum -= tdep->gpr_full_regnum;
- ax_reg (ax, S390_R0_REGNUM + regnum);
- ax_reg (ax, S390_R0_UPPER_REGNUM + regnum);
- ax_const_l (ax, 32);
- ax_simple (ax, aop_lsh);
- ax_simple (ax, aop_bit_or);
- }
- else if (regnum_is_vxr_full (tdep, regnum))
- {
- /* Too large to stuff on the stack. */
- return 1;
- }
- else
- {
- internal_error (__FILE__, __LINE__, _("invalid regnum"));
- }
- return 0;
-}
-
-/* The "gen_return_address" gdbarch method. Since this is supposed to be
- just a best-effort method, and we don't really have the means to run
- the full unwinder here, just collect the link register. */
-
-static void
-s390_gen_return_address (struct gdbarch *gdbarch,
- struct agent_expr *ax, struct axs_value *value,
- CORE_ADDR scope)
-{
- value->type = register_type (gdbarch, S390_R14_REGNUM);
- value->kind = axs_lvalue_register;
- value->u.reg = S390_R14_REGNUM;
-}
-
-
-/* A helper for s390_software_single_step, decides if an instruction
- is a partial-execution instruction that needs to be executed until
- completion when in record mode. If it is, returns 1 and writes
- instruction length to a pointer. */
-
-static int
-s390_is_partial_instruction (struct gdbarch *gdbarch, CORE_ADDR loc, int *len)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- uint16_t insn;
-
- insn = read_memory_integer (loc, 2, byte_order);
-
- switch (insn >> 8)
- {
- case 0xa8: /* MVCLE */
- *len = 4;
- return 1;
-
- case 0xeb:
- {
- insn = read_memory_integer (loc + 4, 2, byte_order);
- if ((insn & 0xff) == 0x8e)
- {
- /* MVCLU */
- *len = 6;
- return 1;
- }
- }
- break;
- }
-
- switch (insn)
- {
- case 0xb255: /* MVST */
- case 0xb263: /* CMPSC */
- case 0xb2a5: /* TRE */
- case 0xb2a6: /* CU21 */
- case 0xb2a7: /* CU12 */
- case 0xb9b0: /* CU14 */
- case 0xb9b1: /* CU24 */
- case 0xb9b2: /* CU41 */
- case 0xb9b3: /* CU42 */
- case 0xb92a: /* KMF */
- case 0xb92b: /* KMO */
- case 0xb92f: /* KMC */
- case 0xb92d: /* KMCTR */
- case 0xb92e: /* KM */
- case 0xb93c: /* PPNO */
- case 0xb990: /* TRTT */
- case 0xb991: /* TRTO */
- case 0xb992: /* TROT */
- case 0xb993: /* TROO */
- *len = 4;
- return 1;
- }
-
- return 0;
-}
-
-/* Implement the "software_single_step" gdbarch method, needed to single step
- through instructions like MVCLE in record mode, to make sure they are
- executed to completion. Without that, record will save the full length
- of destination buffer on every iteration, even though the CPU will only
- process about 4kiB of it each time, leading to O(n**2) memory and time
- complexity. */
-
-static std::vector<CORE_ADDR>
-s390_software_single_step (struct regcache *regcache)
-{
- struct gdbarch *gdbarch = regcache->arch ();
- CORE_ADDR loc = regcache_read_pc (regcache);
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int len;
- uint16_t insn;
-
- /* Special handling only if recording. */
- if (!record_full_is_used ())
- return {};
-
- /* First, match a partial instruction. */
- if (!s390_is_partial_instruction (gdbarch, loc, &len))
- return {};
-
- loc += len;
-
- /* Second, look for a branch back to it. */
- insn = read_memory_integer (loc, 2, byte_order);
- if (insn != 0xa714) /* BRC with mask 1 */
- return {};
-
- insn = read_memory_integer (loc + 2, 2, byte_order);
- if (insn != (uint16_t) -(len / 2))
- return {};
-
- loc += 4;
-
- /* Found it, step past the whole thing. */
- return {loc};
-}
-
-static int
-s390_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
- struct displaced_step_closure *closure)
-{
- return 1;
-}
-
-
/* Maps for register sets. */
static const struct regcache_map_entry s390_gregmap[] =
@@ -1056,1034 +422,6 @@ s390_core_read_description (struct gdbarch *gdbarch,
}
}
-
-/* Decoding S/390 instructions. */
-
-/* Named opcode values for the S/390 instructions we recognize. Some
- instructions have their opcode split across two fields; those are the
- op1_* and op2_* enums. */
-enum
- {
- op1_lhi = 0xa7, op2_lhi = 0x08,
- op1_lghi = 0xa7, op2_lghi = 0x09,
- op1_lgfi = 0xc0, op2_lgfi = 0x01,
- op_lr = 0x18,
- op_lgr = 0xb904,
- op_l = 0x58,
- op1_ly = 0xe3, op2_ly = 0x58,
- op1_lg = 0xe3, op2_lg = 0x04,
- op_lm = 0x98,
- op1_lmy = 0xeb, op2_lmy = 0x98,
- op1_lmg = 0xeb, op2_lmg = 0x04,
- op_st = 0x50,
- op1_sty = 0xe3, op2_sty = 0x50,
- op1_stg = 0xe3, op2_stg = 0x24,
- op_std = 0x60,
- op_stm = 0x90,
- op1_stmy = 0xeb, op2_stmy = 0x90,
- op1_stmg = 0xeb, op2_stmg = 0x24,
- op1_aghi = 0xa7, op2_aghi = 0x0b,
- op1_ahi = 0xa7, op2_ahi = 0x0a,
- op1_agfi = 0xc2, op2_agfi = 0x08,
- op1_afi = 0xc2, op2_afi = 0x09,
- op1_algfi= 0xc2, op2_algfi= 0x0a,
- op1_alfi = 0xc2, op2_alfi = 0x0b,
- op_ar = 0x1a,
- op_agr = 0xb908,
- op_a = 0x5a,
- op1_ay = 0xe3, op2_ay = 0x5a,
- op1_ag = 0xe3, op2_ag = 0x08,
- op1_slgfi= 0xc2, op2_slgfi= 0x04,
- op1_slfi = 0xc2, op2_slfi = 0x05,
- op_sr = 0x1b,
- op_sgr = 0xb909,
- op_s = 0x5b,
- op1_sy = 0xe3, op2_sy = 0x5b,
- op1_sg = 0xe3, op2_sg = 0x09,
- op_nr = 0x14,
- op_ngr = 0xb980,
- op_la = 0x41,
- op1_lay = 0xe3, op2_lay = 0x71,
- op1_larl = 0xc0, op2_larl = 0x00,
- op_basr = 0x0d,
- op_bas = 0x4d,
- op_bcr = 0x07,
- op_bc = 0x0d,
- op_bctr = 0x06,
- op_bctgr = 0xb946,
- op_bct = 0x46,
- op1_bctg = 0xe3, op2_bctg = 0x46,
- op_bxh = 0x86,
- op1_bxhg = 0xeb, op2_bxhg = 0x44,
- op_bxle = 0x87,
- op1_bxleg= 0xeb, op2_bxleg= 0x45,
- op1_bras = 0xa7, op2_bras = 0x05,
- op1_brasl= 0xc0, op2_brasl= 0x05,
- op1_brc = 0xa7, op2_brc = 0x04,
- op1_brcl = 0xc0, op2_brcl = 0x04,
- op1_brct = 0xa7, op2_brct = 0x06,
- op1_brctg= 0xa7, op2_brctg= 0x07,
- op_brxh = 0x84,
- op1_brxhg= 0xec, op2_brxhg= 0x44,
- op_brxle = 0x85,
- op1_brxlg= 0xec, op2_brxlg= 0x45,
- op_svc = 0x0a,
- };
-
-
-/* Read a single instruction from address AT. */
-
-#define S390_MAX_INSTR_SIZE 6
-static int
-s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
-{
- static int s390_instrlen[] = { 2, 4, 4, 6 };
- int instrlen;
-
- if (target_read_memory (at, &instr[0], 2))
- return -1;
- instrlen = s390_instrlen[instr[0] >> 6];
- if (instrlen > 2)
- {
- if (target_read_memory (at + 2, &instr[2], instrlen - 2))
- return -1;
- }
- return instrlen;
-}
-
-
-/* The functions below are for recognizing and decoding S/390
- instructions of various formats. Each of them checks whether INSN
- is an instruction of the given format, with the specified opcodes.
- If it is, it sets the remaining arguments to the values of the
- instruction's fields, and returns a non-zero value; otherwise, it
- returns zero.
-
- These functions' arguments appear in the order they appear in the
- instruction, not in the machine-language form. So, opcodes always
- come first, even though they're sometimes scattered around the
- instructions. And displacements appear before base and extension
- registers, as they do in the assembly syntax, not at the end, as
- they do in the machine language. */
-static int
-is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
-{
- if (insn[0] == op1 && (insn[1] & 0xf) == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- /* i2 is a 16-bit signed quantity. */
- *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_ril (bfd_byte *insn, int op1, int op2,
- unsigned int *r1, int *i2)
-{
- if (insn[0] == op1 && (insn[1] & 0xf) == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- /* i2 is a signed quantity. If the host 'int' is 32 bits long,
- no sign extension is necessary, but we don't want to assume
- that. */
- *i2 = (((insn[2] << 24)
- | (insn[3] << 16)
- | (insn[4] << 8)
- | (insn[5])) ^ 0x80000000) - 0x80000000;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
-{
- if (insn[0] == op)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *r2 = insn[1] & 0xf;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
-{
- if (((insn[0] << 8) | insn[1]) == op)
- {
- /* Yes, insn[3]. insn[2] is unused in RRE format. */
- *r1 = (insn[3] >> 4) & 0xf;
- *r2 = insn[3] & 0xf;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rs (bfd_byte *insn, int op,
- unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
-{
- if (insn[0] == op)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *r3 = insn[1] & 0xf;
- *b2 = (insn[2] >> 4) & 0xf;
- *d2 = ((insn[2] & 0xf) << 8) | insn[3];
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rsy (bfd_byte *insn, int op1, int op2,
- unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
-{
- if (insn[0] == op1
- && insn[5] == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *r3 = insn[1] & 0xf;
- *b2 = (insn[2] >> 4) & 0xf;
- /* The 'long displacement' is a 20-bit signed integer. */
- *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
- ^ 0x80000) - 0x80000;
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rx (bfd_byte *insn, int op,
- unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
-{
- if (insn[0] == op)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *x2 = insn[1] & 0xf;
- *b2 = (insn[2] >> 4) & 0xf;
- *d2 = ((insn[2] & 0xf) << 8) | insn[3];
- return 1;
- }
- else
- return 0;
-}
-
-
-static int
-is_rxy (bfd_byte *insn, int op1, int op2,
- unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
-{
- if (insn[0] == op1
- && insn[5] == op2)
- {
- *r1 = (insn[1] >> 4) & 0xf;
- *x2 = insn[1] & 0xf;
- *b2 = (insn[2] >> 4) & 0xf;
- /* The 'long displacement' is a 20-bit signed integer. */
- *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
- ^ 0x80000) - 0x80000;
- return 1;
- }
- else
- return 0;
-}
-
-
-/* Prologue analysis. */
-
-#define S390_NUM_GPRS 16
-#define S390_NUM_FPRS 16
-
-struct s390_prologue_data {
-
- /* The stack. */
- struct pv_area *stack;
-
- /* The size and byte-order of a GPR or FPR. */
- int gpr_size;
- int fpr_size;
- enum bfd_endian byte_order;
-
- /* The general-purpose registers. */
- pv_t gpr[S390_NUM_GPRS];
-
- /* The floating-point registers. */
- pv_t fpr[S390_NUM_FPRS];
-
- /* The offset relative to the CFA where the incoming GPR N was saved
- by the function prologue. 0 if not saved or unknown. */
- int gpr_slot[S390_NUM_GPRS];
-
- /* Likewise for FPRs. */
- int fpr_slot[S390_NUM_FPRS];
-
- /* Nonzero if the backchain was saved. This is assumed to be the
- case when the incoming SP is saved at the current SP location. */
- int back_chain_saved_p;
-};
-
-/* Return the effective address for an X-style instruction, like:
-
- L R1, D2(X2, B2)
-
- Here, X2 and B2 are registers, and D2 is a signed 20-bit
- constant; the effective address is the sum of all three. If either
- X2 or B2 are zero, then it doesn't contribute to the sum --- this
- means that r0 can't be used as either X2 or B2. */
-static pv_t
-s390_addr (struct s390_prologue_data *data,
- int d2, unsigned int x2, unsigned int b2)
-{
- pv_t result;
-
- result = pv_constant (d2);
- if (x2)
- result = pv_add (result, data->gpr[x2]);
- if (b2)
- result = pv_add (result, data->gpr[b2]);
-
- return result;
-}
-
-/* Do a SIZE-byte store of VALUE to D2(X2,B2). */
-static void
-s390_store (struct s390_prologue_data *data,
- int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
- pv_t value)
-{
- pv_t addr = s390_addr (data, d2, x2, b2);
- pv_t offset;
-
- /* Check whether we are storing the backchain. */
- offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
-
- if (pv_is_constant (offset) && offset.k == 0)
- if (size == data->gpr_size
- && pv_is_register_k (value, S390_SP_REGNUM, 0))
- {
- data->back_chain_saved_p = 1;
- return;
- }
-
-
- /* Check whether we are storing a register into the stack. */
- if (!data->stack->store_would_trash (addr))
- data->stack->store (addr, size, value);
-
-
- /* Note: If this is some store we cannot identify, you might think we
- should forget our cached values, as any of those might have been hit.
-
- However, we make the assumption that the register save areas are only
- ever stored to once in any given function, and we do recognize these
- stores. Thus every store we cannot recognize does not hit our data. */
-}
-
-/* Do a SIZE-byte load from D2(X2,B2). */
-static pv_t
-s390_load (struct s390_prologue_data *data,
- int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
-
-{
- pv_t addr = s390_addr (data, d2, x2, b2);
-
- /* If it's a load from an in-line constant pool, then we can
- simulate that, under the assumption that the code isn't
- going to change between the time the processor actually
- executed it creating the current frame, and the time when
- we're analyzing the code to unwind past that frame. */
- if (pv_is_constant (addr))
- {
- struct target_section *secp;
- secp = target_section_by_addr (¤t_target, addr.k);
- if (secp != NULL
- && (bfd_get_section_flags (secp->the_bfd_section->owner,
- secp->the_bfd_section)
- & SEC_READONLY))
- return pv_constant (read_memory_integer (addr.k, size,
- data->byte_order));
- }
-
- /* Check whether we are accessing one of our save slots. */
- return data->stack->fetch (addr, size);
-}
-
-/* Function for finding saved registers in a 'struct pv_area'; we pass
- this to pv_area::scan.
-
- If VALUE is a saved register, ADDR says it was saved at a constant
- offset from the frame base, and SIZE indicates that the whole
- register was saved, record its offset in the reg_offset table in
- PROLOGUE_UNTYPED. */
-static void
-s390_check_for_saved (void *data_untyped, pv_t addr,
- CORE_ADDR size, pv_t value)
-{
- struct s390_prologue_data *data = (struct s390_prologue_data *) data_untyped;
- int i, offset;
-
- if (!pv_is_register (addr, S390_SP_REGNUM))
- return;
-
- offset = 16 * data->gpr_size + 32 - addr.k;
-
- /* If we are storing the original value of a register, we want to
- record the CFA offset. If the same register is stored multiple
- times, the stack slot with the highest address counts. */
-
- for (i = 0; i < S390_NUM_GPRS; i++)
- if (size == data->gpr_size
- && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
- if (data->gpr_slot[i] == 0
- || data->gpr_slot[i] > offset)
- {
- data->gpr_slot[i] = offset;
- return;
- }
-
- for (i = 0; i < S390_NUM_FPRS; i++)
- if (size == data->fpr_size
- && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
- if (data->fpr_slot[i] == 0
- || data->fpr_slot[i] > offset)
- {
- data->fpr_slot[i] = offset;
- return;
- }
-}
-
-/* Analyze the prologue of the function starting at START_PC,
- continuing at most until CURRENT_PC. Initialize DATA to
- hold all information we find out about the state of the registers
- and stack slots. Return the address of the instruction after
- the last one that changed the SP, FP, or back chain; or zero
- on error. */
-static CORE_ADDR
-s390_analyze_prologue (struct gdbarch *gdbarch,
- CORE_ADDR start_pc,
- CORE_ADDR current_pc,
- struct s390_prologue_data *data)
-{
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-
- /* Our return value:
- The address of the instruction after the last one that changed
- the SP, FP, or back chain; zero if we got an error trying to
- read memory. */
- CORE_ADDR result = start_pc;
-
- /* The current PC for our abstract interpretation. */
- CORE_ADDR pc;
-
- /* The address of the next instruction after that. */
- CORE_ADDR next_pc;
-
- pv_area stack (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
- scoped_restore restore_stack = make_scoped_restore (&data->stack, &stack);
-
- /* Set up everything's initial value. */
- {
- int i;
-
- /* For the purpose of prologue tracking, we consider the GPR size to
- be equal to the ABI word size, even if it is actually larger
- (i.e. when running a 32-bit binary under a 64-bit kernel). */
- data->gpr_size = word_size;
- data->fpr_size = 8;
- data->byte_order = gdbarch_byte_order (gdbarch);
-
- for (i = 0; i < S390_NUM_GPRS; i++)
- data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
-
- for (i = 0; i < S390_NUM_FPRS; i++)
- data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
-
- for (i = 0; i < S390_NUM_GPRS; i++)
- data->gpr_slot[i] = 0;
-
- for (i = 0; i < S390_NUM_FPRS; i++)
- data->fpr_slot[i] = 0;
-
- data->back_chain_saved_p = 0;
- }
-
- /* Start interpreting instructions, until we hit the frame's
- current PC or the first branch instruction. */
- for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
- {
- bfd_byte insn[S390_MAX_INSTR_SIZE];
- int insn_len = s390_readinstruction (insn, pc);
-
- bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
- bfd_byte *insn32 = word_size == 4 ? insn : dummy;
- bfd_byte *insn64 = word_size == 8 ? insn : dummy;
-
- /* Fields for various kinds of instructions. */
- unsigned int b2, r1, r2, x2, r3;
- int i2, d2;
-
- /* The values of SP and FP before this instruction,
- for detecting instructions that change them. */
- pv_t pre_insn_sp, pre_insn_fp;
- /* Likewise for the flag whether the back chain was saved. */
- int pre_insn_back_chain_saved_p;
-
- /* If we got an error trying to read the instruction, report it. */
- if (insn_len < 0)
- {
- result = 0;
- break;
- }
-
- next_pc = pc + insn_len;
-
- pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
- pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
- pre_insn_back_chain_saved_p = data->back_chain_saved_p;
-
-
- /* LHI r1, i2 --- load halfword immediate. */
- /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
- /* LGFI r1, i2 --- load fullword immediate. */
- if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
- || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
- || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
- data->gpr[r1] = pv_constant (i2);
-
- /* LR r1, r2 --- load from register. */
- /* LGR r1, r2 --- load from register (64-bit version). */
- else if (is_rr (insn32, op_lr, &r1, &r2)
- || is_rre (insn64, op_lgr, &r1, &r2))
- data->gpr[r1] = data->gpr[r2];
-
- /* L r1, d2(x2, b2) --- load. */
- /* LY r1, d2(x2, b2) --- load (long-displacement version). */
- /* LG r1, d2(x2, b2) --- load (64-bit version). */
- else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
- || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
- || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
- data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
-
- /* ST r1, d2(x2, b2) --- store. */
- /* STY r1, d2(x2, b2) --- store (long-displacement version). */
- /* STG r1, d2(x2, b2) --- store (64-bit version). */
- else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
- || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
- || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
- s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
-
- /* STD r1, d2(x2,b2) --- store floating-point register. */
- else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
- s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
-
- /* STM r1, r3, d2(b2) --- store multiple. */
- /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
- version). */
- /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
- else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
- || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
- || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
- {
- for (; r1 <= r3; r1++, d2 += data->gpr_size)
- s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
- }
-
- /* AHI r1, i2 --- add halfword immediate. */
- /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
- /* AFI r1, i2 --- add fullword immediate. */
- /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
- else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
- || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
- || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
- || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
- data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
-
- /* ALFI r1, i2 --- add logical immediate. */
- /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
- else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
- || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
- data->gpr[r1] = pv_add_constant (data->gpr[r1],
- (CORE_ADDR)i2 & 0xffffffff);
-
- /* AR r1, r2 -- add register. */
- /* AGR r1, r2 -- add register (64-bit version). */
- else if (is_rr (insn32, op_ar, &r1, &r2)
- || is_rre (insn64, op_agr, &r1, &r2))
- data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
-
- /* A r1, d2(x2, b2) -- add. */
- /* AY r1, d2(x2, b2) -- add (long-displacement version). */
- /* AG r1, d2(x2, b2) -- add (64-bit version). */
- else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
- || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
- || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
- data->gpr[r1] = pv_add (data->gpr[r1],
- s390_load (data, d2, x2, b2, data->gpr_size));
-
- /* SLFI r1, i2 --- subtract logical immediate. */
- /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
- else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
- || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
- data->gpr[r1] = pv_add_constant (data->gpr[r1],
- -((CORE_ADDR)i2 & 0xffffffff));
-
- /* SR r1, r2 -- subtract register. */
- /* SGR r1, r2 -- subtract register (64-bit version). */
- else if (is_rr (insn32, op_sr, &r1, &r2)
- || is_rre (insn64, op_sgr, &r1, &r2))
- data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
-
- /* S r1, d2(x2, b2) -- subtract. */
- /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
- /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
- else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
- || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
- || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
- data->gpr[r1] = pv_subtract (data->gpr[r1],
- s390_load (data, d2, x2, b2, data->gpr_size));
-
- /* LA r1, d2(x2, b2) --- load address. */
- /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
- else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
- || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
- data->gpr[r1] = s390_addr (data, d2, x2, b2);
-
- /* LARL r1, i2 --- load address relative long. */
- else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
- data->gpr[r1] = pv_constant (pc + i2 * 2);
-
- /* BASR r1, 0 --- branch and save.
