This is the mail archive of the
gdb-patches@sourceware.org
mailing list for the GDB project.
Re: add vector container type
Eli Zaretskii wrote:
Date: Mon, 10 Jul 2006 13:54:04 +0200 (CEST)
From: "Mark Kettenis" <mark.kettenis@xs4all.nl>
Cc: gdb-patches@sourceware.org, "Daniel Jacobowitz" <dan@codesourcery.com>
Oh, and Eli will want you to write a paragraph on how to use this in
gdbint.tex.
(You meant gdbint.texinfo.) Yep, it would be nice.
Is this version ok?
nathan
--
Nathan Sidwell :: http://www.codesourcery.com :: CodeSourcery
nathan@codesourcery.com :: http://www.planetfall.pwp.blueyonder.co.uk
2006-07-13 Nathan Sidwell <nathan@codesourcery.com>
* vec.h: New file.
* vec.c: New file.
* Makefile.in (SFILES): Add vec.c.
(vec_h): New.
(COMMON_OBJS): Add vec.o.
(vec.o): New target.
* doc/gdbint.texinfo (Array Containers): New section.
Index: Makefile.in
===================================================================
RCS file: /cvs/src/src/gdb/Makefile.in,v
retrieving revision 1.822
diff -c -3 -p -r1.822 Makefile.in
*** Makefile.in 23 Jun 2006 13:01:05 -0000 1.822
--- Makefile.in 13 Jul 2006 18:20:29 -0000
*************** SFILES = ada-exp.y ada-lang.c ada-typepr
*** 555,561 ****
typeprint.c \
ui-out.c utils.c ui-file.h ui-file.c \
user-regs.c \
! valarith.c valops.c valprint.c value.c varobj.c \
wrapper.c
LINTFILES = $(SFILES) $(YYFILES) $(CONFIG_SRCS) init.c
--- 555,561 ----
typeprint.c \
ui-out.c utils.c ui-file.h ui-file.c \
user-regs.c \
! valarith.c valops.c valprint.c value.c varobj.c vec.c \
wrapper.c
LINTFILES = $(SFILES) $(YYFILES) $(CONFIG_SRCS) init.c
*************** value_h = value.h $(doublest_h) $(frame_
*** 810,815 ****
--- 810,816 ----
$(expression_h)
varobj_h = varobj.h $(symtab_h) $(gdbtypes_h)
vax_tdep_h = vax-tdep.h
+ vec_h = vec.h $(gdb_assert_h) $(gdb_string_h)
version_h = version.h
wince_stub_h = wince-stub.h
wrapper_h = wrapper.h $(gdb_h)
*************** COMMON_OBS = $(DEPFILES) $(CONFIG_OBS) $
*** 936,942 ****
dwarf2expr.o dwarf2loc.o dwarf2-frame.o \
ada-lang.o c-lang.o f-lang.o objc-lang.o \
ui-out.o cli-out.o \
! varobj.o wrapper.o \
jv-lang.o jv-valprint.o jv-typeprint.o \
m2-lang.o p-lang.o p-typeprint.o p-valprint.o \
scm-exp.o scm-lang.o scm-valprint.o \
--- 937,943 ----
dwarf2expr.o dwarf2loc.o dwarf2-frame.o \
ada-lang.o c-lang.o f-lang.o objc-lang.o \
ui-out.o cli-out.o \
! varobj.o vec.o wrapper.o \
jv-lang.o jv-valprint.o jv-typeprint.o \
m2-lang.o p-lang.o p-typeprint.o p-valprint.o \
scm-exp.o scm-lang.o scm-valprint.o \
*************** vax-tdep.o: vax-tdep.c $(defs_h) $(arch_
*** 2811,2816 ****
--- 2812,2818 ----
$(float_format_h) $(frame_h) $(frame_base_h) $(frame_unwind_h) \
$(gdbcore_h) $(gdbtypes_h) $(osabi_h) $(regcache_h) $(regset_h) \
$(trad_frame_h) $(value_h) $(gdb_string_h) $(vax_tdep_h)
+ vec.o: vec.c $(defs_h) $(vec_h)
win32-nat.o: win32-nat.c $(defs_h) $(frame_h) $(inferior_h) $(target_h) \
$(exceptions_h) $(gdbcore_h) $(command_h) $(completer_h) \
$(regcache_h) $(top_h) $(buildsym_h) $(symfile_h) $(objfiles_h) \
Index: vec.c
===================================================================
RCS file: vec.c
diff -N vec.c
*** /dev/null 1 Jan 1970 00:00:00 -0000
--- vec.c 13 Jul 2006 18:20:30 -0000
***************
*** 0 ****
--- 1,120 ----
+ /* Vector API for GDB.
+ Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
+ Contributed by Nathan Sidwell <nathan@codesourcery.com>
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ Boston, MA 02110-1301, USA. */
+
+ #include "vec.h"
+ #include "defs.h"
+
+ struct vec_prefix
+ {
+ unsigned num;
+ unsigned alloc;
+ void *vec[1];
+ };
+
+ /* Calculate the new ALLOC value, making sure that abs(RESERVE) slots
+ are free. If RESERVE < 0 grow exactly, otherwise grow
+ exponentially. */
+
+ static inline unsigned
+ calculate_allocation (const struct vec_prefix *pfx, int reserve)
+ {
+ unsigned alloc = 0;
+ unsigned num = 0;
+
+ if (pfx)
+ {
+ alloc = pfx->alloc;
+ num = pfx->num;
+ }
+ else if (!reserve)
+ /* If there's no prefix, and we've not requested anything, then we
+ will create a NULL vector. */
+ return 0;
+
+ /* We must have run out of room. */
+ gdb_assert (alloc - num < (unsigned)(reserve < 0 ? -reserve : reserve));
+
+ if (reserve < 0)
+ /* Exact size. */
+ alloc = num + -reserve;
+ else
+ {
+ /* Exponential growth. */
+ if (!alloc)
+ alloc = 4;
+ else if (alloc < 16)
+ /* Double when small. */
+ alloc = alloc * 2;
+ else
+ /* Grow slower when large. */
+ alloc = (alloc * 3 / 2);
+
+ /* If this is still too small, set it to the right size. */
+ if (alloc < num + reserve)
+ alloc = num + reserve;
+ }
+ return alloc;
+ }
+
+ /* Ensure there are at least abs(RESERVE) free slots in VEC. If
+ RESERVE < 0 grow exactly, else grow exponentially. As a special
+ case, if VEC is NULL, and RESERVE is 0, no vector will be created. */
+
+ void *
+ vec_p_reserve (void *vec, int reserve)
+ {
+ return vec_o_reserve (vec, reserve,
+ offsetof (struct vec_prefix, vec), sizeof (void *));
+ }
+
+ /* As vec_p_reserve, but for object vectors. The vector's trailing
+ array is at VEC_OFFSET offset and consists of ELT_SIZE sized
+ elements. */
+
+ void *
+ vec_o_reserve (void *vec, int reserve, size_t vec_offset, size_t elt_size)
+ {
+ struct vec_prefix *pfx = vec;
+ unsigned alloc = calculate_allocation (pfx, reserve);
+
+ if (!alloc)
+ return NULL;
+
+ vec = xrealloc (vec, vec_offset + alloc * elt_size);
+ ((struct vec_prefix *)vec)->alloc = alloc;
+ if (!pfx)
+ ((struct vec_prefix *)vec)->num = 0;
+
+ return vec;
+ }
+
+ #if 0
+ /* Example uses. */
+ DEF_VEC_I (int);
+ typedef struct X
+ {
+ int i;
+ } obj_t;
+ typedef obj_t *ptr_t;
+
+ DEF_VEC_P (ptr_t);
+ DEF_VEC_O (obj_t);
+ #endif
Index: vec.h
===================================================================
RCS file: vec.h
diff -N vec.h
*** /dev/null 1 Jan 1970 00:00:00 -0000
--- vec.h 13 Jul 2006 18:20:31 -0000
***************
*** 0 ****
--- 1,1001 ----
+ /* Vector API for GDB.
+ Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
+ Contributed by Nathan Sidwell <nathan@codesourcery.com>
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ Boston, MA 02110-1301, USA. */
+
+ #if !defined (GDB_VEC_H)
+ #define GDB_VEC_H
+
+ #include <stddef.h>
+ #include "gdb_string.h"
+ #include "gdb_assert.h"
+
+ /* The macros here implement a set of templated vector types and
+ associated interfaces. These templates are implemented with
+ macros, as we're not in C++ land. The interface functions are
+ typesafe and use static __inline__ functions, sometimes backed by
+ out-of-line generic functions.
+
+ Because of the different behavior of structure objects, scalar
+ objects and of pointers, there are three flavors, one for each of
+ these variants. Both the structure object and pointer variants
+ pass pointers to objects around -- in the former case the pointers
+ are stored into the vector and in the latter case the pointers are
+ dereferenced and the objects copied into the vector. The scalar
+ object variant is suitable for int-like objects, and the vector
+ elements are returned by value.
+
+ There are both 'index' and 'iterate' accessors. The iterator
+ returns a boolean iteration condition and updates the iteration
+ variable passed by reference. Because the iterator will be
+ inlined, the address-of can be optimized away. The index accessor
+ returns an lvalue.
+
+ The vectors are implemented using the trailing array idiom, thus
+ they are not resizeable without changing the address of the vector
+ object itself. This means you cannot have variables or fields of
+ vector type -- always use a pointer to a vector. The one exception
+ is the final field of a structure, which could be a vector type.
+ You will have to use the embedded_size & embedded_init calls to
+ create such objects, and they will probably not be resizeable (so
+ don't use the 'safe' allocation variants). The trailing array
+ idiom is used (rather than a pointer to an array of data), because,
+ if we allow NULL to also represent an empty vector, empty vectors
+ occupy minimal space in the structure containing them.
+
+ Each operation that increases the number of active elements is
+ available in 'quick' and 'safe' variants. The former presumes that
+ there is sufficient allocated space for the operation to succeed
+ (it dies if there is not). The latter will reallocate the
+ vector, if needed. Reallocation causes an exponential increase in
+ vector size. If you know you will be adding N elements, it would
+ be more efficient to use the reserve operation before adding the
+ elements with the 'quick' operation. This will ensure there are at
+ least as many elements as you ask for, it will exponentially
+ increase if there are too few spare slots. If you want reserve a
+ specific number of slots, but do not want the exponential increase
+ (for instance, you know this is the last allocation), use a
+ negative number for reservation. You can also create a vector of a
+ specific size from the get go.
+
+ You should prefer the push and pop operations, as they append and
+ remove from the end of the vector. If you need to remove several
+ items in one go, use the truncate operation. The insert and remove
+ operations allow you to change elements in the middle of the
+ vector. There are two remove operations, one which preserves the
+ element ordering 'ordered_remove', and one which does not
+ 'unordered_remove'. The latter function copies the end element
+ into the removed slot, rather than invoke a memmove operation. The
+ 'lower_bound' function will determine where to place an item in the
+ array using insert that will maintain sorted order.
+
+ If you need to directly manipulate a vector, then the 'address'
+ accessor will return the address of the start of the vector. Also
+ the 'space' predicate will tell you whether there is spare capacity
+ in the vector. You will not normally need to use these two functions.
+
+ Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro.
+ Variables of vector type are declared using a VEC(TYPEDEF) macro.
+ The characters O, P and I indicate whether TYPEDEF is a pointer
+ (P), object (O) or integral (I) type. Be careful to pick the
+ correct one, as you'll get an awkward and inefficient API if you
+ use the wrong one. There is a check, which results in a
+ compile-time warning, for the P and I versions, but there is no
+ check for the O versions, as that is not possible in plain C.