- Since r2 is zero, this saves the PC in r1, but doesn't branch. */
- else if (is_rr (insn, op_basr, &r1, &r2)
- && r2 == 0)
- data->gpr[r1] = pv_constant (next_pc);
-
- /* BRAS r1, i2 --- branch relative and save. */
- else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
- {
- data->gpr[r1] = pv_constant (next_pc);
- next_pc = pc + i2 * 2;
-
- /* We'd better not interpret any backward branches. We'll
- never terminate. */
- if (next_pc <= pc)
- break;
- }
-
- /* BRC/BRCL -- branch relative on condition. Ignore "branch
- never", branch to following instruction, and "conditional
- trap" (BRC +2). Otherwise terminate search. */
- else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2))
- {
- if (r1 != 0 && i2 != 1 && i2 != 2)
- break;
- }
- else if (is_ril (insn, op1_brcl, op2_brcl, &r1, &i2))
- {
- if (r1 != 0 && i2 != 3)
- break;
- }
-
- /* Terminate search when hitting any other branch instruction. */
- else if (is_rr (insn, op_basr, &r1, &r2)
- || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
- || is_rr (insn, op_bcr, &r1, &r2)
- || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
- || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
- break;
-
- else
- {
- /* An instruction we don't know how to simulate. The only
- safe thing to do would be to set every value we're tracking
- to 'unknown'. Instead, we'll be optimistic: we assume that
- we *can* interpret every instruction that the compiler uses
- to manipulate any of the data we're interested in here --
- then we can just ignore anything else. */
- }
-
- /* Record the address after the last instruction that changed
- the FP, SP, or backlink. Ignore instructions that changed
- them back to their original values --- those are probably
- restore instructions. (The back chain is never restored,
- just popped.) */
- {
- pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
- pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
-
- if ((! pv_is_identical (pre_insn_sp, sp)
- && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
- && sp.kind != pvk_unknown)
- || (! pv_is_identical (pre_insn_fp, fp)
- && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
- && fp.kind != pvk_unknown)
- || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
- result = next_pc;
- }
- }
-
- /* Record where all the registers were saved. */
- data->stack->scan (s390_check_for_saved, data);
-
- return result;
-}
-
-/* Advance PC across any function entry prologue instructions to reach
- some "real" code. */
-static CORE_ADDR
-s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- struct s390_prologue_data data;
- CORE_ADDR skip_pc, func_addr;
-
- if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
- {
- CORE_ADDR post_prologue_pc
- = skip_prologue_using_sal (gdbarch, func_addr);
- if (post_prologue_pc != 0)
- return std::max (pc, post_prologue_pc);
- }
-
- skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
- return skip_pc ? skip_pc : pc;
-}
-
-/* Implmement the stack_frame_destroyed_p gdbarch method. */
-static int
-s390_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
-{
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
-
- /* In frameless functions, there's not frame to destroy and thus
- we don't care about the epilogue.
-
- In functions with frame, the epilogue sequence is a pair of
- a LM-type instruction that restores (amongst others) the
- return register %r14 and the stack pointer %r15, followed
- by a branch 'br %r14' --or equivalent-- that effects the
- actual return.
-
- In that situation, this function needs to return 'true' in
- exactly one case: when pc points to that branch instruction.
-
- Thus we try to disassemble the one instructions immediately
- preceding pc and check whether it is an LM-type instruction
- modifying the stack pointer.
-
- Note that disassembling backwards is not reliable, so there
- is a slight chance of false positives here ... */
-
- bfd_byte insn[6];
- unsigned int r1, r3, b2;
- int d2;
-
- if (word_size == 4
- && !target_read_memory (pc - 4, insn, 4)
- && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
- && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
- return 1;
-
- if (word_size == 4
- && !target_read_memory (pc - 6, insn, 6)
- && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
- && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
- return 1;
-
- if (word_size == 8
- && !target_read_memory (pc - 6, insn, 6)
- && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
- && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
- return 1;
-
- return 0;
-}
-
-/* Displaced stepping. */
-
-/* Return true if INSN is a non-branch RIL-b or RIL-c format
- instruction. */
-
-static int
-is_non_branch_ril (gdb_byte *insn)
-{
- gdb_byte op1 = insn[0];
-
- if (op1 == 0xc4)
- {
- gdb_byte op2 = insn[1] & 0x0f;
-
- switch (op2)
- {
- case 0x02: /* llhrl */
- case 0x04: /* lghrl */
- case 0x05: /* lhrl */
- case 0x06: /* llghrl */
- case 0x07: /* sthrl */
- case 0x08: /* lgrl */
- case 0x0b: /* stgrl */
- case 0x0c: /* lgfrl */
- case 0x0d: /* lrl */
- case 0x0e: /* llgfrl */
- case 0x0f: /* strl */
- return 1;
- }
- }
- else if (op1 == 0xc6)
- {
- gdb_byte op2 = insn[1] & 0x0f;
-
- switch (op2)
- {
- case 0x00: /* exrl */
- case 0x02: /* pfdrl */
- case 0x04: /* cghrl */
- case 0x05: /* chrl */
- case 0x06: /* clghrl */
- case 0x07: /* clhrl */
- case 0x08: /* cgrl */
- case 0x0a: /* clgrl */
- case 0x0c: /* cgfrl */
- case 0x0d: /* crl */
- case 0x0e: /* clgfrl */
- case 0x0f: /* clrl */
- return 1;
- }
- }
-
- return 0;
-}
-
-typedef buf_displaced_step_closure s390_displaced_step_closure;
-
-/* Implementation of gdbarch_displaced_step_copy_insn. */
-
-static struct displaced_step_closure *
-s390_displaced_step_copy_insn (struct gdbarch *gdbarch,
- CORE_ADDR from, CORE_ADDR to,
- struct regcache *regs)
-{
- size_t len = gdbarch_max_insn_length (gdbarch);
- std::unique_ptr<s390_displaced_step_closure> closure
- (new s390_displaced_step_closure (len));
- gdb_byte *buf = closure->buf.data ();
-
- read_memory (from, buf, len);
-
- /* Adjust the displacement field of PC-relative RIL instructions,
- except branches. The latter are handled in the fixup hook. */
- if (is_non_branch_ril (buf))
- {
- LONGEST offset;
-
- offset = extract_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG);
- offset = (from - to + offset * 2) / 2;
-
- /* If the instruction is too far from the jump pad, punt. This
- will usually happen with instructions in shared libraries.
- We could probably support these by rewriting them to be
- absolute or fully emulating them. */
- if (offset < INT32_MIN || offset > INT32_MAX)
- {
- /* Let the core fall back to stepping over the breakpoint
- in-line. */
- if (debug_displaced)
- {
- fprintf_unfiltered (gdb_stdlog,
- "displaced: can't displaced step "
- "RIL instruction: offset %s out of range\n",
- plongest (offset));
- }
-
- return NULL;
- }
-
- store_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG, offset);
- }
-
- write_memory (to, buf, len);
-
- if (debug_displaced)
- {
- fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
- paddress (gdbarch, from), paddress (gdbarch, to));
- displaced_step_dump_bytes (gdb_stdlog, buf, len);
- }
-
- return closure.release ();
-}
-
-/* Fix up the state of registers and memory after having single-stepped
- a displaced instruction. */
-static void
-s390_displaced_step_fixup (struct gdbarch *gdbarch,
- struct displaced_step_closure *closure_,
- CORE_ADDR from, CORE_ADDR to,
- struct regcache *regs)
-{
- /* Our closure is a copy of the instruction. */
- s390_displaced_step_closure *closure
- = (s390_displaced_step_closure *) closure_;
- gdb_byte *insn = closure->buf.data ();
- static int s390_instrlen[] = { 2, 4, 4, 6 };
- int insnlen = s390_instrlen[insn[0] >> 6];
-
- /* Fields for various kinds of instructions. */
- unsigned int b2, r1, r2, x2, r3;
- int i2, d2;
-
- /* Get current PC and addressing mode bit. */
- CORE_ADDR pc = regcache_read_pc (regs);
- ULONGEST amode = 0;
-
- if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
- {
- regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
- amode &= 0x80000000;
- }
-
- if (debug_displaced)
- fprintf_unfiltered (gdb_stdlog,
- "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
- paddress (gdbarch, from), paddress (gdbarch, to),
- paddress (gdbarch, pc), insnlen, (int) amode);
-
- /* Handle absolute branch and save instructions. */
- if (is_rr (insn, op_basr, &r1, &r2)
- || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
- {
- /* Recompute saved return address in R1. */
- regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
- amode | (from + insnlen));
- }
-
- /* Handle absolute branch instructions. */
- else if (is_rr (insn, op_bcr, &r1, &r2)
- || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
- || is_rr (insn, op_bctr, &r1, &r2)
- || is_rre (insn, op_bctgr, &r1, &r2)
- || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
- || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
- || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
- || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
- || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
- || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
- {
- /* Update PC iff branch was *not* taken. */
- if (pc == to + insnlen)
- regcache_write_pc (regs, from + insnlen);
- }
-
- /* Handle PC-relative branch and save instructions. */
- else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
- || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
- {
- /* Update PC. */
- regcache_write_pc (regs, pc - to + from);
- /* Recompute saved return address in R1. */
- regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
- amode | (from + insnlen));
- }
-
- /* Handle LOAD ADDRESS RELATIVE LONG. */
- else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
- {
- /* Update PC. */
- regcache_write_pc (regs, from + insnlen);
- /* Recompute output address in R1. */
- regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
- amode | (from + i2 * 2));
- }
-
- /* If we executed a breakpoint instruction, point PC right back at it. */
- else if (insn[0] == 0x0 && insn[1] == 0x1)
- regcache_write_pc (regs, from);
-
- /* For any other insn, adjust PC by negated displacement. PC then
- points right after the original instruction, except for PC-relative
- branches, where it points to the adjusted branch target. */
- else
- regcache_write_pc (regs, pc - to + from);
-
- if (debug_displaced)
- fprintf_unfiltered (gdb_stdlog,
- "displaced: (s390) pc is now %s\n",
- paddress (gdbarch, regcache_read_pc (regs)));
-}
-
-
-/* Helper routine to unwind pseudo registers. */
-
-static struct value *
-s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
-{
- struct gdbarch *gdbarch = get_frame_arch (this_frame);
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- struct type *type = register_type (gdbarch, regnum);
-
- /* Unwind PC via PSW address. */
- if (regnum == tdep->pc_regnum)
- {
- struct value *val;
-
- val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
- if (!value_optimized_out (val))
- {
- LONGEST pswa = value_as_long (val);
-
- if (TYPE_LENGTH (type) == 4)
- return value_from_pointer (type, pswa & 0x7fffffff);
- else
- return value_from_pointer (type, pswa);
- }
- }
-
- /* Unwind CC via PSW mask. */
- if (regnum == tdep->cc_regnum)
- {
- struct value *val;
-
- val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
- if (!value_optimized_out (val))
- {
- LONGEST pswm = value_as_long (val);
-
- if (TYPE_LENGTH (type) == 4)
- return value_from_longest (type, (pswm >> 12) & 3);
- else
- return value_from_longest (type, (pswm >> 44) & 3);
- }
- }
-
- /* Unwind full GPRs to show at least the lower halves (as the
- upper halves are undefined). */
- if (regnum_is_gpr_full (tdep, regnum))
- {
- int reg = regnum - tdep->gpr_full_regnum;
- struct value *val;
-
- val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
- if (!value_optimized_out (val))
- return value_cast (type, val);
- }
-
- return allocate_optimized_out_value (type);
-}
-
static struct value *
s390_trad_frame_prev_register (struct frame_info *this_frame,
struct trad_frame_saved_reg saved_regs[],
@@ -3015,598 +1353,6 @@ static const struct frame_base s390_frame_base = {
s390_local_base_address
};
-static CORE_ADDR
-s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- ULONGEST pc;
- pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
- return gdbarch_addr_bits_remove (gdbarch, pc);
-}
-
-static CORE_ADDR
-s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
-{
- ULONGEST sp;
- sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
- return gdbarch_addr_bits_remove (gdbarch, sp);
-}
-
-
-/* DWARF-2 frame support. */
-
-static struct value *
-s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
- int regnum)
-{
- return s390_unwind_pseudo_register (this_frame, regnum);
-}
-
-static void
-s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
- struct dwarf2_frame_state_reg *reg,
- struct frame_info *this_frame)
-{
- /* The condition code (and thus PSW mask) is call-clobbered. */
- if (regnum == S390_PSWM_REGNUM)
- reg->how = DWARF2_FRAME_REG_UNDEFINED;
-
- /* The PSW address unwinds to the return address. */
- else if (regnum == S390_PSWA_REGNUM)
- reg->how = DWARF2_FRAME_REG_RA;
-
- /* Fixed registers are call-saved or call-clobbered
- depending on the ABI in use. */
- else if (regnum < S390_NUM_REGS)
- {
- if (s390_register_call_saved (gdbarch, regnum))
- reg->how = DWARF2_FRAME_REG_SAME_VALUE;
- else
- reg->how = DWARF2_FRAME_REG_UNDEFINED;
- }
-
- /* We install a special function to unwind pseudos. */
- else
- {
- reg->how = DWARF2_FRAME_REG_FN;
- reg->loc.fn = s390_dwarf2_prev_register;
- }
-}
-
-
-/* Dummy function calls. */
-
-/* Unwrap any single-field structs in TYPE and return the effective
- "inner" type. E.g., yield "float" for all these cases:
-
- float x;
- struct { float x };
- struct { struct { float x; } x; };
- struct { struct { struct { float x; } x; } x; };
-
- However, if an inner type is smaller than MIN_SIZE, abort the
- unwrapping. */
-
-static struct type *
-s390_effective_inner_type (struct type *type, unsigned int min_size)
-{
- while (TYPE_CODE (type) == TYPE_CODE_STRUCT
- && TYPE_NFIELDS (type) == 1)
- {
- struct type *inner = check_typedef (TYPE_FIELD_TYPE (type, 0));
-
- if (TYPE_LENGTH (inner) < min_size)
- break;
- type = inner;
- }
-
- return type;
-}
-
-/* Return non-zero if TYPE should be passed like "float" or
- "double". */
-
-static int
-s390_function_arg_float (struct type *type)
-{
- /* Note that long double as well as complex types are intentionally
- excluded. */
- if (TYPE_LENGTH (type) > 8)
- return 0;
-
- /* A struct containing just a float or double is passed like a float
- or double. */
- type = s390_effective_inner_type (type, 0);
-
- return (TYPE_CODE (type) == TYPE_CODE_FLT
- || TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
-}
-
-/* Return non-zero if TYPE should be passed like a vector. */
-
-static int
-s390_function_arg_vector (struct type *type)
-{
- if (TYPE_LENGTH (type) > 16)
- return 0;
-
- /* Structs containing just a vector are passed like a vector. */
- type = s390_effective_inner_type (type, TYPE_LENGTH (type));
-
- return TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type);
-}
-
-/* Determine whether N is a power of two. */
-
-static int
-is_power_of_two (unsigned int n)
-{
- return n && ((n & (n - 1)) == 0);
-}
-
-/* For an argument whose type is TYPE and which is not passed like a
- float or vector, return non-zero if it should be passed like "int"
- or "long long". */
-
-static int
-s390_function_arg_integer (struct type *type)
-{
- enum type_code code = TYPE_CODE (type);
-
- if (TYPE_LENGTH (type) > 8)
- return 0;
-
- if (code == TYPE_CODE_INT
- || code == TYPE_CODE_ENUM
- || code == TYPE_CODE_RANGE
- || code == TYPE_CODE_CHAR
- || code == TYPE_CODE_BOOL
- || code == TYPE_CODE_PTR
- || TYPE_IS_REFERENCE (type))
- return 1;
-
- return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT)
- && is_power_of_two (TYPE_LENGTH (type)));
-}
-
-/* Argument passing state: Internal data structure passed to helper
- routines of s390_push_dummy_call. */
-
-struct s390_arg_state
- {
- /* Register cache, or NULL, if we are in "preparation mode". */
- struct regcache *regcache;
- /* Next available general/floating-point/vector register for
- argument passing. */
- int gr, fr, vr;
- /* Current pointer to copy area (grows downwards). */
- CORE_ADDR copy;
- /* Current pointer to parameter area (grows upwards). */
- CORE_ADDR argp;
- };
-
-/* Prepare one argument ARG for a dummy call and update the argument
- passing state AS accordingly. If the regcache field in AS is set,
- operate in "write mode" and write ARG into the inferior. Otherwise
- run "preparation mode" and skip all updates to the inferior. */
-
-static void
-s390_handle_arg (struct s390_arg_state *as, struct value *arg,
- struct gdbarch_tdep *tdep, int word_size,
- enum bfd_endian byte_order, int is_unnamed)
-{
- struct type *type = check_typedef (value_type (arg));
- unsigned int length = TYPE_LENGTH (type);
- int write_mode = as->regcache != NULL;
-
- if (s390_function_arg_float (type))
- {
- /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass
- arguments. The GNU/Linux for zSeries ABI uses 0, 2, 4, and
- 6. */
- if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
- {
- /* When we store a single-precision value in an FP register,
- it occupies the leftmost bits. */
- if (write_mode)
- regcache_cooked_write_part (as->regcache,
- S390_F0_REGNUM + as->fr,
- 0, length,
- value_contents (arg));
- as->fr += 2;
- }
- else
- {
- /* When we store a single-precision value in a stack slot,
- it occupies the rightmost bits. */
- as->argp = align_up (as->argp + length, word_size);
- if (write_mode)
- write_memory (as->argp - length, value_contents (arg),
- length);
- }
- }
- else if (tdep->vector_abi == S390_VECTOR_ABI_128
- && s390_function_arg_vector (type))
- {
- static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31};
-
- if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr))
- {
- int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24;
-
- if (write_mode)
- regcache_cooked_write_part (as->regcache, regnum,
- 0, length,
- value_contents (arg));
- as->vr++;
- }
- else
- {
- if (write_mode)
- write_memory (as->argp, value_contents (arg), length);
- as->argp = align_up (as->argp + length, word_size);
- }
- }
- else if (s390_function_arg_integer (type) && length <= word_size)
- {
- /* Initialize it just to avoid a GCC false warning. */
- ULONGEST val = 0;
-
- if (write_mode)
- {
- /* Place value in least significant bits of the register or
- memory word and sign- or zero-extend to full word size.