+
+ An example of their use would be,
+
+ DEF_VEC_P(tree); // non-managed tree vector.
+
+ struct my_struct {
+ VEC(tree) *v; // A (pointer to) a vector of tree pointers.
+ };
+
+ struct my_struct *s;
+
+ if (VEC_length(tree, s->v)) { we have some contents }
+ VEC_safe_push(tree, s->v, decl); // append some decl onto the end
+ for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
+ { do something with elt }
+
+ */
+
+ /* Macros to invoke API calls. A single macro works for both pointer
+ and object vectors, but the argument and return types might well be
+ different. In each macro, T is the typedef of the vector elements.
+ Some of these macros pass the vector, V, by reference (by taking
+ its address), this is noted in the descriptions. */
+
+ /* Length of vector
+ unsigned VEC_T_length(const VEC(T) *v);
+
+ Return the number of active elements in V. V can be NULL, in which
+ case zero is returned. */
+
+ #define VEC_length(T,V) (VEC_OP(T,length)(V))
+
+
+ /* Check if vector is empty
+ int VEC_T_empty(const VEC(T) *v);
+
+ Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
+
+ #define VEC_empty(T,V) (VEC_length (T,V) == 0)
+
+
+ /* Get the final element of the vector.
+ T &VEC_T_last(VEC(T) *v); // Integer
+ T &VEC_T_last(VEC(T) *v); // Pointer
+ T *VEC_T_last(VEC(T) *v); // Object
+
+ Return the final element. V must not be empty. */
+
+ #define VEC_last(T,V) (*VEC_OP(T,last)(V VEC_ASSERT_INFO))
+
+ /* Index into vector
+ T &VEC_T_index(VEC(T) *v, unsigned ix); // Integer
+ T &VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
+ T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
+
+ Return the IX'th element. If IX must be in the domain of V. */
+
+ #define VEC_index(T,V,I) (*VEC_OP(T,index)(V,I VEC_ASSERT_INFO))
+
+ /* Iterate over vector
+ int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
+ int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
+ int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
+
+ Return iteration condition and update PTR to point to the IX'th
+ element. At the end of iteration, sets PTR to NULL. Use this to
+ iterate over the elements of a vector as follows,
+
+ for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
+ continue; */
+
+ #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P)))
+
+ /* Allocate new vector.
+ VEC(T,A) *VEC_T_alloc(int reserve);
+
+ Allocate a new vector with space for RESERVE objects. If RESERVE
+ is zero, NO vector is created. */
+
+ #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N))
+
+ /* Free a vector.
+ void VEC_T_free(VEC(T,A) *&);
+
+ Free a vector and set it to NULL. */
+
+ #define VEC_free(T,V) (VEC_OP(T,free)(&V))
+
+ /* Use these to determine the required size and initialization of a
+ vector embedded within another structure (as the final member).
+
+ size_t VEC_T_embedded_size(int reserve);
+ void VEC_T_embedded_init(VEC(T) *v, int reserve);
+
+ These allow the caller to perform the memory allocation. */
+
+ #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N))
+ #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N))
+
+ /* Copy a vector.
+ VEC(T,A) *VEC_T_copy(VEC(T) *);
+
+ Copy the live elements of a vector into a new vector. The new and
+ old vectors need not be allocated by the same mechanism. */
+
+ #define VEC_copy(T,V) (VEC_OP(T,copy)(V))
+
+ /* Determine if a vector has additional capacity.
+
+ int VEC_T_space (VEC(T) *v,int reserve)
+
+ If V has space for RESERVE additional entries, return nonzero. You
+ usually only need to use this if you are doing your own vector
+ reallocation, for instance on an embedded vector. This returns
+ nonzero in exactly the same circumstances that VEC_T_reserve
+ will. */
+
+ #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO))
+
+ /* Reserve space.
+ int VEC_T_reserve(VEC(T,A) *&v, int reserve);
+
+ Ensure that V has at least abs(RESERVE) slots available. The
+ signedness of RESERVE determines the reallocation behavior. A
+ negative value will not create additional headroom beyond that
+ requested. A positive value will create additional headroom. Note
+ this can cause V to be reallocated. Returns nonzero iff
+ reallocation actually occurred. */
+
+ #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO))
+
+ /* Push object with no reallocation
+ T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
+ T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
+ T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
+
+ Push a new element onto the end, returns a pointer to the slot
+ filled in. For object vectors, the new value can be NULL, in which
+ case NO initialization is performed. There must
+ be sufficient space in the vector. */
+
+ #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO))
+
+ /* Push object with reallocation
+ T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer
+ T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer
+ T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object
+
+ Push a new element onto the end, returns a pointer to the slot
+ filled in. For object vectors, the new value can be NULL, in which
+ case NO initialization is performed. Reallocates V, if needed. */
+
+ #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO))
+
+ /* Pop element off end
+ T VEC_T_pop (VEC(T) *v); // Integer
+ T VEC_T_pop (VEC(T) *v); // Pointer
+ void VEC_T_pop (VEC(T) *v); // Object
+
+ Pop the last element off the end. Returns the element popped, for
+ pointer vectors. */
+
+ #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO))
+
+ /* Truncate to specific length
+ void VEC_T_truncate (VEC(T) *v, unsigned len);
+
+ Set the length as specified. The new length must be less than or
+ equal to the current length. This is an O(1) operation. */
+
+ #define VEC_truncate(T,V,I) \
+ (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO))
+
+ /* Grow to a specific length.
+ void VEC_T_safe_grow (VEC(T,A) *&v, int len);
+
+ Grow the vector to a specific length. The LEN must be as
+ long or longer than the current length. The new elements are
+ uninitialized. */
+
+ #define VEC_safe_grow(T,V,I) \
+ (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO))
+
+ /* Replace element
+ T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
+ T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
+ T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
+
+ Replace the IXth element of V with a new value, VAL. For pointer
+ vectors returns the original value. For object vectors returns a
+ pointer to the new value. For object vectors the new value can be
+ NULL, in which case no overwriting of the slot is actually
+ performed. */
+
+ #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO))
+
+ /* Insert object with no reallocation
+ T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
+ T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
+ T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
+
+ Insert an element, VAL, at the IXth position of V. Return a pointer
+ to the slot created. For vectors of object, the new value can be
+ NULL, in which case no initialization of the inserted slot takes
+ place. There must be sufficient space. */
+
+ #define VEC_quick_insert(T,V,I,O) \
+ (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO))
+
+ /* Insert object with reallocation
+ T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
+ T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
+ T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
+
+ Insert an element, VAL, at the IXth position of V. Return a pointer
+ to the slot created. For vectors of object, the new value can be
+ NULL, in which case no initialization of the inserted slot takes
+ place. Reallocate V, if necessary. */
+
+ #define VEC_safe_insert(T,V,I,O) \
+ (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO))
+
+ /* Remove element retaining order
+ T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
+ T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
+ void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
+
+ Remove an element from the IXth position of V. Ordering of
+ remaining elements is preserved. For pointer vectors returns the
+ removed object. This is an O(N) operation due to a memmove. */
+
+ #define VEC_ordered_remove(T,V,I) \
+ (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO))
+
+ /* Remove element destroying order
+ T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
+ T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
+ void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
+
+ Remove an element from the IXth position of V. Ordering of
+ remaining elements is destroyed. For pointer vectors returns the
+ removed object. This is an O(1) operation. */
+
+ #define VEC_unordered_remove(T,V,I) \
+ (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO))
+
+ /* Remove a block of elements
+ void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
+
+ Remove LEN elements starting at the IXth. Ordering is retained.