- This also applies to a struct or union. */
- val = TYPE_UNSIGNED (type)
- ? extract_unsigned_integer (value_contents (arg),
- length, byte_order)
- : extract_signed_integer (value_contents (arg),
- length, byte_order);
- }
-
- if (as->gr <= 6)
- {
- if (write_mode)
- regcache_cooked_write_unsigned (as->regcache,
- S390_R0_REGNUM + as->gr,
- val);
- as->gr++;
- }
- else
- {
- if (write_mode)
- write_memory_unsigned_integer (as->argp, word_size,
- byte_order, val);
- as->argp += word_size;
- }
- }
- else if (s390_function_arg_integer (type) && length == 8)
- {
- if (as->gr <= 5)
- {
- if (write_mode)
- {
- regcache_cooked_write (as->regcache,
- S390_R0_REGNUM + as->gr,
- value_contents (arg));
- regcache_cooked_write (as->regcache,
- S390_R0_REGNUM + as->gr + 1,
- value_contents (arg) + word_size);
- }
- as->gr += 2;
- }
- else
- {
- /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
- in it, then don't go back and use it again later. */
- as->gr = 7;
-
- if (write_mode)
- write_memory (as->argp, value_contents (arg), length);
- as->argp += length;
- }
- }
- else
- {
- /* This argument type is never passed in registers. Place the
- value in the copy area and pass a pointer to it. Use 8-byte
- alignment as a conservative assumption. */
- as->copy = align_down (as->copy - length, 8);
- if (write_mode)
- write_memory (as->copy, value_contents (arg), length);
-
- if (as->gr <= 6)
- {
- if (write_mode)
- regcache_cooked_write_unsigned (as->regcache,
- S390_R0_REGNUM + as->gr,
- as->copy);
- as->gr++;
- }
- else
- {
- if (write_mode)
- write_memory_unsigned_integer (as->argp, word_size,
- byte_order, as->copy);
- as->argp += word_size;
- }
- }
-}
-
-/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
- place to be passed to a function, as specified by the "GNU/Linux
- for S/390 ELF Application Binary Interface Supplement".
-
- SP is the current stack pointer. We must put arguments, links,
- padding, etc. whereever they belong, and return the new stack
- pointer value.
-
- If STRUCT_RETURN is non-zero, then the function we're calling is
- going to return a structure by value; STRUCT_ADDR is the address of
- a block we've allocated for it on the stack.
-
- Our caller has taken care of any type promotions needed to satisfy
- prototypes or the old K&R argument-passing rules. */
-
-static CORE_ADDR
-s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
- struct regcache *regcache, CORE_ADDR bp_addr,
- int nargs, struct value **args, CORE_ADDR sp,
- int struct_return, CORE_ADDR struct_addr)
-{
- struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int i;
- struct s390_arg_state arg_state, arg_prep;
- CORE_ADDR param_area_start, new_sp;
- struct type *ftype = check_typedef (value_type (function));
-
- if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
- ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
-
- arg_prep.copy = sp;
- arg_prep.gr = struct_return ? 3 : 2;
- arg_prep.fr = 0;
- arg_prep.vr = 0;
- arg_prep.argp = 0;
- arg_prep.regcache = NULL;
-
- /* Initialize arg_state for "preparation mode". */
- arg_state = arg_prep;
-
- /* Update arg_state.copy with the start of the reference-to-copy area
- and arg_state.argp with the size of the parameter area. */
- for (i = 0; i < nargs; i++)
- s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
- TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
-
- param_area_start = align_down (arg_state.copy - arg_state.argp, 8);
-
- /* Allocate the standard frame areas: the register save area, the
- word reserved for the compiler, and the back chain pointer. */
- new_sp = param_area_start - (16 * word_size + 32);
-
- /* Now we have the final stack pointer. Make sure we didn't
- underflow; on 31-bit, this would result in addresses with the
- high bit set, which causes confusion elsewhere. Note that if we
- error out here, stack and registers remain untouched. */
- if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp)
- error (_("Stack overflow"));
-
- /* Pass the structure return address in general register 2. */
- if (struct_return)
- regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr);
-
- /* Initialize arg_state for "write mode". */
- arg_state = arg_prep;
- arg_state.argp = param_area_start;
- arg_state.regcache = regcache;
-
- /* Write all parameters. */
- for (i = 0; i < nargs; i++)
- s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
- TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
-
- /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */
- if (word_size == 4)
- {
- ULONGEST pswa;
- regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
- bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
- }
- regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
-
- /* Store updated stack pointer. */
- regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp);
-
- /* We need to return the 'stack part' of the frame ID,
- which is actually the top of the register save area. */
- return param_area_start;
-}
-
-/* Assuming THIS_FRAME is a dummy, return the frame ID of that
- dummy frame. The frame ID's base needs to match the TOS value
- returned by push_dummy_call, and the PC match the dummy frame's
- breakpoint. */
-static struct frame_id
-s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
-{
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
- sp = gdbarch_addr_bits_remove (gdbarch, sp);
-
- return frame_id_build (sp + 16*word_size + 32,
- get_frame_pc (this_frame));
-}
-
-static CORE_ADDR
-s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
- /* Both the 32- and 64-bit ABI's say that the stack pointer should
- always be aligned on an eight-byte boundary. */
- return (addr & -8);
-}
-
-
-/* Helper for s390_return_value: Set or retrieve a function return
- value if it resides in a register. */
-
-static void
-s390_register_return_value (struct gdbarch *gdbarch, struct type *type,
- struct regcache *regcache,
- gdb_byte *out, const gdb_byte *in)
-{
- enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
- int word_size = gdbarch_ptr_bit (gdbarch) / 8;
- int length = TYPE_LENGTH (type);
- int code = TYPE_CODE (type);
-
- if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
- {
- /* Float-like value: left-aligned in f0. */
- if (in != NULL)
- regcache_cooked_write_part (regcache, S390_F0_REGNUM,
- 0, length, in);
- else
- regcache_cooked_read_part (regcache, S390_F0_REGNUM,
- 0, length, out);
- }
- else if (code == TYPE_CODE_ARRAY)
- {
- /* Vector: left-aligned in v24. */
- if (in != NULL)
- regcache_cooked_write_part (regcache, S390_V24_REGNUM,
- 0, length, in);
- else
- regcache_cooked_read_part (regcache, S390_V24_REGNUM,
- 0, length, out);
- }
- else if (length <= word_size)
- {
- /* Integer: zero- or sign-extended in r2. */
- if (out != NULL)
- regcache_cooked_read_part (regcache, S390_R2_REGNUM,
- word_size - length, length, out);
- else if (TYPE_UNSIGNED (type))
- regcache_cooked_write_unsigned
- (regcache, S390_R2_REGNUM,
- extract_unsigned_integer (in, length, byte_order));
- else
- regcache_cooked_write_signed
- (regcache, S390_R2_REGNUM,
- extract_signed_integer (in, length, byte_order));
- }
- else if (length == 2 * word_size)
- {
- /* Double word: in r2 and r3. */
- if (in != NULL)
- {
- regcache_cooked_write (regcache, S390_R2_REGNUM, in);
- regcache_cooked_write (regcache, S390_R3_REGNUM,
- in + word_size);
- }
- else
- {
- regcache_cooked_read (regcache, S390_R2_REGNUM, out);
- regcache_cooked_read (regcache, S390_R3_REGNUM,
- out + word_size);
- }
- }
- else
- internal_error (__FILE__, __LINE__, _("invalid return type"));
-}
-
-
-/* Implement the 'return_value' gdbarch method. */
-
-static enum return_value_convention
-s390_return_value (struct gdbarch *gdbarch, struct value *function,
- struct type *type, struct regcache *regcache,
- gdb_byte *out, const gdb_byte *in)
-{
- enum return_value_convention rvc;
-
- type = check_typedef (type);
-
- switch (TYPE_CODE (type))
- {
- case TYPE_CODE_STRUCT:
- case TYPE_CODE_UNION:
- case TYPE_CODE_COMPLEX:
- rvc = RETURN_VALUE_STRUCT_CONVENTION;
- break;
- case TYPE_CODE_ARRAY:
- rvc = (gdbarch_tdep (gdbarch)->vector_abi == S390_VECTOR_ABI_128
- && TYPE_LENGTH (type) <= 16 && TYPE_VECTOR (type))
- ? RETURN_VALUE_REGISTER_CONVENTION
- : RETURN_VALUE_STRUCT_CONVENTION;
- break;
- default:
- rvc = TYPE_LENGTH (type) <= 8
- ? RETURN_VALUE_REGISTER_CONVENTION
- : RETURN_VALUE_STRUCT_CONVENTION;
- }
-
- if (in != NULL || out != NULL)
- {
- if (rvc == RETURN_VALUE_REGISTER_CONVENTION)
- s390_register_return_value (gdbarch, type, regcache, out, in);
- else if (in != NULL)
- error (_("Cannot set function return value."));
- else
- error (_("Function return value unknown."));
- }
-
- return rvc;
-}
-
-
-/* Breakpoints. */
-constexpr gdb_byte s390_break_insn[] = { 0x0, 0x1 };
-
-typedef BP_MANIPULATION (s390_break_insn) s390_breakpoint;
-
-/* Address handling. */
-
-static CORE_ADDR
-s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
-{
- return addr & 0x7fffffff;
-}
-
-static int
-s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
-{
- if (byte_size == 4)
- return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
- else
- return 0;
-}
-
-static const char *
-s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
-{
- if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
- return "mode32";
- else
- return NULL;
-}
-
-static int
-s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
- const char *name,
- int *type_flags_ptr)
-{
- if (strcmp (name, "mode32") == 0)
- {
- *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
- return 1;
- }
- else
- return 0;
-}
-
/* Implement gdbarch_gcc_target_options. GCC does not know "-m32" or
"-mcmodel=large". */
@@ -7812,361 +5558,6 @@ s390_init_linux_record_tdep (struct linux_record_tdep *record_tdep,
record_tdep->ioctl_FIOQSIZE = 0x545e;
}
-/* Validate the range of registers. NAMES must be known at compile time. */
-
-#define s390_validate_reg_range(feature, tdesc_data, start, names) \
-do \
-{ \
- for (int i = 0; i < ARRAY_SIZE (names); i++) \
- if (!tdesc_numbered_register (feature, tdesc_data, start + i, names[i])) \
- return false; \
-} \
-while (0)
-
-/* Validate the target description. Also numbers registers contained in
- tdesc. */
-
-static bool
-s390_tdesc_valid (struct gdbarch_tdep *tdep,
- struct tdesc_arch_data *tdesc_data)
-{
- static const char *const psw[] = {
- "pswm", "pswa"
- };
- static const char *const gprs[] = {
- "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
- "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
- };
- static const char *const fprs[] = {
- "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
- "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
- };
- static const char *const acrs[] = {
- "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
- "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
- };
- static const char *const gprs_lower[] = {
- "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
- "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
- };
- static const char *const gprs_upper[] = {
- "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
- "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
- };
- static const char *const tdb_regs[] = {
- "tdb0", "tac", "tct", "atia",
- "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
- "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"
- };
- static const char *const vxrs_low[] = {
- "v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l",
- "v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l",
- };
- static const char *const vxrs_high[] = {
- "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24",
- "v25", "v26", "v27", "v28", "v29", "v30", "v31",
- };
- static const char *const gs_cb[] = {
- "gsd", "gssm", "gsepla",
- };
- static const char *const gs_bc[] = {
- "bc_gsd", "bc_gssm", "bc_gsepla",
- };
-
- const struct target_desc *tdesc = tdep->tdesc;
- const struct tdesc_feature *feature;
-
- /* Core registers, i.e. general purpose and PSW. */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
- if (feature == NULL)
- return false;
-
- s390_validate_reg_range (feature, tdesc_data, S390_PSWM_REGNUM, psw);
-
- if (tdesc_unnumbered_register (feature, "r0"))
- {
- s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM, gprs);
- }
- else
- {
- tdep->have_upper = true;
- s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM,
- gprs_lower);
- s390_validate_reg_range (feature, tdesc_data, S390_R0_UPPER_REGNUM,
- gprs_upper);
- }
-
- /* Floating point registers. */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
- if (feature == NULL)
- return false;
-
- if (!tdesc_numbered_register (feature, tdesc_data, S390_FPC_REGNUM, "fpc"))
- return false;
-
- s390_validate_reg_range (feature, tdesc_data, S390_F0_REGNUM, fprs);
-
- /* Access control registers. */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
- if (feature == NULL)
- return false;
-
- s390_validate_reg_range (feature, tdesc_data, S390_A0_REGNUM, acrs);
-
- /* Optional GNU/Linux-specific "registers". */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
- if (feature)
- {
- tdesc_numbered_register (feature, tdesc_data,
- S390_ORIG_R2_REGNUM, "orig_r2");
-
- if (tdesc_numbered_register (feature, tdesc_data,
- S390_LAST_BREAK_REGNUM, "last_break"))
- tdep->have_linux_v1 = true;
-
- if (tdesc_numbered_register (feature, tdesc_data,
- S390_SYSTEM_CALL_REGNUM, "system_call"))
- tdep->have_linux_v2 = true;
-
- if (tdep->have_linux_v2 && !tdep->have_linux_v1)
- return false;
- }
-
- /* Transaction diagnostic block. */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb");
- if (feature)
- {
- s390_validate_reg_range (feature, tdesc_data, S390_TDB_DWORD0_REGNUM,
- tdb_regs);
- tdep->have_tdb = true;
- }
-
- /* Vector registers. */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx");
- if (feature)
- {
- s390_validate_reg_range (feature, tdesc_data, S390_V0_LOWER_REGNUM,
- vxrs_low);
- s390_validate_reg_range (feature, tdesc_data, S390_V16_REGNUM,
- vxrs_high);
- tdep->have_vx = true;
- }
-
- /* Guarded-storage registers. */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gs");
- if (feature)
- {
- s390_validate_reg_range (feature, tdesc_data, S390_GSD_REGNUM, gs_cb);
- tdep->have_gs = true;
- }
-
- /* Guarded-storage broadcast control. */
- feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gsbc");
- if (feature)
- {
- if (!tdep->have_gs)
- return false;
- s390_validate_reg_range (feature, tdesc_data, S390_BC_GSD_REGNUM,
- gs_bc);
- }
-
- return true;
-}
-
-/* Allocate and initialize new gdbarch_tdep. Caller is responsible to free
- memory after use. */
-
-static struct gdbarch_tdep *
-s390_gdbarch_tdep_alloc ()
-{
- struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
-
- tdep->tdesc = NULL;
-
- tdep->abi = ABI_NONE;
- tdep->vector_abi = S390_VECTOR_ABI_NONE;
-
- tdep->gpr_full_regnum = -1;
- tdep->v0_full_regnum = -1;
- tdep->pc_regnum = -1;
- tdep->cc_regnum = -1;
-
- tdep->have_upper = false;
- tdep->have_linux_v1 = false;
- tdep->have_linux_v2 = false;
- tdep->have_tdb = false;
- tdep->have_vx = false;
- tdep->have_gs = false;
-
- return tdep;
-}
-
-/* Set up gdbarch struct. */
-
-static struct gdbarch *
-s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
-{
- const struct target_desc *tdesc = info.target_desc;
- int first_pseudo_reg, last_pseudo_reg;
- static const char *const stap_register_prefixes[] = { "%", NULL };
- static const char *const stap_register_indirection_prefixes[] = { "(",
- NULL };
- static const char *const stap_register_indirection_suffixes[] = { ")",
- NULL };
-
- /* Find a candidate among extant architectures. */
- arches = gdbarch_list_lookup_by_info (arches, &info);
- if (arches != NULL)
- return arches->gdbarch;
-
- /* Otherwise create a new gdbarch for the specified machine type. */
- struct gdbarch_tdep *tdep = s390_gdbarch_tdep_alloc ();
- struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
- struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
- info.tdesc_data = tdesc_data;
-
- /* The DWARF unwinders must be appended before the ABI is initialized.