+ This is an O(1) operation. */
+
+ #define VEC_block_remove(T,V,I,L) \
+ (VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO)
+
+ /* Get the address of the array of elements
+ T *VEC_T_address (VEC(T) v)
+
+ If you need to directly manipulate the array (for instance, you
+ want to feed it to qsort), use this accessor. */
+
+ #define VEC_address(T,V) (VEC_OP(T,address)(V))
+
+ /* Find the first index in the vector not less than the object.
+ unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
+ int (*lessthan) (const T, const T)); // Integer
+ unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
+ int (*lessthan) (const T, const T)); // Pointer
+ unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
+ int (*lessthan) (const T*, const T*)); // Object
+
+ Find the first position in which VAL could be inserted without
+ changing the ordering of V. LESSTHAN is a function that returns
+ true if the first argument is strictly less than the second. */
+
+ #define VEC_lower_bound(T,V,O,LT) \
+ (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO))
+
+ /* Reallocate an array of elements with prefix. */
+ extern void *vec_p_reserve (void *, int);
+ extern void *vec_o_reserve (void *, int, size_t, size_t);
+ #define vec_free(V) xfree (V)
+
+ #define VEC_ASSERT_INFO ,__FILE__,__LINE__
+ #define VEC_ASSERT_DECL ,const char *file_,unsigned line_
+ #define VEC_ASSERT_PASS ,file_,line_
+ #define vec_assert(expr, op) \
+ ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0)))
+
+ #define VEC(T) VEC_##T
+ #define VEC_OP(T,OP) VEC_##T##_##OP
+
+ #define VEC_T(T) \
+ typedef struct VEC(T) \
+ { \
+ unsigned num; \
+ unsigned alloc; \
+ T vec[1]; \
+ } VEC(T)
+
+ /* Vector of integer-like object. */
+ #define DEF_VEC_I(T) \
+ static __inline__ void VEC_OP (T,must_be_integral_type) (void) \
+ { \
+ (void)~(T)0; \
+ } \
+ \
+ VEC_T(T); \
+ DEF_VEC_FUNC_P(T) \
+ DEF_VEC_ALLOC_FUNC_I(T) \
+ struct vec_swallow_trailing_semi
+
+ /* Vector of pointer to object. */
+ #define DEF_VEC_P(T) \
+ static __inline__ void VEC_OP (T,must_be_pointer_type) (void) \
+ { \
+ (void)((T)1 == (void *)1); \
+ } \
+ \
+ VEC_T(T); \
+ DEF_VEC_FUNC_P(T) \
+ DEF_VEC_ALLOC_FUNC_P(T) \
+ struct vec_swallow_trailing_semi
+
+ /* Vector of object. */
+ #define DEF_VEC_O(T) \
+ VEC_T(T); \
+ DEF_VEC_FUNC_O(T) \
+ DEF_VEC_ALLOC_FUNC_O(T) \
+ struct vec_swallow_trailing_semi
+
+ #define DEF_VEC_ALLOC_FUNC_I(T) \
+ static __inline__ VEC(T) *VEC_OP (T,alloc) \
+ (int alloc_) \
+ { \
+ /* We must request exact size allocation, hence the negation. */ \
+ return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
+ offsetof (VEC(T),vec), sizeof (T)); \
+ } \
+ \
+ static __inline__ VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
+ { \
+ size_t len_ = vec_ ? vec_->num : 0; \
+ VEC (T) *new_vec_ = NULL; \
+ \
+ if (len_) \
+ { \
+ /* We must request exact size allocation, hence the negation. */ \
+ new_vec_ = (VEC (T) *) \
+ vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
+ \
+ new_vec_->num = len_; \
+ memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
+ } \
+ return new_vec_; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,free) \
+ (VEC(T) **vec_) \
+ { \
+ if (*vec_) \
+ vec_free (*vec_); \
+ *vec_ = NULL; \
+ } \
+ \
+ static __inline__ int VEC_OP (T,reserve) \
+ (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
+ { \
+ int extend = !VEC_OP (T,space) \
+ (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
+ \
+ if (extend) \
+ *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \
+ offsetof (VEC(T),vec), sizeof (T)); \
+ \
+ return extend; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,safe_grow) \
+ (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
+ "safe_grow"); \
+ VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \
+ VEC_ASSERT_PASS); \