- Otherwise it is possible that a ABI default unwinder gets called before
- the DWARF unwinder even gets the chance. */
- dwarf2_append_unwinders (gdbarch);
-
- gdbarch_init_osabi (info, gdbarch);
-
- /* Check any target description for validity. */
- gdb_assert (tdesc_has_registers (tdep->tdesc));
- if (!s390_tdesc_valid (tdep, tdesc_data))
- {
- tdesc_data_cleanup (tdesc_data);
- xfree (tdep);
- gdbarch_free (gdbarch);
- return NULL;
- }
-
- /* Determine vector ABI. */
-#ifdef HAVE_ELF
- if (tdep->have_vx
- && info.abfd != NULL
- && info.abfd->format == bfd_object
- && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
- && bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
- Tag_GNU_S390_ABI_Vector) == 2)
- tdep->vector_abi = S390_VECTOR_ABI_128;
-#endif
-
- set_gdbarch_believe_pcc_promotion (gdbarch, 0);
- set_gdbarch_char_signed (gdbarch, 0);
-
- /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
- We can safely let them default to 128-bit, since the debug info
- will give the size of type actually used in each case. */
- set_gdbarch_long_double_bit (gdbarch, 128);
- set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
-
- /* Amount PC must be decremented by after a breakpoint. This is
- often the number of bytes returned by gdbarch_breakpoint_from_pc but not
- always. */
- set_gdbarch_decr_pc_after_break (gdbarch, 2);
- /* Stack grows downward. */
- set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
- set_gdbarch_breakpoint_kind_from_pc (gdbarch, s390_breakpoint::kind_from_pc);
- set_gdbarch_sw_breakpoint_from_kind (gdbarch, s390_breakpoint::bp_from_kind);
- set_gdbarch_software_single_step (gdbarch, s390_software_single_step);
- set_gdbarch_displaced_step_hw_singlestep (gdbarch, s390_displaced_step_hw_singlestep);
- set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
- set_gdbarch_stack_frame_destroyed_p (gdbarch, s390_stack_frame_destroyed_p);
-
- set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
- set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
- set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
- set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
- set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
- set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
- set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
- set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
- set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
- set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
- set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
- set_tdesc_pseudo_register_reggroup_p (gdbarch,
- s390_pseudo_register_reggroup_p);
- set_gdbarch_ax_pseudo_register_collect (gdbarch,
- s390_ax_pseudo_register_collect);
- set_gdbarch_ax_pseudo_register_push_stack
- (gdbarch, s390_ax_pseudo_register_push_stack);
- set_gdbarch_gen_return_address (gdbarch, s390_gen_return_address);
- tdesc_use_registers (gdbarch, tdep->tdesc, tdesc_data);
- set_gdbarch_register_name (gdbarch, s390_register_name);
-
- /* Assign pseudo register numbers. */
- first_pseudo_reg = gdbarch_num_regs (gdbarch);
- last_pseudo_reg = first_pseudo_reg;
- if (tdep->have_upper)
- {
- tdep->gpr_full_regnum = last_pseudo_reg;
- last_pseudo_reg += 16;
- }
- if (tdep->have_vx)
- {
- tdep->v0_full_regnum = last_pseudo_reg;
- last_pseudo_reg += 16;
- }
- tdep->pc_regnum = last_pseudo_reg++;
- tdep->cc_regnum = last_pseudo_reg++;
- set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
- set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
-
- /* Inferior function calls. */
- set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
- set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
- set_gdbarch_frame_align (gdbarch, s390_frame_align);
- set_gdbarch_return_value (gdbarch, s390_return_value);
-
- /* Frame handling. */
- dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
- dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
- frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
- set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
- set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
-
- /* Displaced stepping. */
- set_gdbarch_displaced_step_copy_insn (gdbarch,
- s390_displaced_step_copy_insn);
- set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
- set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
- set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
-
- switch (tdep->abi)
- {
- case ABI_LINUX_S390:
- set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
- break;
-
- case ABI_LINUX_ZSERIES:
- set_gdbarch_long_bit (gdbarch, 64);
- set_gdbarch_long_long_bit (gdbarch, 64);
- set_gdbarch_ptr_bit (gdbarch, 64);
- set_gdbarch_address_class_type_flags (gdbarch,
- s390_address_class_type_flags);
- set_gdbarch_address_class_type_flags_to_name (gdbarch,
- s390_address_class_type_flags_to_name);
- set_gdbarch_address_class_name_to_type_flags (gdbarch,
- s390_address_class_name_to_type_flags);
- break;
- }
-
- /* SystemTap functions. */
- set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
- set_gdbarch_stap_register_indirection_prefixes (gdbarch,
- stap_register_indirection_prefixes);
- set_gdbarch_stap_register_indirection_suffixes (gdbarch,
- stap_register_indirection_suffixes);
-
- set_gdbarch_disassembler_options (gdbarch, &s390_disassembler_options);
- set_gdbarch_valid_disassembler_options (gdbarch,
- disassembler_options_s390 ());
-
- return gdbarch;
-}
-
/* Initialize OSABI common for GNU/Linux on 31- and 64-bit systems. */
static void
@@ -8181,6 +5572,7 @@ s390_linux_init_abi_any (struct gdbarch_info info, struct gdbarch *gdbarch)
set_gdbarch_guess_tracepoint_registers (gdbarch,
s390_guess_tracepoint_registers);
set_gdbarch_write_pc (gdbarch, s390_write_pc);
+ set_gdbarch_cannot_store_register (gdbarch, s390_cannot_store_register);
/* Syscall handling. */
set_gdbarch_get_syscall_number (gdbarch, s390_linux_get_syscall_number);
@@ -8249,11 +5641,8 @@ s390_linux_init_abi_64 (struct gdbarch_info info, struct gdbarch *gdbarch)
}
void
-_initialize_s390_tdep (void)
+_initialize_s390_linux_tdep (void)
{
- /* Hook us into the gdbarch mechanism. */
- register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
-
/* Hook us into the OSABI mechanism. */
gdbarch_register_osabi (bfd_arch_s390, bfd_mach_s390_31, GDB_OSABI_LINUX,
s390_linux_init_abi_31);
diff --git a/gdb/s390-linux-tdep.h b/gdb/s390-linux-tdep.h
index e8955300c5..2ecc9f8c18 100644
--- a/gdb/s390-linux-tdep.h
+++ b/gdb/s390-linux-tdep.h
@@ -1,4 +1,5 @@
-/* Target-dependent code for GDB, the GNU debugger.
+/* Target-dependent code for GNU/Linux on s390.
+
Copyright (C) 2003-2017 Free Software Foundation, Inc.
This file is part of GDB.
@@ -16,173 +17,8 @@
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
-#ifndef S390_TDEP_H
-#define S390_TDEP_H
-
-/* Hardware capabilities. */
-
-#ifndef HWCAP_S390_HIGH_GPRS
-#define HWCAP_S390_HIGH_GPRS 512
-#endif
-
-#ifndef HWCAP_S390_TE
-#define HWCAP_S390_TE 1024
-#endif
-
-#ifndef HWCAP_S390_VX
-#define HWCAP_S390_VX 2048
-#endif
-
-#ifndef HWCAP_S390_GS
-#define HWCAP_S390_GS 16384
-#endif
-
-/* Register information. */
-
-/* Program Status Word. */
-#define S390_PSWM_REGNUM 0
-#define S390_PSWA_REGNUM 1
-/* General Purpose Registers. */
-#define S390_R0_REGNUM 2
-#define S390_R1_REGNUM 3
-#define S390_R2_REGNUM 4
-#define S390_R3_REGNUM 5
-#define S390_R4_REGNUM 6
-#define S390_R5_REGNUM 7
-#define S390_R6_REGNUM 8
-#define S390_R7_REGNUM 9
-#define S390_R8_REGNUM 10
-#define S390_R9_REGNUM 11
-#define S390_R10_REGNUM 12
-#define S390_R11_REGNUM 13
-#define S390_R12_REGNUM 14
-#define S390_R13_REGNUM 15
-#define S390_R14_REGNUM 16
-#define S390_R15_REGNUM 17
-/* Access Registers. */
-#define S390_A0_REGNUM 18
-#define S390_A1_REGNUM 19
-#define S390_A2_REGNUM 20
-#define S390_A3_REGNUM 21
-#define S390_A4_REGNUM 22
-#define S390_A5_REGNUM 23
-#define S390_A6_REGNUM 24
-#define S390_A7_REGNUM 25
-#define S390_A8_REGNUM 26
-#define S390_A9_REGNUM 27
-#define S390_A10_REGNUM 28
-#define S390_A11_REGNUM 29
-#define S390_A12_REGNUM 30
-#define S390_A13_REGNUM 31
-#define S390_A14_REGNUM 32
-#define S390_A15_REGNUM 33
-/* Floating Point Control Word. */
-#define S390_FPC_REGNUM 34
-/* Floating Point Registers. */
-#define S390_F0_REGNUM 35
-#define S390_F1_REGNUM 36
-#define S390_F2_REGNUM 37
-#define S390_F3_REGNUM 38
-#define S390_F4_REGNUM 39
-#define S390_F5_REGNUM 40
-#define S390_F6_REGNUM 41
-#define S390_F7_REGNUM 42
-#define S390_F8_REGNUM 43
-#define S390_F9_REGNUM 44
-#define S390_F10_REGNUM 45
-#define S390_F11_REGNUM 46
-#define S390_F12_REGNUM 47
-#define S390_F13_REGNUM 48
-#define S390_F14_REGNUM 49
-#define S390_F15_REGNUM 50
-/* General Purpose Register Upper Halves. */
-#define S390_R0_UPPER_REGNUM 51
-#define S390_R1_UPPER_REGNUM 52
-#define S390_R2_UPPER_REGNUM 53
-#define S390_R3_UPPER_REGNUM 54
-#define S390_R4_UPPER_REGNUM 55
-#define S390_R5_UPPER_REGNUM 56
-#define S390_R6_UPPER_REGNUM 57
-#define S390_R7_UPPER_REGNUM 58
-#define S390_R8_UPPER_REGNUM 59
-#define S390_R9_UPPER_REGNUM 60
-#define S390_R10_UPPER_REGNUM 61
-#define S390_R11_UPPER_REGNUM 62
-#define S390_R12_UPPER_REGNUM 63
-#define S390_R13_UPPER_REGNUM 64
-#define S390_R14_UPPER_REGNUM 65
-#define S390_R15_UPPER_REGNUM 66
-/* GNU/Linux-specific optional registers. */
-#define S390_ORIG_R2_REGNUM 67
-#define S390_LAST_BREAK_REGNUM 68
-#define S390_SYSTEM_CALL_REGNUM 69
-/* Transaction diagnostic block. */
-#define S390_TDB_DWORD0_REGNUM 70
-#define S390_TDB_ABORT_CODE_REGNUM 71
-#define S390_TDB_CONFLICT_TOKEN_REGNUM 72
-#define S390_TDB_ATIA_REGNUM 73
-#define S390_TDB_R0_REGNUM 74
-#define S390_TDB_R1_REGNUM 75
-#define S390_TDB_R2_REGNUM 76
-#define S390_TDB_R3_REGNUM 77
-#define S390_TDB_R4_REGNUM 78
-#define S390_TDB_R5_REGNUM 79
-#define S390_TDB_R6_REGNUM 80
-#define S390_TDB_R7_REGNUM 81
-#define S390_TDB_R8_REGNUM 82
-#define S390_TDB_R9_REGNUM 83
-#define S390_TDB_R10_REGNUM 84
-#define S390_TDB_R11_REGNUM 85
-#define S390_TDB_R12_REGNUM 86
-#define S390_TDB_R13_REGNUM 87
-#define S390_TDB_R14_REGNUM 88
-#define S390_TDB_R15_REGNUM 89
-/* Vector registers. */
-#define S390_V0_LOWER_REGNUM 90
-#define S390_V1_LOWER_REGNUM 91
-#define S390_V2_LOWER_REGNUM 92
-#define S390_V3_LOWER_REGNUM 93
-#define S390_V4_LOWER_REGNUM 94
-#define S390_V5_LOWER_REGNUM 95
-#define S390_V6_LOWER_REGNUM 96
-#define S390_V7_LOWER_REGNUM 97
-#define S390_V8_LOWER_REGNUM 98
-#define S390_V9_LOWER_REGNUM 99
-#define S390_V10_LOWER_REGNUM 100
-#define S390_V11_LOWER_REGNUM 101
-#define S390_V12_LOWER_REGNUM 102
-#define S390_V13_LOWER_REGNUM 103
-#define S390_V14_LOWER_REGNUM 104
-#define S390_V15_LOWER_REGNUM 105
-#define S390_V16_REGNUM 106
-#define S390_V17_REGNUM 107
-#define S390_V18_REGNUM 108
-#define S390_V19_REGNUM 109
-#define S390_V20_REGNUM 110
-#define S390_V21_REGNUM 111
-#define S390_V22_REGNUM 112
-#define S390_V23_REGNUM 113
-#define S390_V24_REGNUM 114
-#define S390_V25_REGNUM 115
-#define S390_V26_REGNUM 116
-#define S390_V27_REGNUM 117
-#define S390_V28_REGNUM 118
-#define S390_V29_REGNUM 119
-#define S390_V30_REGNUM 120
-#define S390_V31_REGNUM 121
-#define S390_GSD_REGNUM 122
-#define S390_GSSM_REGNUM 123
-#define S390_GSEPLA_REGNUM 124
-#define S390_BC_GSD_REGNUM 125
-#define S390_BC_GSSM_REGNUM 126
-#define S390_BC_GSEPLA_REGNUM 127
-/* Total. */
-#define S390_NUM_REGS 128
-
-/* Special register usage. */
-#define S390_SP_REGNUM S390_R15_REGNUM
-#define S390_RETADDR_REGNUM S390_R14_REGNUM
-#define S390_FRAME_REGNUM S390_R11_REGNUM
+#ifndef S390_LINUX_TDEP_H
+#define S390_LINUX_TDEP_H
#define S390_IS_GREGSET_REGNUM(i) \
(((i) >= S390_PSWM_REGNUM && (i) <= S390_A15_REGNUM) \
@@ -195,7 +31,7 @@
#define S390_IS_TDBREGSET_REGNUM(i) \
((i) >= S390_TDB_DWORD0_REGNUM && (i) <= S390_TDB_R15_REGNUM)
-/* Core file register sets, defined in s390-tdep.c. */
+/* Core file register sets, defined in s390-linux-tdep.c. */
#define s390_sizeof_gregset 0x90
#define s390x_sizeof_gregset 0xd8
extern const struct regset s390_gregset;
@@ -230,4 +66,4 @@ extern struct target_desc *tdesc_s390x_vx_linux64;
extern struct target_desc *tdesc_s390x_tevx_linux64;
extern struct target_desc *tdesc_s390x_gs_linux64;
-#endif
+#endif /* S390_LINUX_TDEP_H */
diff --git a/gdb/s390-tdep.c b/gdb/s390-tdep.c
new file mode 100644
index 0000000000..0961c5d8c7
--- /dev/null
+++ b/gdb/s390-tdep.c
@@ -0,0 +1,2509 @@
+/* Target-dependent code for s390.
+
+ Copyright (C) 2001-2017 Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#include "defs.h"
+
+#include "arch-utils.h"
+#include "ax-gdb.h"
+#include "dwarf2-frame.h"
+#include "elf/s390.h"
+#include "elf-bfd.h"
+#include "frame-base.h"
+#include "gdbarch.h"
+#include "gdbcore.h"
+#include "infrun.h"
+#include "linux-tdep.h"
+#include "osabi.h"
+#include "record-full.h"
+#include "regcache.h"
+#include "reggroups.h"
+#include "s390-tdep.h"
+#include "target-descriptions.h"
+#include "value.h"
+
+/* Holds the current set of options to be passed to the disassembler. */
+static char *s390_disassembler_options;
+
+/* Breakpoints. */
+
+constexpr gdb_byte s390_break_insn[] = { 0x0, 0x1 };
+
+typedef BP_MANIPULATION (s390_break_insn) s390_breakpoint;
+
+/* Decoding S/390 instructions. */
+
+/* See s390-tdep.h. */
+
+int
+s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
+{
+ static int s390_instrlen[] = { 2, 4, 4, 6 };
+ int instrlen;
+
+ if (target_read_memory (at, &instr[0], 2))
+ return -1;
+ instrlen = s390_instrlen[instr[0] >> 6];
+ if (instrlen > 2)
+ {
+ if (target_read_memory (at + 2, &instr[2], instrlen - 2))
+ return -1;
+ }
+ return instrlen;
+}
+
+/* The functions below are for recognizing and decoding S/390
+ instructions of various formats. Each of them checks whether INSN
+ is an instruction of the given format, with the specified opcodes.
+ If it is, it sets the remaining arguments to the values of the
+ instruction's fields, and returns a non-zero value; otherwise, it
+ returns zero.
+
+ These functions' arguments appear in the order they appear in the
+ instruction, not in the machine-language form. So, opcodes always
+ come first, even though they're sometimes scattered around the
+ instructions. And displacements appear before base and extension
+ registers, as they do in the assembly syntax, not at the end, as
+ they do in the machine language. */
+
+static int
+is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
+{
+ if (insn[0] == op1 && (insn[1] & 0xf) == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ /* i2 is a 16-bit signed quantity. */
+ *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+static int
+is_ril (bfd_byte *insn, int op1, int op2,
+ unsigned int *r1, int *i2)
+{
+ if (insn[0] == op1 && (insn[1] & 0xf) == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ /* i2 is a signed quantity. If the host 'int' is 32 bits long,
+ no sign extension is necessary, but we don't want to assume
+ that. */
+ *i2 = (((insn[2] << 24)
+ | (insn[3] << 16)
+ | (insn[4] << 8)
+ | (insn[5])) ^ 0x80000000) - 0x80000000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+static int
+is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
+{
+ if (insn[0] == op)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *r2 = insn[1] & 0xf;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+static int
+is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
+{
+ if (((insn[0] << 8) | insn[1]) == op)
+ {
+ /* Yes, insn[3]. insn[2] is unused in RRE format. */
+ *r1 = (insn[3] >> 4) & 0xf;
+ *r2 = insn[3] & 0xf;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+static int
+is_rs (bfd_byte *insn, int op,
+ unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
+{
+ if (insn[0] == op)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *r3 = insn[1] & 0xf;
+ *b2 = (insn[2] >> 4) & 0xf;
+ *d2 = ((insn[2] & 0xf) << 8) | insn[3];
+ return 1;
+ }
+ else
+ return 0;
+}
+
+static int
+is_rsy (bfd_byte *insn, int op1, int op2,
+ unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2)
+{
+ if (insn[0] == op1
+ && insn[5] == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *r3 = insn[1] & 0xf;
+ *b2 = (insn[2] >> 4) & 0xf;
+ /* The 'long displacement' is a 20-bit signed integer. */
+ *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
+ ^ 0x80000) - 0x80000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+static int
+is_rx (bfd_byte *insn, int op,
+ unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
+{
+ if (insn[0] == op)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *x2 = insn[1] & 0xf;
+ *b2 = (insn[2] >> 4) & 0xf;
+ *d2 = ((insn[2] & 0xf) << 8) | insn[3];
+ return 1;
+ }
+ else
+ return 0;
+}
+
+static int
+is_rxy (bfd_byte *insn, int op1, int op2,
+ unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2)
+{
+ if (insn[0] == op1
+ && insn[5] == op2)
+ {
+ *r1 = (insn[1] >> 4) & 0xf;
+ *x2 = insn[1] & 0xf;
+ *b2 = (insn[2] >> 4) & 0xf;
+ /* The 'long displacement' is a 20-bit signed integer. */
+ *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
+ ^ 0x80000) - 0x80000;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+/* A helper for s390_software_single_step, decides if an instruction
+ is a partial-execution instruction that needs to be executed until
+ completion when in record mode. If it is, returns 1 and writes
+ instruction length to a pointer. */
+
+static int
+s390_is_partial_instruction (struct gdbarch *gdbarch, CORE_ADDR loc, int *len)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ uint16_t insn;
+
+ insn = read_memory_integer (loc, 2, byte_order);
+
+ switch (insn >> 8)
+ {
+ case 0xa8: /* MVCLE */
+ *len = 4;
+ return 1;
+
+ case 0xeb:
+ {
+ insn = read_memory_integer (loc + 4, 2, byte_order);
+ if ((insn & 0xff) == 0x8e)
+ {
+ /* MVCLU */
+ *len = 6;
+ return 1;
+ }
+ }
+ break;
+ }
+
+ switch (insn)
+ {
+ case 0xb255: /* MVST */
+ case 0xb263: /* CMPSC */
+ case 0xb2a5: /* TRE */
+ case 0xb2a6: /* CU21 */
+ case 0xb2a7: /* CU12 */
+ case 0xb9b0: /* CU14 */
+ case 0xb9b1: /* CU24 */
+ case 0xb9b2: /* CU41 */
+ case 0xb9b3: /* CU42 */
+ case 0xb92a: /* KMF */
+ case 0xb92b: /* KMO */
+ case 0xb92f: /* KMC */
+ case 0xb92d: /* KMCTR */
+ case 0xb92e: /* KM */
+ case 0xb93c: /* PPNO */
+ case 0xb990: /* TRTT */
+ case 0xb991: /* TRTO */
+ case 0xb992: /* TROT */
+ case 0xb993: /* TROO */
+ *len = 4;
+ return 1;
+ }
+
+ return 0;
+}
+
+/* Implement the "software_single_step" gdbarch method, needed to single step
+ through instructions like MVCLE in record mode, to make sure they are
+ executed to completion. Without that, record will save the full length
+ of destination buffer on every iteration, even though the CPU will only
+ process about 4kiB of it each time, leading to O(n**2) memory and time
+ complexity. */
+
+static std::vector<CORE_ADDR>
+s390_software_single_step (struct regcache *regcache)
+{
+ struct gdbarch *gdbarch = regcache->arch ();
+ CORE_ADDR loc = regcache_read_pc (regcache);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int len;
+ uint16_t insn;
+
+ /* Special handling only if recording. */
+ if (!record_full_is_used ())
+ return {};
+
+ /* First, match a partial instruction. */
+ if (!s390_is_partial_instruction (gdbarch, loc, &len))
+ return {};
+
+ loc += len;
+
+ /* Second, look for a branch back to it. */
+ insn = read_memory_integer (loc, 2, byte_order);
+ if (insn != 0xa714) /* BRC with mask 1 */
+ return {};
+
+ insn = read_memory_integer (loc + 2, 2, byte_order);
+ if (insn != (uint16_t) -(len / 2))
+ return {};
+
+ loc += 4;
+
+ /* Found it, step past the whole thing. */
+ return {loc};
+}
+
+/* Displaced stepping. */
+
+/* Return true if INSN is a non-branch RIL-b or RIL-c format
+ instruction. */
+
+static int
+is_non_branch_ril (gdb_byte *insn)
+{
+ gdb_byte op1 = insn[0];
+
+ if (op1 == 0xc4)
+ {
+ gdb_byte op2 = insn[1] & 0x0f;
+
+ switch (op2)
+ {
+ case 0x02: /* llhrl */
+ case 0x04: /* lghrl */
+ case 0x05: /* lhrl */
+ case 0x06: /* llghrl */
+ case 0x07: /* sthrl */
+ case 0x08: /* lgrl */
+ case 0x0b: /* stgrl */
+ case 0x0c: /* lgfrl */
+ case 0x0d: /* lrl */
+ case 0x0e: /* llgfrl */
+ case 0x0f: /* strl */
+ return 1;
+ }
+ }
+ else if (op1 == 0xc6)
+ {
+ gdb_byte op2 = insn[1] & 0x0f;
+
+ switch (op2)
+ {
+ case 0x00: /* exrl */
+ case 0x02: /* pfdrl */
+ case 0x04: /* cghrl */
+ case 0x05: /* chrl */
+ case 0x06: /* clghrl */
+ case 0x07: /* clhrl */
+ case 0x08: /* cgrl */
+ case 0x0a: /* clgrl */
+ case 0x0c: /* cgfrl */
+ case 0x0d: /* crl */
+ case 0x0e: /* clgfrl */
+ case 0x0f: /* clrl */
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+typedef buf_displaced_step_closure s390_displaced_step_closure;
+
+/* Implementation of gdbarch_displaced_step_copy_insn. */
+
+static struct displaced_step_closure *
+s390_displaced_step_copy_insn (struct gdbarch *gdbarch,
+ CORE_ADDR from, CORE_ADDR to,
+ struct regcache *regs)
+{
+ size_t len = gdbarch_max_insn_length (gdbarch);
+ std::unique_ptr<s390_displaced_step_closure> closure
+ (new s390_displaced_step_closure (len));
+ gdb_byte *buf = closure->buf.data ();
+
+ read_memory (from, buf, len);
+
+ /* Adjust the displacement field of PC-relative RIL instructions,
+ except branches. The latter are handled in the fixup hook. */
+ if (is_non_branch_ril (buf))
+ {
+ LONGEST offset;
+
+ offset = extract_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG);
+ offset = (from - to + offset * 2) / 2;
+
+ /* If the instruction is too far from the jump pad, punt. This
+ will usually happen with instructions in shared libraries.
+ We could probably support these by rewriting them to be
+ absolute or fully emulating them. */
+ if (offset < INT32_MIN || offset > INT32_MAX)
+ {
+ /* Let the core fall back to stepping over the breakpoint
+ in-line. */
+ if (debug_displaced)
+ {
+ fprintf_unfiltered (gdb_stdlog,
+ "displaced: can't displaced step "
+ "RIL instruction: offset %s out of range\n",
+ plongest (offset));
+ }
+
+ return NULL;
+ }
+
+ store_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG, offset);
+ }
+
+ write_memory (to, buf, len);
+
+ if (debug_displaced)
+ {
+ fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
+ paddress (gdbarch, from), paddress (gdbarch, to));
+ displaced_step_dump_bytes (gdb_stdlog, buf, len);
+ }
+
+ return closure.release ();
+}
+
+/* Fix up the state of registers and memory after having single-stepped
+ a displaced instruction. */
+
+static void
+s390_displaced_step_fixup (struct gdbarch *gdbarch,
+ struct displaced_step_closure *closure_,
+ CORE_ADDR from, CORE_ADDR to,
+ struct regcache *regs)
+{
+ /* Our closure is a copy of the instruction. */
+ s390_displaced_step_closure *closure
+ = (s390_displaced_step_closure *) closure_;
+ gdb_byte *insn = closure->buf.data ();
+ static int s390_instrlen[] = { 2, 4, 4, 6 };
+ int insnlen = s390_instrlen[insn[0] >> 6];
+
+ /* Fields for various kinds of instructions. */
+ unsigned int b2, r1, r2, x2, r3;
+ int i2, d2;
+
+ /* Get current PC and addressing mode bit. */
+ CORE_ADDR pc = regcache_read_pc (regs);
+ ULONGEST amode = 0;
+
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ {
+ regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
+ amode &= 0x80000000;
+ }
+
+ if (debug_displaced)
+ fprintf_unfiltered (gdb_stdlog,
+ "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n",
+ paddress (gdbarch, from), paddress (gdbarch, to),
+ paddress (gdbarch, pc), insnlen, (int) amode);
+
+ /* Handle absolute branch and save instructions. */
+ if (is_rr (insn, op_basr, &r1, &r2)
+ || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
+ {
+ /* Recompute saved return address in R1. */
+ regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+ amode | (from + insnlen));
+ }
+
+ /* Handle absolute branch instructions. */
+ else if (is_rr (insn, op_bcr, &r1, &r2)
+ || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
+ || is_rr (insn, op_bctr, &r1, &r2)
+ || is_rre (insn, op_bctgr, &r1, &r2)
+ || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
+ || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
+ || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
+ || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
+ || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
+ || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
+ {
+ /* Update PC iff branch was *not* taken. */
+ if (pc == to + insnlen)
+ regcache_write_pc (regs, from + insnlen);
+ }
+
+ /* Handle PC-relative branch and save instructions. */
+ else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
+ || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
+ {
+ /* Update PC. */
+ regcache_write_pc (regs, pc - to + from);
+ /* Recompute saved return address in R1. */
+ regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+ amode | (from + insnlen));
+ }
+
+ /* Handle LOAD ADDRESS RELATIVE LONG. */
+ else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
+ {
+ /* Update PC. */
+ regcache_write_pc (regs, from + insnlen);
+ /* Recompute output address in R1. */
+ regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
+ amode | (from + i2 * 2));
+ }
+
+ /* If we executed a breakpoint instruction, point PC right back at it. */
+ else if (insn[0] == 0x0 && insn[1] == 0x1)
+ regcache_write_pc (regs, from);
+
+ /* For any other insn, adjust PC by negated displacement. PC then
+ points right after the original instruction, except for PC-relative
+ branches, where it points to the adjusted branch target. */
+ else
+ regcache_write_pc (regs, pc - to + from);
+
+ if (debug_displaced)
+ fprintf_unfiltered (gdb_stdlog,
+ "displaced: (s390) pc is now %s\n",
+ paddress (gdbarch, regcache_read_pc (regs)));
+}
+
+static int
+s390_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
+ struct displaced_step_closure *closure)
+{
+ return 1;
+}
+
+/* Prologue analysis. */
+
+/* Return the effective address for an X-style instruction, like:
+
+ L R1, D2(X2, B2)
+
+ Here, X2 and B2 are registers, and D2 is a signed 20-bit
+ constant; the effective address is the sum of all three. If either
+ X2 or B2 are zero, then it doesn't contribute to the sum --- this
+ means that r0 can't be used as either X2 or B2. */
+
+static pv_t
+s390_addr (struct s390_prologue_data *data,
+ int d2, unsigned int x2, unsigned int b2)
+{
+ pv_t result;
+
+ result = pv_constant (d2);
+ if (x2)
+ result = pv_add (result, data->gpr[x2]);
+ if (b2)
+ result = pv_add (result, data->gpr[b2]);
+
+ return result;
+}
+
+/* Do a SIZE-byte store of VALUE to D2(X2,B2). */
+
+static void
+s390_store (struct s390_prologue_data *data,
+ int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
+ pv_t value)
+{
+ pv_t addr = s390_addr (data, d2, x2, b2);
+ pv_t offset;
+
+ /* Check whether we are storing the backchain. */
+ offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
+
+ if (pv_is_constant (offset) && offset.k == 0)
+ if (size == data->gpr_size
+ && pv_is_register_k (value, S390_SP_REGNUM, 0))
+ {
+ data->back_chain_saved_p = 1;
+ return;
+ }
+
+ /* Check whether we are storing a register into the stack. */
+ if (!data->stack->store_would_trash (addr))
+ data->stack->store (addr, size, value);
+
+ /* Note: If this is some store we cannot identify, you might think we
+ should forget our cached values, as any of those might have been hit.
+
+ However, we make the assumption that the register save areas are only
+ ever stored to once in any given function, and we do recognize these
+ stores. Thus every store we cannot recognize does not hit our data. */
+}
+
+/* Do a SIZE-byte load from D2(X2,B2). */
+
+static pv_t
+s390_load (struct s390_prologue_data *data,
+ int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
+
+{
+ pv_t addr = s390_addr (data, d2, x2, b2);
+
+ /* If it's a load from an in-line constant pool, then we can
+ simulate that, under the assumption that the code isn't
+ going to change between the time the processor actually
+ executed it creating the current frame, and the time when
+ we're analyzing the code to unwind past that frame. */
+ if (pv_is_constant (addr))
+ {
+ struct target_section *secp;
+ secp = target_section_by_addr (¤t_target, addr.k);
+ if (secp != NULL
+ && (bfd_get_section_flags (secp->the_bfd_section->owner,
+ secp->the_bfd_section)
+ & SEC_READONLY))
+ return pv_constant (read_memory_integer (addr.k, size,
+ data->byte_order));
+ }
+
+ /* Check whether we are accessing one of our save slots. */
+ return data->stack->fetch (addr, size);
+}
+
+/* Function for finding saved registers in a 'struct pv_area'; we pass
+ this to pv_area::scan.
+
+ If VALUE is a saved register, ADDR says it was saved at a constant
+ offset from the frame base, and SIZE indicates that the whole
+ register was saved, record its offset in the reg_offset table in
+ PROLOGUE_UNTYPED. */
+
+static void
+s390_check_for_saved (void *data_untyped, pv_t addr,
+ CORE_ADDR size, pv_t value)
+{
+ struct s390_prologue_data *data = (struct s390_prologue_data *) data_untyped;
+ int i, offset;
+
+ if (!pv_is_register (addr, S390_SP_REGNUM))
+ return;
+
+ offset = 16 * data->gpr_size + 32 - addr.k;
+
+ /* If we are storing the original value of a register, we want to
+ record the CFA offset. If the same register is stored multiple
+ times, the stack slot with the highest address counts. */
+
+ for (i = 0; i < S390_NUM_GPRS; i++)
+ if (size == data->gpr_size
+ && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
+ if (data->gpr_slot[i] == 0
+ || data->gpr_slot[i] > offset)
+ {
+ data->gpr_slot[i] = offset;
+ return;
+ }
+
+ for (i = 0; i < S390_NUM_FPRS; i++)
+ if (size == data->fpr_size
+ && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
+ if (data->fpr_slot[i] == 0
+ || data->fpr_slot[i] > offset)
+ {
+ data->fpr_slot[i] = offset;
+ return;
+ }
+}
+
+/* See s390-tdep.h. */
+
+CORE_ADDR
+s390_analyze_prologue (struct gdbarch *gdbarch,
+ CORE_ADDR start_pc,
+ CORE_ADDR current_pc,
+ struct s390_prologue_data *data)
+{
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+
+ /* Our return value:
+ The address of the instruction after the last one that changed
+ the SP, FP, or back chain; zero if we got an error trying to
+ read memory. */
+ CORE_ADDR result = start_pc;
+
+ /* The current PC for our abstract interpretation. */
+ CORE_ADDR pc;
+
+ /* The address of the next instruction after that. */
+ CORE_ADDR next_pc;
+
+ pv_area stack (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
+ scoped_restore restore_stack = make_scoped_restore (&data->stack, &stack);
+
+ /* Set up everything's initial value. */
+ {
+ int i;
+
+ /* For the purpose of prologue tracking, we consider the GPR size to
+ be equal to the ABI word size, even if it is actually larger
+ (i.e. when running a 32-bit binary under a 64-bit kernel). */
+ data->gpr_size = word_size;
+ data->fpr_size = 8;
+ data->byte_order = gdbarch_byte_order (gdbarch);
+
+ for (i = 0; i < S390_NUM_GPRS; i++)
+ data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
+
+ for (i = 0; i < S390_NUM_FPRS; i++)
+ data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
+
+ for (i = 0; i < S390_NUM_GPRS; i++)
+ data->gpr_slot[i] = 0;
+
+ for (i = 0; i < S390_NUM_FPRS; i++)
+ data->fpr_slot[i] = 0;
+
+ data->back_chain_saved_p = 0;
+ }
+
+ /* Start interpreting instructions, until we hit the frame's
+ current PC or the first branch instruction. */
+ for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
+ {
+ bfd_byte insn[S390_MAX_INSTR_SIZE];
+ int insn_len = s390_readinstruction (insn, pc);
+
+ bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
+ bfd_byte *insn32 = word_size == 4 ? insn : dummy;
+ bfd_byte *insn64 = word_size == 8 ? insn : dummy;
+
+ /* Fields for various kinds of instructions. */
+ unsigned int b2, r1, r2, x2, r3;
+ int i2, d2;
+
+ /* The values of SP and FP before this instruction,
+ for detecting instructions that change them. */
+ pv_t pre_insn_sp, pre_insn_fp;
+ /* Likewise for the flag whether the back chain was saved. */
+ int pre_insn_back_chain_saved_p;
+
+ /* If we got an error trying to read the instruction, report it. */
+ if (insn_len < 0)
+ {
+ result = 0;
+ break;
+ }
+
+ next_pc = pc + insn_len;
+
+ pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+ pre_insn_back_chain_saved_p = data->back_chain_saved_p;
+
+ /* LHI r1, i2 --- load halfword immediate. */
+ /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
+ /* LGFI r1, i2 --- load fullword immediate. */
+ if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
+ || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
+ || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
+ data->gpr[r1] = pv_constant (i2);
+
+ /* LR r1, r2 --- load from register. */
+ /* LGR r1, r2 --- load from register (64-bit version). */
+ else if (is_rr (insn32, op_lr, &r1, &r2)
+ || is_rre (insn64, op_lgr, &r1, &r2))
+ data->gpr[r1] = data->gpr[r2];
+
+ /* L r1, d2(x2, b2) --- load. */
+ /* LY r1, d2(x2, b2) --- load (long-displacement version). */
+ /* LG r1, d2(x2, b2) --- load (64-bit version). */
+ else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
+ || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
+ || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
+ data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
+
+ /* ST r1, d2(x2, b2) --- store. */
+ /* STY r1, d2(x2, b2) --- store (long-displacement version). */
+ /* STG r1, d2(x2, b2) --- store (64-bit version). */
+ else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
+ || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
+ || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
+ s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
+
+ /* STD r1, d2(x2,b2) --- store floating-point register. */
+ else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
+ s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
+
+ /* STM r1, r3, d2(b2) --- store multiple. */
+ /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
+ version). */
+ /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
+ else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
+ || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
+ || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
+ {
+ for (; r1 <= r3; r1++, d2 += data->gpr_size)
+ s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
+ }
+
+ /* AHI r1, i2 --- add halfword immediate. */
+ /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
+ /* AFI r1, i2 --- add fullword immediate. */
+ /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
+ else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
+ || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
+ || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
+ || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
+ data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
+
+ /* ALFI r1, i2 --- add logical immediate. */
+ /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
+ else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
+ || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
+ data->gpr[r1] = pv_add_constant (data->gpr[r1],
+ (CORE_ADDR)i2 & 0xffffffff);
+
+ /* AR r1, r2 -- add register. */
+ /* AGR r1, r2 -- add register (64-bit version). */
+ else if (is_rr (insn32, op_ar, &r1, &r2)
+ || is_rre (insn64, op_agr, &r1, &r2))
+ data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
+
+ /* A r1, d2(x2, b2) -- add. */
+ /* AY r1, d2(x2, b2) -- add (long-displacement version). */
+ /* AG r1, d2(x2, b2) -- add (64-bit version). */
+ else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
+ || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
+ || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
+ data->gpr[r1] = pv_add (data->gpr[r1],
+ s390_load (data, d2, x2, b2, data->gpr_size));
+
+ /* SLFI r1, i2 --- subtract logical immediate. */
+ /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
+ else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
+ || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
+ data->gpr[r1] = pv_add_constant (data->gpr[r1],
+ -((CORE_ADDR)i2 & 0xffffffff));
+
+ /* SR r1, r2 -- subtract register. */
+ /* SGR r1, r2 -- subtract register (64-bit version). */
+ else if (is_rr (insn32, op_sr, &r1, &r2)
+ || is_rre (insn64, op_sgr, &r1, &r2))
+ data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
+
+ /* S r1, d2(x2, b2) -- subtract. */
+ /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
+ /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
+ else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
+ || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
+ || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
+ data->gpr[r1] = pv_subtract (data->gpr[r1],
+ s390_load (data, d2, x2, b2, data->gpr_size));
+
+ /* LA r1, d2(x2, b2) --- load address. */
+ /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
+ else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
+ || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
+ data->gpr[r1] = s390_addr (data, d2, x2, b2);
+
+ /* LARL r1, i2 --- load address relative long. */
+ else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
+ data->gpr[r1] = pv_constant (pc + i2 * 2);
+
+ /* BASR r1, 0 --- branch and save.
+ Since r2 is zero, this saves the PC in r1, but doesn't branch. */
+ else if (is_rr (insn, op_basr, &r1, &r2)
+ && r2 == 0)
+ data->gpr[r1] = pv_constant (next_pc);
+
+ /* BRAS r1, i2 --- branch relative and save. */
+ else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
+ {
+ data->gpr[r1] = pv_constant (next_pc);
+ next_pc = pc + i2 * 2;
+
+ /* We'd better not interpret any backward branches. We'll
+ never terminate. */
+ if (next_pc <= pc)
+ break;
+ }
+
+ /* BRC/BRCL -- branch relative on condition. Ignore "branch
+ never", branch to following instruction, and "conditional
+ trap" (BRC +2). Otherwise terminate search. */
+ else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2))
+ {
+ if (r1 != 0 && i2 != 1 && i2 != 2)
+ break;
+ }
+ else if (is_ril (insn, op1_brcl, op2_brcl, &r1, &i2))
+ {
+ if (r1 != 0 && i2 != 3)
+ break;
+ }
+
+ /* Terminate search when hitting any other branch instruction. */
+ else if (is_rr (insn, op_basr, &r1, &r2)
+ || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
+ || is_rr (insn, op_bcr, &r1, &r2)
+ || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
+ || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
+ break;
+
+ else
+ {
+ /* An instruction we don't know how to simulate. The only
+ safe thing to do would be to set every value we're tracking
+ to 'unknown'. Instead, we'll be optimistic: we assume that
+ we *can* interpret every instruction that the compiler uses
+ to manipulate any of the data we're interested in here --
+ then we can just ignore anything else. */
+ }
+
+ /* Record the address after the last instruction that changed
+ the FP, SP, or backlink. Ignore instructions that changed
+ them back to their original values --- those are probably
+ restore instructions. (The back chain is never restored,
+ just popped.) */
+ {
+ pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
+ pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
+
+ if ((! pv_is_identical (pre_insn_sp, sp)
+ && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
+ && sp.kind != pvk_unknown)
+ || (! pv_is_identical (pre_insn_fp, fp)
+ && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
+ && fp.kind != pvk_unknown)
+ || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
+ result = next_pc;
+ }
+ }
+
+ /* Record where all the registers were saved. */
+ data->stack->scan (s390_check_for_saved, data);
+
+ return result;
+}
+
+/* Advance PC across any function entry prologue instructions to reach
+ some "real" code. */
+
+static CORE_ADDR
+s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ struct s390_prologue_data data;
+ CORE_ADDR skip_pc, func_addr;
+
+ if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
+ {
+ CORE_ADDR post_prologue_pc
+ = skip_prologue_using_sal (gdbarch, func_addr);
+ if (post_prologue_pc != 0)
+ return std::max (pc, post_prologue_pc);
+ }
+
+ skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
+ return skip_pc ? skip_pc : pc;
+}
+
+/* Register handling. */
+
+/* See s390-tdep.h. */
+
+int
+s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ switch (tdep->abi)
+ {
+ case ABI_LINUX_S390:
+ if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
+ || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
+ || regnum == S390_A0_REGNUM)
+ return 1;
+
+ break;
+
+ case ABI_LINUX_ZSERIES:
+ if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
+ || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
+ || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
+ return 1;
+
+ break;
+ }
+
+ return 0;
+}
+
+/* Return the name of register REGNO. Return the empty string for
+ registers that shouldn't be visible. */
+
+static const char *
+s390_register_name (struct gdbarch *gdbarch, int regnum)
+{
+ if (regnum >= S390_V0_LOWER_REGNUM
+ && regnum <= S390_V15_LOWER_REGNUM)
+ return "";
+ return tdesc_register_name (gdbarch, regnum);
+}
+
+/* DWARF Register Mapping. */
+
+static const short s390_dwarf_regmap[] =
+{
+ /* 0-15: General Purpose Registers. */
+ S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
+ S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
+ S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
+ S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
+
+ /* 16-31: Floating Point Registers / Vector Registers 0-15. */
+ S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
+ S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
+ S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
+ S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
+
+ /* 32-47: Control Registers (not mapped). */
+ -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1,
+
+ /* 48-63: Access Registers. */
+ S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
+ S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
+ S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
+ S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
+
+ /* 64-65: Program Status Word. */
+ S390_PSWM_REGNUM,
+ S390_PSWA_REGNUM,
+
+ /* 66-67: Reserved. */
+ -1, -1,
+
+ /* 68-83: Vector Registers 16-31. */
+ S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM,
+ S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM,
+ S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM,
+ S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM,
+
+ /* End of "official" DWARF registers. The remainder of the map is
+ for GDB internal use only. */
+
+ /* GPR Lower Half Access. */
+ S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
+ S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
+ S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
+ S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
+};
+
+enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 };
+
+/* Convert DWARF register number REG to the appropriate register
+ number used by GDB. */
+
+static int
+s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ int gdb_reg = -1;
+
+ /* In a 32-on-64 debug scenario, debug info refers to the full
+ 64-bit GPRs. Note that call frame information still refers to
+ the 32-bit lower halves, because s390_adjust_frame_regnum uses
+ special register numbers to access GPRs. */
+ if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
+ return tdep->gpr_full_regnum + reg;
+
+ if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
+ gdb_reg = s390_dwarf_regmap[reg];
+
+ if (tdep->v0_full_regnum == -1)
+ {
+ if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM)
+ gdb_reg = -1;
+ }
+ else
+ {
+ if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM)
+ gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum;
+ }
+
+ return gdb_reg;
+}
+
+/* Pseudo registers. */
+
+static int
+regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum)
+{
+ return (tdep->gpr_full_regnum != -1
+ && regnum >= tdep->gpr_full_regnum
+ && regnum <= tdep->gpr_full_regnum + 15);
+}
+
+/* Check whether REGNUM indicates a full vector register (v0-v15).
+ These pseudo-registers are composed of f0-f15 and v0l-v15l. */
+
+static int
+regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum)
+{
+ return (tdep->v0_full_regnum != -1
+ && regnum >= tdep->v0_full_regnum
+ && regnum <= tdep->v0_full_regnum + 15);
+}
+
+/* 'float' values are stored in the upper half of floating-point
+ registers, even though we are otherwise a big-endian platform. The
+ same applies to a 'float' value within a vector. */
+
+static struct value *
+s390_value_from_register (struct gdbarch *gdbarch, struct type *type,
+ int regnum, struct frame_id frame_id)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ struct value *value = default_value_from_register (gdbarch, type,
+ regnum, frame_id);
+ check_typedef (type);
+
+ if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM
+ && TYPE_LENGTH (type) < 8)
+ || regnum_is_vxr_full (tdep, regnum)
+ || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM))
+ set_value_offset (value, 0);
+
+ return value;
+}
+
+static const char *
+s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (regnum == tdep->pc_regnum)
+ return "pc";
+
+ if (regnum == tdep->cc_regnum)
+ return "cc";
+
+ if (regnum_is_gpr_full (tdep, regnum))
+ {
+ static const char *full_name[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+ };
+ return full_name[regnum - tdep->gpr_full_regnum];
+ }
+
+ if (regnum_is_vxr_full (tdep, regnum))
+ {
+ static const char *full_name[] = {
+ "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
+ "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
+ };
+ return full_name[regnum - tdep->v0_full_regnum];
+ }
+
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static struct type *
+s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ if (regnum == tdep->pc_regnum)
+ return builtin_type (gdbarch)->builtin_func_ptr;
+
+ if (regnum == tdep->cc_regnum)
+ return builtin_type (gdbarch)->builtin_int;
+
+ if (regnum_is_gpr_full (tdep, regnum))
+ return builtin_type (gdbarch)->builtin_uint64;
+
+ if (regnum_is_vxr_full (tdep, regnum))
+ return tdesc_find_type (gdbarch, "vec128");
+
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static enum register_status
+s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
+ int regnum, gdb_byte *buf)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int regsize = register_size (gdbarch, regnum);
+ ULONGEST val;
+
+ if (regnum == tdep->pc_regnum)
+ {
+ enum register_status status;
+
+ status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
+ if (status == REG_VALID)
+ {
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ val &= 0x7fffffff;
+ store_unsigned_integer (buf, regsize, byte_order, val);
+ }
+ return status;
+ }
+
+ if (regnum == tdep->cc_regnum)
+ {
+ enum register_status status;
+
+ status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
+ if (status == REG_VALID)
+ {
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ val = (val >> 12) & 3;
+ else
+ val = (val >> 44) & 3;
+ store_unsigned_integer (buf, regsize, byte_order, val);
+ }
+ return status;
+ }
+
+ if (regnum_is_gpr_full (tdep, regnum))
+ {
+ enum register_status status;
+ ULONGEST val_upper;
+
+ regnum -= tdep->gpr_full_regnum;
+
+ status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
+ if (status == REG_VALID)
+ status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
+ &val_upper);
+ if (status == REG_VALID)
+ {
+ val |= val_upper << 32;
+ store_unsigned_integer (buf, regsize, byte_order, val);
+ }
+ return status;
+ }
+
+ if (regnum_is_vxr_full (tdep, regnum))
+ {
+ enum register_status status;
+
+ regnum -= tdep->v0_full_regnum;
+
+ status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf);
+ if (status == REG_VALID)
+ status = regcache_raw_read (regcache,
+ S390_V0_LOWER_REGNUM + regnum, buf + 8);
+ return status;
+ }
+
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+static void
+s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
+ int regnum, const gdb_byte *buf)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int regsize = register_size (gdbarch, regnum);
+ ULONGEST val, psw;
+
+ if (regnum == tdep->pc_regnum)
+ {
+ val = extract_unsigned_integer (buf, regsize, byte_order);
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ {
+ regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
+ val = (psw & 0x80000000) | (val & 0x7fffffff);
+ }
+ regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
+ return;
+ }
+
+ if (regnum == tdep->cc_regnum)
+ {
+ val = extract_unsigned_integer (buf, regsize, byte_order);
+ regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
+ else
+ val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
+ regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
+ return;
+ }
+
+ if (regnum_is_gpr_full (tdep, regnum))
+ {
+ regnum -= tdep->gpr_full_regnum;
+ val = extract_unsigned_integer (buf, regsize, byte_order);
+ regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
+ val & 0xffffffff);
+ regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
+ val >> 32);
+ return;
+ }
+
+ if (regnum_is_vxr_full (tdep, regnum))
+ {
+ regnum -= tdep->v0_full_regnum;
+ regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf);
+ regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8);
+ return;
+ }
+
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+}
+
+/* Register groups. */
+
+static int
+s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
+ struct reggroup *group)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+ /* We usually save/restore the whole PSW, which includes PC and CC.
+ However, some older gdbservers may not support saving/restoring
+ the whole PSW yet, and will return an XML register description
+ excluding those from the save/restore register groups. In those
+ cases, we still need to explicitly save/restore PC and CC in order
+ to push or pop frames. Since this doesn't hurt anything if we
+ already save/restore the whole PSW (it's just redundant), we add
+ PC and CC at this point unconditionally. */
+ if (group == save_reggroup || group == restore_reggroup)
+ return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
+
+ if (group == vector_reggroup)
+ return regnum_is_vxr_full (tdep, regnum);
+
+ if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum))
+ return 0;
+
+ return default_register_reggroup_p (gdbarch, regnum, group);
+}
+
+/* The "ax_pseudo_register_collect" gdbarch method. */
+
+static int
+s390_ax_pseudo_register_collect (struct gdbarch *gdbarch,
+ struct agent_expr *ax, int regnum)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ if (regnum == tdep->pc_regnum)
+ {
+ ax_reg_mask (ax, S390_PSWA_REGNUM);
+ }
+ else if (regnum == tdep->cc_regnum)
+ {
+ ax_reg_mask (ax, S390_PSWM_REGNUM);
+ }
+ else if (regnum_is_gpr_full (tdep, regnum))
+ {
+ regnum -= tdep->gpr_full_regnum;
+ ax_reg_mask (ax, S390_R0_REGNUM + regnum);
+ ax_reg_mask (ax, S390_R0_UPPER_REGNUM + regnum);
+ }
+ else if (regnum_is_vxr_full (tdep, regnum))
+ {
+ regnum -= tdep->v0_full_regnum;
+ ax_reg_mask (ax, S390_F0_REGNUM + regnum);
+ ax_reg_mask (ax, S390_V0_LOWER_REGNUM + regnum);
+ }
+ else
+ {
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+ }
+ return 0;
+}
+
+/* The "ax_pseudo_register_push_stack" gdbarch method. */
+
+static int
+s390_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
+ struct agent_expr *ax, int regnum)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ if (regnum == tdep->pc_regnum)
+ {
+ ax_reg (ax, S390_PSWA_REGNUM);
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ {
+ ax_zero_ext (ax, 31);
+ }
+ }
+ else if (regnum == tdep->cc_regnum)
+ {
+ ax_reg (ax, S390_PSWM_REGNUM);
+ if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
+ ax_const_l (ax, 12);
+ else
+ ax_const_l (ax, 44);
+ ax_simple (ax, aop_rsh_unsigned);
+ ax_zero_ext (ax, 2);
+ }
+ else if (regnum_is_gpr_full (tdep, regnum))
+ {
+ regnum -= tdep->gpr_full_regnum;
+ ax_reg (ax, S390_R0_REGNUM + regnum);
+ ax_reg (ax, S390_R0_UPPER_REGNUM + regnum);
+ ax_const_l (ax, 32);
+ ax_simple (ax, aop_lsh);
+ ax_simple (ax, aop_bit_or);
+ }
+ else if (regnum_is_vxr_full (tdep, regnum))
+ {
+ /* Too large to stuff on the stack. */
+ return 1;
+ }
+ else
+ {
+ internal_error (__FILE__, __LINE__, _("invalid regnum"));
+ }
+ return 0;
+}
+
+/* The "gen_return_address" gdbarch method. Since this is supposed to be
+ just a best-effort method, and we don't really have the means to run
+ the full unwinder here, just collect the link register. */
+
+static void
+s390_gen_return_address (struct gdbarch *gdbarch,
+ struct agent_expr *ax, struct axs_value *value,
+ CORE_ADDR scope)
+{
+ value->type = register_type (gdbarch, S390_R14_REGNUM);
+ value->kind = axs_lvalue_register;
+ value->u.reg = S390_R14_REGNUM;
+}
+
+
+/* Address handling. */
+
+static CORE_ADDR
+s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ return addr & 0x7fffffff;
+}
+
+static int
+s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
+{
+ if (byte_size == 4)
+ return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
+ else
+ return 0;
+}
+
+static const char *
+s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
+{
+ if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
+ return "mode32";
+ else
+ return NULL;
+}
+
+static int
+s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
+ const char *name,
+ int *type_flags_ptr)
+{
+ if (strcmp (name, "mode32") == 0)
+ {
+ *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
+ return 1;
+ }
+ else
+ return 0;
+}
+
+/* Inferior function calls. */
+
+/* Dummy function calls. */
+
+/* Unwrap any single-field structs in TYPE and return the effective
+ "inner" type. E.g., yield "float" for all these cases:
+
+ float x;
+ struct { float x };
+ struct { struct { float x; } x; };
+ struct { struct { struct { float x; } x; } x; };
+
+ However, if an inner type is smaller than MIN_SIZE, abort the
+ unwrapping. */
+
+static struct type *
+s390_effective_inner_type (struct type *type, unsigned int min_size)
+{
+ while (TYPE_CODE (type) == TYPE_CODE_STRUCT
+ && TYPE_NFIELDS (type) == 1)
+ {
+ struct type *inner = check_typedef (TYPE_FIELD_TYPE (type, 0));
+
+ if (TYPE_LENGTH (inner) < min_size)
+ break;
+ type = inner;
+ }
+
+ return type;
+}
+
+/* Return non-zero if TYPE should be passed like "float" or
+ "double". */
+
+static int
+s390_function_arg_float (struct type *type)
+{
+ /* Note that long double as well as complex types are intentionally
+ excluded. */
+ if (TYPE_LENGTH (type) > 8)
+ return 0;
+
+ /* A struct containing just a float or double is passed like a float
+ or double. */
+ type = s390_effective_inner_type (type, 0);
+
+ return (TYPE_CODE (type) == TYPE_CODE_FLT
+ || TYPE_CODE (type) == TYPE_CODE_DECFLOAT);
+}
+
+/* Return non-zero if TYPE should be passed like a vector. */
+
+static int
+s390_function_arg_vector (struct type *type)
+{
+ if (TYPE_LENGTH (type) > 16)
+ return 0;
+
+ /* Structs containing just a vector are passed like a vector. */
+ type = s390_effective_inner_type (type, TYPE_LENGTH (type));
+
+ return TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type);
+}
+
+/* Determine whether N is a power of two. */
+
+static int
+is_power_of_two (unsigned int n)
+{
+ return n && ((n & (n - 1)) == 0);
+}
+
+/* For an argument whose type is TYPE and which is not passed like a
+ float or vector, return non-zero if it should be passed like "int"
+ or "long long". */
+
+static int
+s390_function_arg_integer (struct type *type)
+{
+ enum type_code code = TYPE_CODE (type);
+
+ if (TYPE_LENGTH (type) > 8)
+ return 0;
+
+ if (code == TYPE_CODE_INT
+ || code == TYPE_CODE_ENUM
+ || code == TYPE_CODE_RANGE
+ || code == TYPE_CODE_CHAR
+ || code == TYPE_CODE_BOOL
+ || code == TYPE_CODE_PTR
+ || TYPE_IS_REFERENCE (type))
+ return 1;
+
+ return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT)
+ && is_power_of_two (TYPE_LENGTH (type)));
+}
+
+/* Argument passing state: Internal data structure passed to helper
+ routines of s390_push_dummy_call. */
+
+struct s390_arg_state
+ {
+ /* Register cache, or NULL, if we are in "preparation mode". */
+ struct regcache *regcache;
+ /* Next available general/floating-point/vector register for
+ argument passing. */
+ int gr, fr, vr;
+ /* Current pointer to copy area (grows downwards). */
+ CORE_ADDR copy;
+ /* Current pointer to parameter area (grows upwards). */
+ CORE_ADDR argp;
+ };
+
+/* Prepare one argument ARG for a dummy call and update the argument
+ passing state AS accordingly. If the regcache field in AS is set,
+ operate in "write mode" and write ARG into the inferior. Otherwise
+ run "preparation mode" and skip all updates to the inferior. */
+
+static void
+s390_handle_arg (struct s390_arg_state *as, struct value *arg,
+ struct gdbarch_tdep *tdep, int word_size,
+ enum bfd_endian byte_order, int is_unnamed)
+{
+ struct type *type = check_typedef (value_type (arg));
+ unsigned int length = TYPE_LENGTH (type);
+ int write_mode = as->regcache != NULL;
+
+ if (s390_function_arg_float (type))
+ {
+ /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass
+ arguments. The GNU/Linux for zSeries ABI uses 0, 2, 4, and
+ 6. */
+ if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
+ {
+ /* When we store a single-precision value in an FP register,
+ it occupies the leftmost bits. */
+ if (write_mode)
+ regcache_cooked_write_part (as->regcache,
+ S390_F0_REGNUM + as->fr,
+ 0, length,
+ value_contents (arg));
+ as->fr += 2;
+ }
+ else
+ {
+ /* When we store a single-precision value in a stack slot,
+ it occupies the rightmost bits. */
+ as->argp = align_up (as->argp + length, word_size);
+ if (write_mode)
+ write_memory (as->argp - length, value_contents (arg),
+ length);
+ }
+ }
+ else if (tdep->vector_abi == S390_VECTOR_ABI_128
+ && s390_function_arg_vector (type))
+ {
+ static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31};
+
+ if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr))
+ {
+ int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24;
+
+ if (write_mode)
+ regcache_cooked_write_part (as->regcache, regnum,
+ 0, length,
+ value_contents (arg));
+ as->vr++;
+ }
+ else
+ {
+ if (write_mode)
+ write_memory (as->argp, value_contents (arg), length);
+ as->argp = align_up (as->argp + length, word_size);
+ }
+ }
+ else if (s390_function_arg_integer (type) && length <= word_size)
+ {
+ /* Initialize it just to avoid a GCC false warning. */
+ ULONGEST val = 0;
+
+ if (write_mode)
+ {
+ /* Place value in least significant bits of the register or
+ memory word and sign- or zero-extend to full word size.
+ This also applies to a struct or union. */
+ val = TYPE_UNSIGNED (type)
+ ? extract_unsigned_integer (value_contents (arg),
+ length, byte_order)
+ : extract_signed_integer (value_contents (arg),
+ length, byte_order);
+ }
+
+ if (as->gr <= 6)
+ {
+ if (write_mode)
+ regcache_cooked_write_unsigned (as->regcache,
+ S390_R0_REGNUM + as->gr,
+ val);
+ as->gr++;
+ }
+ else
+ {
+ if (write_mode)
+ write_memory_unsigned_integer (as->argp, word_size,
+ byte_order, val);
+ as->argp += word_size;
+ }
+ }
+ else if (s390_function_arg_integer (type) && length == 8)
+ {
+ if (as->gr <= 5)
+ {
+ if (write_mode)
+ {
+ regcache_cooked_write (as->regcache,
+ S390_R0_REGNUM + as->gr,
+ value_contents (arg));
+ regcache_cooked_write (as->regcache,
+ S390_R0_REGNUM + as->gr + 1,
+ value_contents (arg) + word_size);
+ }
+ as->gr += 2;
+ }
+ else
+ {
+ /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
+ in it, then don't go back and use it again later. */
+ as->gr = 7;
+
+ if (write_mode)
+ write_memory (as->argp, value_contents (arg), length);
+ as->argp += length;
+ }
+ }
+ else
+ {
+ /* This argument type is never passed in registers. Place the
+ value in the copy area and pass a pointer to it. Use 8-byte
+ alignment as a conservative assumption. */
+ as->copy = align_down (as->copy - length, 8);
+ if (write_mode)
+ write_memory (as->copy, value_contents (arg), length);
+
+ if (as->gr <= 6)
+ {
+ if (write_mode)
+ regcache_cooked_write_unsigned (as->regcache,
+ S390_R0_REGNUM + as->gr,
+ as->copy);
+ as->gr++;
+ }
+ else
+ {
+ if (write_mode)
+ write_memory_unsigned_integer (as->argp, word_size,
+ byte_order, as->copy);
+ as->argp += word_size;
+ }
+ }
+}
+
+/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
+ place to be passed to a function, as specified by the "GNU/Linux
+ for S/390 ELF Application Binary Interface Supplement".
+
+ SP is the current stack pointer. We must put arguments, links,
+ padding, etc. whereever they belong, and return the new stack
+ pointer value.
+
+ If STRUCT_RETURN is non-zero, then the function we're calling is
+ going to return a structure by value; STRUCT_ADDR is the address of
+ a block we've allocated for it on the stack.
+
+ Our caller has taken care of any type promotions needed to satisfy
+ prototypes or the old K&R argument-passing rules. */
+
+static CORE_ADDR
+s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+ struct regcache *regcache, CORE_ADDR bp_addr,
+ int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int i;
+ struct s390_arg_state arg_state, arg_prep;
+ CORE_ADDR param_area_start, new_sp;
+ struct type *ftype = check_typedef (value_type (function));
+
+ if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
+ ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
+
+ arg_prep.copy = sp;
+ arg_prep.gr = struct_return ? 3 : 2;
+ arg_prep.fr = 0;
+ arg_prep.vr = 0;
+ arg_prep.argp = 0;
+ arg_prep.regcache = NULL;
+
+ /* Initialize arg_state for "preparation mode". */
+ arg_state = arg_prep;
+
+ /* Update arg_state.copy with the start of the reference-to-copy area
+ and arg_state.argp with the size of the parameter area. */
+ for (i = 0; i < nargs; i++)
+ s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
+ TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
+
+ param_area_start = align_down (arg_state.copy - arg_state.argp, 8);
+
+ /* Allocate the standard frame areas: the register save area, the
+ word reserved for the compiler, and the back chain pointer. */
+ new_sp = param_area_start - (16 * word_size + 32);
+
+ /* Now we have the final stack pointer. Make sure we didn't
+ underflow; on 31-bit, this would result in addresses with the
+ high bit set, which causes confusion elsewhere. Note that if we
+ error out here, stack and registers remain untouched. */
+ if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp)
+ error (_("Stack overflow"));
+
+ /* Pass the structure return address in general register 2. */
+ if (struct_return)
+ regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr);
+
+ /* Initialize arg_state for "write mode". */
+ arg_state = arg_prep;
+ arg_state.argp = param_area_start;
+ arg_state.regcache = regcache;
+
+ /* Write all parameters. */
+ for (i = 0; i < nargs; i++)
+ s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order,
+ TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype));
+
+ /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */
+ if (word_size == 4)
+ {
+ ULONGEST pswa;
+ regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa);
+ bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000);
+ }
+ regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
+
+ /* Store updated stack pointer. */
+ regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp);
+
+ /* We need to return the 'stack part' of the frame ID,
+ which is actually the top of the register save area. */
+ return param_area_start;
+}
+
+/* Assuming THIS_FRAME is a dummy, return the frame ID of that
+ dummy frame. The frame ID's base needs to match the TOS value
+ returned by push_dummy_call, and the PC match the dummy frame's
+ breakpoint. */
+
+static struct frame_id
+s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
+ sp = gdbarch_addr_bits_remove (gdbarch, sp);
+
+ return frame_id_build (sp + 16*word_size + 32,
+ get_frame_pc (this_frame));
+}
+
+static CORE_ADDR
+s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+ /* Both the 32- and 64-bit ABI's say that the stack pointer should
+ always be aligned on an eight-byte boundary. */
+ return (addr & -8);
+}
+
+/* Helper for s390_return_value: Set or retrieve a function return
+ value if it resides in a register. */
+
+static void
+s390_register_return_value (struct gdbarch *gdbarch, struct type *type,
+ struct regcache *regcache,
+ gdb_byte *out, const gdb_byte *in)
+{
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+ int length = TYPE_LENGTH (type);
+ int code = TYPE_CODE (type);
+
+ if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
+ {
+ /* Float-like value: left-aligned in f0. */
+ if (in != NULL)
+ regcache_cooked_write_part (regcache, S390_F0_REGNUM,
+ 0, length, in);
+ else
+ regcache_cooked_read_part (regcache, S390_F0_REGNUM,
+ 0, length, out);
+ }
+ else if (code == TYPE_CODE_ARRAY)
+ {
+ /* Vector: left-aligned in v24. */
+ if (in != NULL)
+ regcache_cooked_write_part (regcache, S390_V24_REGNUM,
+ 0, length, in);
+ else
+ regcache_cooked_read_part (regcache, S390_V24_REGNUM,
+ 0, length, out);
+ }
+ else if (length <= word_size)
+ {
+ /* Integer: zero- or sign-extended in r2. */
+ if (out != NULL)
+ regcache_cooked_read_part (regcache, S390_R2_REGNUM,
+ word_size - length, length, out);
+ else if (TYPE_UNSIGNED (type))
+ regcache_cooked_write_unsigned
+ (regcache, S390_R2_REGNUM,
+ extract_unsigned_integer (in, length, byte_order));
+ else
+ regcache_cooked_write_signed
+ (regcache, S390_R2_REGNUM,
+ extract_signed_integer (in, length, byte_order));
+ }
+ else if (length == 2 * word_size)
+ {
+ /* Double word: in r2 and r3. */
+ if (in != NULL)
+ {
+ regcache_cooked_write (regcache, S390_R2_REGNUM, in);
+ regcache_cooked_write (regcache, S390_R3_REGNUM,
+ in + word_size);
+ }
+ else
+ {
+ regcache_cooked_read (regcache, S390_R2_REGNUM, out);
+ regcache_cooked_read (regcache, S390_R3_REGNUM,
+ out + word_size);
+ }
+ }
+ else
+ internal_error (__FILE__, __LINE__, _("invalid return type"));
+}
+
+/* Implement the 'return_value' gdbarch method. */
+
+static enum return_value_convention
+s390_return_value (struct gdbarch *gdbarch, struct value *function,
+ struct type *type, struct regcache *regcache,
+ gdb_byte *out, const gdb_byte *in)
+{
+ enum return_value_convention rvc;
+
+ type = check_typedef (type);
+
+ switch (TYPE_CODE (type))
+ {
+ case TYPE_CODE_STRUCT:
+ case TYPE_CODE_UNION:
+ case TYPE_CODE_COMPLEX:
+ rvc = RETURN_VALUE_STRUCT_CONVENTION;
+ break;
+ case TYPE_CODE_ARRAY:
+ rvc = (gdbarch_tdep (gdbarch)->vector_abi == S390_VECTOR_ABI_128
+ && TYPE_LENGTH (type) <= 16 && TYPE_VECTOR (type))
+ ? RETURN_VALUE_REGISTER_CONVENTION
+ : RETURN_VALUE_STRUCT_CONVENTION;
+ break;
+ default:
+ rvc = TYPE_LENGTH (type) <= 8
+ ? RETURN_VALUE_REGISTER_CONVENTION
+ : RETURN_VALUE_STRUCT_CONVENTION;
+ }
+
+ if (in != NULL || out != NULL)
+ {
+ if (rvc == RETURN_VALUE_REGISTER_CONVENTION)
+ s390_register_return_value (gdbarch, type, regcache, out, in);
+ else if (in != NULL)
+ error (_("Cannot set function return value."));
+ else
+ error (_("Function return value unknown."));
+ }
+
+ return rvc;
+}
+
+/* Frame unwinding. */
+
+/* See s390-tdep.h. */
+
+int
+s390_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+ int word_size = gdbarch_ptr_bit (gdbarch) / 8;
+
+ /* In frameless functions, there's not frame to destroy and thus
+ we don't care about the epilogue.
+
+ In functions with frame, the epilogue sequence is a pair of
+ a LM-type instruction that restores (amongst others) the
+ return register %r14 and the stack pointer %r15, followed
+ by a branch 'br %r14' --or equivalent-- that effects the
+ actual return.
+
+ In that situation, this function needs to return 'true' in
+ exactly one case: when pc points to that branch instruction.
+
+ Thus we try to disassemble the one instructions immediately
+ preceding pc and check whether it is an LM-type instruction
+ modifying the stack pointer.
+
+ Note that disassembling backwards is not reliable, so there
+ is a slight chance of false positives here ... */
+
+ bfd_byte insn[6];
+ unsigned int r1, r3, b2;
+ int d2;
+
+ if (word_size == 4
+ && !target_read_memory (pc - 4, insn, 4)
+ && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
+ && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+ return 1;
+
+ if (word_size == 4
+ && !target_read_memory (pc - 6, insn, 6)
+ && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
+ && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+ return 1;
+
+ if (word_size == 8
+ && !target_read_memory (pc - 6, insn, 6)
+ && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
+ && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
+ return 1;
+
+ return 0;
+}
+
+static CORE_ADDR
+s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ ULONGEST pc;
+ pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
+ return gdbarch_addr_bits_remove (gdbarch, pc);
+}
+
+static CORE_ADDR
+s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ ULONGEST sp;
+ sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
+ return gdbarch_addr_bits_remove (gdbarch, sp);
+}
+
+/* See s390-tdep.h. */
+
+struct value *
+s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum)
+{
+ struct gdbarch *gdbarch = get_frame_arch (this_frame);
+ struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+ struct type *type = register_type (gdbarch, regnum);
+
+ /* Unwind PC via PSW address. */
+ if (regnum == tdep->pc_regnum)
+ {
+ struct value *val;
+
+ val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM);
+ if (!value_optimized_out (val))
+ {
+ LONGEST pswa = value_as_long (val);
+
+ if (TYPE_LENGTH (type) == 4)
+ return value_from_pointer (type, pswa & 0x7fffffff);
+ else
+ return value_from_pointer (type, pswa);
+ }
+ }
+
+ /* Unwind CC via PSW mask. */
+ if (regnum == tdep->cc_regnum)
+ {
+ struct value *val;
+
+ val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM);
+ if (!value_optimized_out (val))
+ {
+ LONGEST pswm = value_as_long (val);
+
+ if (TYPE_LENGTH (type) == 4)
+ return value_from_longest (type, (pswm >> 12) & 3);
+ else
+ return value_from_longest (type, (pswm >> 44) & 3);
+ }
+ }
+
+ /* Unwind full GPRs to show at least the lower halves (as the
+ upper halves are undefined). */
+ if (regnum_is_gpr_full (tdep, regnum))
+ {
+ int reg = regnum - tdep->gpr_full_regnum;
+ struct value *val;
+
+ val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
+ if (!value_optimized_out (val))
+ return value_cast (type, val);
+ }
+
+ return allocate_optimized_out_value (type);
+}
+
+/* Translate a .eh_frame register to DWARF register, or adjust a
+ .debug_frame register. */
+
+static int
+s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
+{
+ /* See s390_dwarf_reg_to_regnum for comments. */
+ return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num;
+}
+
+/* DWARF-2 frame unwinding. */
+
+static struct value *
+s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
+ int regnum)
+{
+ return s390_unwind_pseudo_register (this_frame, regnum);
+}
+
+static void
+s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
+ struct dwarf2_frame_state_reg *reg,
+ struct frame_info *this_frame)
+{
+ /* The condition code (and thus PSW mask) is call-clobbered. */
+ if (regnum == S390_PSWM_REGNUM)
+ reg->how = DWARF2_FRAME_REG_UNDEFINED;
+
+ /* The PSW address unwinds to the return address. */
+ else if (regnum == S390_PSWA_REGNUM)
+ reg->how = DWARF2_FRAME_REG_RA;
+
+ /* Fixed registers are call-saved or call-clobbered
+ depending on the ABI in use. */
+ else if (regnum < S390_NUM_REGS)
+ {
+ if (s390_register_call_saved (gdbarch, regnum))
+ reg->how = DWARF2_FRAME_REG_SAME_VALUE;
+ else
+ reg->how = DWARF2_FRAME_REG_UNDEFINED;
+ }
+
+ /* We install a special function to unwind pseudos. */
+ else
+ {
+ reg->how = DWARF2_FRAME_REG_FN;
+ reg->loc.fn = s390_dwarf2_prev_register;
+ }
+}
+
+/* gdbarch init. */
+
+/* Validate the range of registers. NAMES must be known at compile time. */
+
+#define s390_validate_reg_range(feature, tdesc_data, start, names) \
+do \
+{ \
+ for (int i = 0; i < ARRAY_SIZE (names); i++) \
+ if (!tdesc_numbered_register (feature, tdesc_data, start + i, names[i])) \
+ return false; \
+} \
+while (0)
+
+/* Validate the target description. Also numbers registers contained in
+ tdesc. */
+
+static bool
+s390_tdesc_valid (struct gdbarch_tdep *tdep,
+ struct tdesc_arch_data *tdesc_data)
+{
+ static const char *const psw[] = {
+ "pswm", "pswa"
+ };
+ static const char *const gprs[] = {
+ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+ "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+ };
+ static const char *const fprs[] = {
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
+ };
+ static const char *const acrs[] = {
+ "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
+ "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
+ };
+ static const char *const gprs_lower[] = {
+ "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
+ "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
+ };
+ static const char *const gprs_upper[] = {
+ "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
+ "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
+ };
+ static const char *const tdb_regs[] = {
+ "tdb0", "tac", "tct", "atia",
+ "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
+ "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15"
+ };
+ static const char *const vxrs_low[] = {
+ "v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l",
+ "v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l",
+ };
+ static const char *const vxrs_high[] = {
+ "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24",
+ "v25", "v26", "v27", "v28", "v29", "v30", "v31",
+ };
+ static const char *const gs_cb[] = {
+ "gsd", "gssm", "gsepla",
+ };
+ static const char *const gs_bc[] = {
+ "bc_gsd", "bc_gssm", "bc_gsepla",
+ };
+
+ const struct target_desc *tdesc = tdep->tdesc;
+ const struct tdesc_feature *feature;
+
+ /* Core registers, i.e. general purpose and PSW. */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
+ if (feature == NULL)
+ return false;
+
+ s390_validate_reg_range (feature, tdesc_data, S390_PSWM_REGNUM, psw);
+
+ if (tdesc_unnumbered_register (feature, "r0"))
+ {
+ s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM, gprs);
+ }
+ else
+ {
+ tdep->have_upper = true;
+ s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM,
+ gprs_lower);
+ s390_validate_reg_range (feature, tdesc_data, S390_R0_UPPER_REGNUM,
+ gprs_upper);
+ }
+
+ /* Floating point registers. */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
+ if (feature == NULL)
+ return false;
+
+ if (!tdesc_numbered_register (feature, tdesc_data, S390_FPC_REGNUM, "fpc"))
+ return false;
+
+ s390_validate_reg_range (feature, tdesc_data, S390_F0_REGNUM, fprs);
+
+ /* Access control registers. */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
+ if (feature == NULL)
+ return false;
+
+ s390_validate_reg_range (feature, tdesc_data, S390_A0_REGNUM, acrs);
+
+ /* Optional GNU/Linux-specific "registers". */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux");
+ if (feature)
+ {
+ tdesc_numbered_register (feature, tdesc_data,
+ S390_ORIG_R2_REGNUM, "orig_r2");
+
+ if (tdesc_numbered_register (feature, tdesc_data,
+ S390_LAST_BREAK_REGNUM, "last_break"))
+ tdep->have_linux_v1 = true;
+
+ if (tdesc_numbered_register (feature, tdesc_data,
+ S390_SYSTEM_CALL_REGNUM, "system_call"))
+ tdep->have_linux_v2 = true;
+
+ if (tdep->have_linux_v2 && !tdep->have_linux_v1)
+ return false;
+ }
+
+ /* Transaction diagnostic block. */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb");
+ if (feature)
+ {
+ s390_validate_reg_range (feature, tdesc_data, S390_TDB_DWORD0_REGNUM,
+ tdb_regs);
+ tdep->have_tdb = true;
+ }
+
+ /* Vector registers. */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx");
+ if (feature)
+ {
+ s390_validate_reg_range (feature, tdesc_data, S390_V0_LOWER_REGNUM,
+ vxrs_low);
+ s390_validate_reg_range (feature, tdesc_data, S390_V16_REGNUM,
+ vxrs_high);
+ tdep->have_vx = true;
+ }
+
+ /* Guarded-storage registers. */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gs");
+ if (feature)
+ {
+ s390_validate_reg_range (feature, tdesc_data, S390_GSD_REGNUM, gs_cb);
+ tdep->have_gs = true;
+ }
+
+ /* Guarded-storage broadcast control. */
+ feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gsbc");
+ if (feature)
+ {
+ if (!tdep->have_gs)
+ return false;
+ s390_validate_reg_range (feature, tdesc_data, S390_BC_GSD_REGNUM,
+ gs_bc);
+ }
+
+ return true;
+}
+
+/* Allocate and initialize new gdbarch_tdep. Caller is responsible to free
+ memory after use. */
+
+static struct gdbarch_tdep *
+s390_gdbarch_tdep_alloc ()
+{
+ struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
+
+ tdep->tdesc = NULL;
+
+ tdep->abi = ABI_NONE;
+ tdep->vector_abi = S390_VECTOR_ABI_NONE;
+
+ tdep->gpr_full_regnum = -1;
+ tdep->v0_full_regnum = -1;
+ tdep->pc_regnum = -1;
+ tdep->cc_regnum = -1;
+
+ tdep->have_upper = false;
+ tdep->have_linux_v1 = false;
+ tdep->have_linux_v2 = false;
+ tdep->have_tdb = false;
+ tdep->have_vx = false;
+ tdep->have_gs = false;
+
+ return tdep;
+}
+
+/* Set up gdbarch struct. */
+
+static struct gdbarch *
+s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ const struct target_desc *tdesc = info.target_desc;
+ int first_pseudo_reg, last_pseudo_reg;
+ static const char *const stap_register_prefixes[] = { "%", NULL };
+ static const char *const stap_register_indirection_prefixes[] = { "(",
+ NULL };
+ static const char *const stap_register_indirection_suffixes[] = { ")",
+ NULL };
+
+ /* Find a candidate among extant architectures. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+ /* Otherwise create a new gdbarch for the specified machine type. */
+ struct gdbarch_tdep *tdep = s390_gdbarch_tdep_alloc ();
+ struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
+ struct tdesc_arch_data *tdesc_data = tdesc_data_alloc ();
+ info.tdesc_data = tdesc_data;
+
+ /* The DWARF unwinders must be appended before the ABI is initialized.
+ Otherwise it is possible that a ABI default unwinder gets called before
+ the DWARF unwinder even gets the chance. */
+ dwarf2_append_unwinders (gdbarch);
+
+ gdbarch_init_osabi (info, gdbarch);
+
+ /* Check any target description for validity. */
+ gdb_assert (tdesc_has_registers (tdep->tdesc));
+ if (!s390_tdesc_valid (tdep, tdesc_data))
+ {
+ tdesc_data_cleanup (tdesc_data);
+ xfree (tdep);
+ gdbarch_free (gdbarch);
+ return NULL;
+ }
+
+ /* Determine vector ABI. */
+#ifdef HAVE_ELF
+ if (tdep->have_vx
+ && info.abfd != NULL
+ && info.abfd->format == bfd_object
+ && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
+ && bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
+ Tag_GNU_S390_ABI_Vector) == 2)
+ tdep->vector_abi = S390_VECTOR_ABI_128;
+#endif
+
+ set_gdbarch_believe_pcc_promotion (gdbarch, 0);
+ set_gdbarch_char_signed (gdbarch, 0);
+
+ /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
+ We can safely let them default to 128-bit, since the debug info
+ will give the size of type actually used in each case. */
+ set_gdbarch_long_double_bit (gdbarch, 128);
+ set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
+
+ /* Breakpoints. */
+ /* Amount PC must be decremented by after a breakpoint. This is
+ often the number of bytes returned by gdbarch_breakpoint_from_pc but not
+ always. */
+ set_gdbarch_decr_pc_after_break (gdbarch, 2);
+ set_gdbarch_breakpoint_kind_from_pc (gdbarch, s390_breakpoint::kind_from_pc);
+ set_gdbarch_sw_breakpoint_from_kind (gdbarch, s390_breakpoint::bp_from_kind);
+
+ /* Displaced stepping. */
+ set_gdbarch_displaced_step_copy_insn (gdbarch,
+ s390_displaced_step_copy_insn);
+ set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
+ set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location);
+ set_gdbarch_displaced_step_hw_singlestep (gdbarch, s390_displaced_step_hw_singlestep);
+ set_gdbarch_software_single_step (gdbarch, s390_software_single_step);
+ set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
+
+ /* Prologue analysis. */
+ set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
+
+ /* Register handling. */
+ set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
+ set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
+ set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
+ set_gdbarch_register_name (gdbarch, s390_register_name);
+ set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
+ set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
+
+ /* Pseudo registers. */
+ set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
+ set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
+ set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
+ set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
+ set_tdesc_pseudo_register_reggroup_p (gdbarch,
+ s390_pseudo_register_reggroup_p);
+ set_gdbarch_ax_pseudo_register_collect (gdbarch,
+ s390_ax_pseudo_register_collect);
+ set_gdbarch_ax_pseudo_register_push_stack
+ (gdbarch, s390_ax_pseudo_register_push_stack);
+ set_gdbarch_gen_return_address (gdbarch, s390_gen_return_address);
+ tdesc_use_registers (gdbarch, tdep->tdesc, tdesc_data);
+
+ /* Assign pseudo register numbers. */
+ first_pseudo_reg = gdbarch_num_regs (gdbarch);
+ last_pseudo_reg = first_pseudo_reg;
+ if (tdep->have_upper)
+ {
+ tdep->gpr_full_regnum = last_pseudo_reg;
+ last_pseudo_reg += 16;
+ }
+ if (tdep->have_vx)
+ {
+ tdep->v0_full_regnum = last_pseudo_reg;
+ last_pseudo_reg += 16;
+ }
+ tdep->pc_regnum = last_pseudo_reg++;
+ tdep->cc_regnum = last_pseudo_reg++;
+ set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
+ set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
+
+ /* Inferior function calls. */
+ set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
+ set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
+ set_gdbarch_frame_align (gdbarch, s390_frame_align);
+ set_gdbarch_return_value (gdbarch, s390_return_value);
+
+ /* Frame handling. */
+ /* Stack grows downward. */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_stack_frame_destroyed_p (gdbarch, s390_stack_frame_destroyed_p);
+ dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
+ dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
+ frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
+ set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
+ set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
+
+ switch (tdep->abi)
+ {
+ case ABI_LINUX_S390:
+ set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
+ break;
+
+ case ABI_LINUX_ZSERIES:
+ set_gdbarch_long_bit (gdbarch, 64);
+ set_gdbarch_long_long_bit (gdbarch, 64);
+ set_gdbarch_ptr_bit (gdbarch, 64);
+ set_gdbarch_address_class_type_flags (gdbarch,
+ s390_address_class_type_flags);
+ set_gdbarch_address_class_type_flags_to_name (gdbarch,
+ s390_address_class_type_flags_to_name);
+ set_gdbarch_address_class_name_to_type_flags (gdbarch,
+ s390_address_class_name_to_type_flags);
+ break;
+ }
+
+ /* SystemTap functions. */
+ set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
+ set_gdbarch_stap_register_indirection_prefixes (gdbarch,
+ stap_register_indirection_prefixes);
+ set_gdbarch_stap_register_indirection_suffixes (gdbarch,
+ stap_register_indirection_suffixes);
+
+ set_gdbarch_disassembler_options (gdbarch, &s390_disassembler_options);
+ set_gdbarch_valid_disassembler_options (gdbarch,
+ disassembler_options_s390 ());
+
+ return gdbarch;
+}
+
+void
+_initialize_s390_tdep (void)
+{
+ /* Hook us into the gdbarch mechanism. */
+ register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
+}
diff --git a/gdb/s390-tdep.h b/gdb/s390-tdep.h
new file mode 100644
index 0000000000..5f20bcd572
--- /dev/null
+++ b/gdb/s390-tdep.h
@@ -0,0 +1,367 @@
+/* Target-dependent code for s390.
+
+ Copyright (C) 2003-2017 Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#ifndef S390_TDEP_H
+#define S390_TDEP_H
+
+#include "prologue-value.h"
+
+enum s390_abi_kind
+{
+ ABI_NONE,
+ ABI_LINUX_S390,
+ ABI_LINUX_ZSERIES
+};
+
+enum s390_vector_abi_kind
+{
+ S390_VECTOR_ABI_NONE,
+ S390_VECTOR_ABI_128
+};
+
+/* The tdep structure. */
+
+struct gdbarch_tdep
+{
+ /* Target description. */
+ const struct target_desc *tdesc;
+
+ /* ABI version. */
+ enum s390_abi_kind abi;
+
+ /* Vector ABI. */
+ enum s390_vector_abi_kind vector_abi;
+
+ /* Pseudo register numbers. */
+ int gpr_full_regnum;
+ int pc_regnum;
+ int cc_regnum;
+ int v0_full_regnum;
+
+ bool have_upper;
+ bool have_linux_v1;
+ bool have_linux_v2;
+ bool have_tdb;
+ bool have_vx;
+ bool have_gs;
+};
+
+/* Decoding S/390 instructions. */
+
+/* Named opcode values for the S/390 instructions we recognize. Some
+ instructions have their opcode split across two fields; those are the
+ op1_* and op2_* enums. */
+
+enum
+ {
+ op1_lhi = 0xa7, op2_lhi = 0x08,
+ op1_lghi = 0xa7, op2_lghi = 0x09,
+ op1_lgfi = 0xc0, op2_lgfi = 0x01,
+ op_lr = 0x18,
+ op_lgr = 0xb904,
+ op_l = 0x58,
+ op1_ly = 0xe3, op2_ly = 0x58,
+ op1_lg = 0xe3, op2_lg = 0x04,
+ op_lm = 0x98,
+ op1_lmy = 0xeb, op2_lmy = 0x98,
+ op1_lmg = 0xeb, op2_lmg = 0x04,
+ op_st = 0x50,
+ op1_sty = 0xe3, op2_sty = 0x50,
+ op1_stg = 0xe3, op2_stg = 0x24,
+ op_std = 0x60,
+ op_stm = 0x90,
+ op1_stmy = 0xeb, op2_stmy = 0x90,
+ op1_stmg = 0xeb, op2_stmg = 0x24,
+ op1_aghi = 0xa7, op2_aghi = 0x0b,
+ op1_ahi = 0xa7, op2_ahi = 0x0a,
+ op1_agfi = 0xc2, op2_agfi = 0x08,
+ op1_afi = 0xc2, op2_afi = 0x09,
+ op1_algfi= 0xc2, op2_algfi= 0x0a,
+ op1_alfi = 0xc2, op2_alfi = 0x0b,
+ op_ar = 0x1a,
+ op_agr = 0xb908,
+ op_a = 0x5a,
+ op1_ay = 0xe3, op2_ay = 0x5a,
+ op1_ag = 0xe3, op2_ag = 0x08,
+ op1_slgfi= 0xc2, op2_slgfi= 0x04,
+ op1_slfi = 0xc2, op2_slfi = 0x05,
+ op_sr = 0x1b,
+ op_sgr = 0xb909,
+ op_s = 0x5b,
+ op1_sy = 0xe3, op2_sy = 0x5b,
+ op1_sg = 0xe3, op2_sg = 0x09,
+ op_nr = 0x14,
+ op_ngr = 0xb980,
+ op_la = 0x41,
+ op1_lay = 0xe3, op2_lay = 0x71,
+ op1_larl = 0xc0, op2_larl = 0x00,
+ op_basr = 0x0d,
+ op_bas = 0x4d,
+ op_bcr = 0x07,
+ op_bc = 0x0d,
+ op_bctr = 0x06,
+ op_bctgr = 0xb946,
+ op_bct = 0x46,
+ op1_bctg = 0xe3, op2_bctg = 0x46,
+ op_bxh = 0x86,
+ op1_bxhg = 0xeb, op2_bxhg = 0x44,
+ op_bxle = 0x87,
+ op1_bxleg= 0xeb, op2_bxleg= 0x45,
+ op1_bras = 0xa7, op2_bras = 0x05,
+ op1_brasl= 0xc0, op2_brasl= 0x05,
+ op1_brc = 0xa7, op2_brc = 0x04,
+ op1_brcl = 0xc0, op2_brcl = 0x04,
+ op1_brct = 0xa7, op2_brct = 0x06,
+ op1_brctg= 0xa7, op2_brctg= 0x07,
+ op_brxh = 0x84,
+ op1_brxhg= 0xec, op2_brxhg= 0x44,
+ op_brxle = 0x85,
+ op1_brxlg= 0xec, op2_brxlg= 0x45,
+ op_svc = 0x0a,
+ };
+
+/* Read a single instruction from address AT. */
+extern int s390_readinstruction (bfd_byte instr[], CORE_ADDR at);
+
+/* Hardware capabilities. */
+
+#ifndef HWCAP_S390_HIGH_GPRS
+#define HWCAP_S390_HIGH_GPRS 512
+#endif
+
+#ifndef HWCAP_S390_TE
+#define HWCAP_S390_TE 1024
+#endif
+
+#ifndef HWCAP_S390_VX
+#define HWCAP_S390_VX 2048
+#endif
+
+#ifndef HWCAP_S390_GS
+#define HWCAP_S390_GS 16384
+#endif
+
+/* Register information. */
+
+/* Program Status Word. */
+#define S390_PSWM_REGNUM 0
+#define S390_PSWA_REGNUM 1
+/* General Purpose Registers. */
+#define S390_R0_REGNUM 2
+#define S390_R1_REGNUM 3
+#define S390_R2_REGNUM 4
+#define S390_R3_REGNUM 5
+#define S390_R4_REGNUM 6
+#define S390_R5_REGNUM 7
+#define S390_R6_REGNUM 8
+#define S390_R7_REGNUM 9
+#define S390_R8_REGNUM 10
+#define S390_R9_REGNUM 11
+#define S390_R10_REGNUM 12
+#define S390_R11_REGNUM 13
+#define S390_R12_REGNUM 14
+#define S390_R13_REGNUM 15
+#define S390_R14_REGNUM 16
+#define S390_R15_REGNUM 17
+/* Access Registers. */
+#define S390_A0_REGNUM 18
+#define S390_A1_REGNUM 19
+#define S390_A2_REGNUM 20
+#define S390_A3_REGNUM 21
+#define S390_A4_REGNUM 22
+#define S390_A5_REGNUM 23
+#define S390_A6_REGNUM 24
+#define S390_A7_REGNUM 25
+#define S390_A8_REGNUM 26
+#define S390_A9_REGNUM 27
+#define S390_A10_REGNUM 28
+#define S390_A11_REGNUM 29
+#define S390_A12_REGNUM 30
+#define S390_A13_REGNUM 31
+#define S390_A14_REGNUM 32
+#define S390_A15_REGNUM 33
+/* Floating Point Control Word. */
+#define S390_FPC_REGNUM 34
+/* Floating Point Registers. */
+#define S390_F0_REGNUM 35
+#define S390_F1_REGNUM 36
+#define S390_F2_REGNUM 37
+#define S390_F3_REGNUM 38
+#define S390_F4_REGNUM 39
+#define S390_F5_REGNUM 40
+#define S390_F6_REGNUM 41
+#define S390_F7_REGNUM 42
+#define S390_F8_REGNUM 43
+#define S390_F9_REGNUM 44
+#define S390_F10_REGNUM 45
+#define S390_F11_REGNUM 46
+#define S390_F12_REGNUM 47
+#define S390_F13_REGNUM 48
+#define S390_F14_REGNUM 49
+#define S390_F15_REGNUM 50
+/* General Purpose Register Upper Halves. */
+#define S390_R0_UPPER_REGNUM 51
+#define S390_R1_UPPER_REGNUM 52
+#define S390_R2_UPPER_REGNUM 53
+#define S390_R3_UPPER_REGNUM 54
+#define S390_R4_UPPER_REGNUM 55
+#define S390_R5_UPPER_REGNUM 56
+#define S390_R6_UPPER_REGNUM 57
+#define S390_R7_UPPER_REGNUM 58
+#define S390_R8_UPPER_REGNUM 59
+#define S390_R9_UPPER_REGNUM 60
+#define S390_R10_UPPER_REGNUM 61
+#define S390_R11_UPPER_REGNUM 62
+#define S390_R12_UPPER_REGNUM 63
+#define S390_R13_UPPER_REGNUM 64
+#define S390_R14_UPPER_REGNUM 65
+#define S390_R15_UPPER_REGNUM 66
+/* GNU/Linux-specific optional registers. */
+#define S390_ORIG_R2_REGNUM 67
+#define S390_LAST_BREAK_REGNUM 68
+#define S390_SYSTEM_CALL_REGNUM 69
+/* Transaction diagnostic block. */
+#define S390_TDB_DWORD0_REGNUM 70
+#define S390_TDB_ABORT_CODE_REGNUM 71
+#define S390_TDB_CONFLICT_TOKEN_REGNUM 72
+#define S390_TDB_ATIA_REGNUM 73
+#define S390_TDB_R0_REGNUM 74
+#define S390_TDB_R1_REGNUM 75
+#define S390_TDB_R2_REGNUM 76
+#define S390_TDB_R3_REGNUM 77
+#define S390_TDB_R4_REGNUM 78
+#define S390_TDB_R5_REGNUM 79
+#define S390_TDB_R6_REGNUM 80
+#define S390_TDB_R7_REGNUM 81
+#define S390_TDB_R8_REGNUM 82
+#define S390_TDB_R9_REGNUM 83
+#define S390_TDB_R10_REGNUM 84
+#define S390_TDB_R11_REGNUM 85
+#define S390_TDB_R12_REGNUM 86
+#define S390_TDB_R13_REGNUM 87
+#define S390_TDB_R14_REGNUM 88
+#define S390_TDB_R15_REGNUM 89
+/* Vector registers. */
+#define S390_V0_LOWER_REGNUM 90
+#define S390_V1_LOWER_REGNUM 91
+#define S390_V2_LOWER_REGNUM 92
+#define S390_V3_LOWER_REGNUM 93
+#define S390_V4_LOWER_REGNUM 94
+#define S390_V5_LOWER_REGNUM 95
+#define S390_V6_LOWER_REGNUM 96
+#define S390_V7_LOWER_REGNUM 97
+#define S390_V8_LOWER_REGNUM 98
+#define S390_V9_LOWER_REGNUM 99
+#define S390_V10_LOWER_REGNUM 100
+#define S390_V11_LOWER_REGNUM 101
+#define S390_V12_LOWER_REGNUM 102
+#define S390_V13_LOWER_REGNUM 103
+#define S390_V14_LOWER_REGNUM 104
+#define S390_V15_LOWER_REGNUM 105
+#define S390_V16_REGNUM 106
+#define S390_V17_REGNUM 107
+#define S390_V18_REGNUM 108
+#define S390_V19_REGNUM 109
+#define S390_V20_REGNUM 110
+#define S390_V21_REGNUM 111
+#define S390_V22_REGNUM 112
+#define S390_V23_REGNUM 113
+#define S390_V24_REGNUM 114
+#define S390_V25_REGNUM 115
+#define S390_V26_REGNUM 116
+#define S390_V27_REGNUM 117
+#define S390_V28_REGNUM 118
+#define S390_V29_REGNUM 119
+#define S390_V30_REGNUM 120
+#define S390_V31_REGNUM 121
+#define S390_GSD_REGNUM 122
+#define S390_GSSM_REGNUM 123
+#define S390_GSEPLA_REGNUM 124
+#define S390_BC_GSD_REGNUM 125
+#define S390_BC_GSSM_REGNUM 126
+#define S390_BC_GSEPLA_REGNUM 127
+/* Total. */
+#define S390_NUM_REGS 128
+
+#define S390_NUM_GPRS 16
+#define S390_NUM_FPRS 16
+
+#define S390_MAX_INSTR_SIZE 6
+
+/* Special register usage. */
+#define S390_SP_REGNUM S390_R15_REGNUM
+#define S390_RETADDR_REGNUM S390_R14_REGNUM
+#define S390_FRAME_REGNUM S390_R11_REGNUM
+
+/* Prologue analysis. */
+
+struct s390_prologue_data {
+
+ /* The stack. */
+ struct pv_area *stack;
+
+ /* The size and byte-order of a GPR or FPR. */
+ int gpr_size;
+ int fpr_size;
+ enum bfd_endian byte_order;
+
+ /* The general-purpose registers. */
+ pv_t gpr[S390_NUM_GPRS];
+
+ /* The floating-point registers. */
+ pv_t fpr[S390_NUM_FPRS];
+
+ /* The offset relative to the CFA where the incoming GPR N was saved
+ by the function prologue. 0 if not saved or unknown. */
+ int gpr_slot[S390_NUM_GPRS];
+
+ /* Likewise for FPRs. */
+ int fpr_slot[S390_NUM_FPRS];
+
+ /* Nonzero if the backchain was saved. This is assumed to be the
+ case when the incoming SP is saved at the current SP location. */
+ int back_chain_saved_p;
+};
+
+/* Analyze the prologue of the function starting at START_PC, continuing at
+ most until CURRENT_PC. Initialize DATA to hold all information we find
+ out about the state of the registers and stack slots. Return the address
+ of the instruction after the last one that changed the SP, FP, or back
+ chain; or zero on error. */
+extern CORE_ADDR s390_analyze_prologue (struct gdbarch *gdbarch,
+ CORE_ADDR start_pc,
+ CORE_ADDR current_pc,
+ struct s390_prologue_data *data);
+
+/* Register handling. */
+
+/* ABI call-saved register information. */
+extern int s390_register_call_saved (struct gdbarch *gdbarch, int regnum);
+
+/* Frame unwinding. */
+
+/* Implmement the stack_frame_destroyed_p gdbarch method. */
+extern int s390_stack_frame_destroyed_p (struct gdbarch *gdbarch,
+ CORE_ADDR pc);
+
+/* Helper routine to unwind pseudo registers. */
+extern struct value *s390_unwind_pseudo_register (struct frame_info *this_frame,
+ int regnum);
+
+#endif /* S390_TDEP_H */
--
2.13.5