+ (*vec_)->num = size_; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,safe_push) \
+ (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \
+ { \
+ VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
+ \
+ return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,safe_insert) \
+ (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \
+ { \
+ VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
+ \
+ return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
+ }
+
+ #define DEF_VEC_FUNC_P(T) \
+ static __inline__ unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
+ { \
+ return vec_ ? vec_->num : 0; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,last) \
+ (const VEC(T) *vec_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (vec_ && vec_->num, "last"); \
+ \
+ return &vec_->vec[vec_->num - 1]; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,index) \
+ (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (vec_ && ix_ < vec_->num, "index"); \
+ \
+ return &vec_->vec[ix_]; \
+ } \
+ \
+ static __inline__ int VEC_OP (T,iterate) \
+ (const VEC(T) *vec_, unsigned ix_, T *ptr) \
+ { \
+ if (vec_ && ix_ < vec_->num) \
+ { \
+ *ptr = vec_->vec[ix_]; \
+ return 1; \
+ } \
+ else \
+ { \
+ *ptr = 0; \
+ return 0; \
+ } \
+ } \
+ \
+ static __inline__ size_t VEC_OP (T,embedded_size) \
+ (int alloc_) \
+ { \
+ return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
+ } \
+ \
+ static __inline__ void VEC_OP (T,embedded_init) \
+ (VEC(T) *vec_, int alloc_) \
+ { \
+ vec_->num = 0; \
+ vec_->alloc = alloc_; \
+ } \
+ \
+ static __inline__ int VEC_OP (T,space) \
+ (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (alloc_ >= 0, "space"); \
+ return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,quick_push) \
+ (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ \
+ vec_assert (vec_->num < vec_->alloc, "quick_push"); \
+ slot_ = &vec_->vec[vec_->num++]; \
+ *slot_ = obj_; \
+ \
+ return slot_; \
+ } \
+ \
+ static __inline__ T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
+ { \
+ T obj_; \
+ \
+ vec_assert (vec_->num, "pop"); \
+ obj_ = vec_->vec[--vec_->num]; \
+ \
+ return obj_; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,truncate) \
+ (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
+ if (vec_) \
+ vec_->num = size_; \
+ } \
+ \
+ static __inline__ T VEC_OP (T,replace) \
+ (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
+ { \
+ T old_obj_; \
+ \
+ vec_assert (ix_ < vec_->num, "replace"); \
+ old_obj_ = vec_->vec[ix_]; \
+ vec_->vec[ix_] = obj_; \
+ \
+ return old_obj_; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,quick_insert) \
+ (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ \
+ vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
+ slot_ = &vec_->vec[ix_]; \
+ memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
+ *slot_ = obj_; \
+ \
+ return slot_; \
+ } \
+ \
+ static __inline__ T VEC_OP (T,ordered_remove) \
+ (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ T obj_; \
+ \
+ vec_assert (ix_ < vec_->num, "ordered_remove"); \
+ slot_ = &vec_->vec[ix_]; \
+ obj_ = *slot_; \
+ memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
+ \
+ return obj_; \
+ } \
+ \
+ static __inline__ T VEC_OP (T,unordered_remove) \
+ (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ T obj_; \
+ \
+ vec_assert (ix_ < vec_->num, "unordered_remove"); \
+ slot_ = &vec_->vec[ix_]; \
+ obj_ = *slot_; \
+ *slot_ = vec_->vec[--vec_->num]; \
+ \
+ return obj_; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,block_remove) \
+ (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ \
+ vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
+ slot_ = &vec_->vec[ix_]; \
+ vec_->num -= len_; \
+ memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,address) \
+ (VEC(T) *vec_) \
+ { \
+ return vec_ ? vec_->vec : 0; \
+ } \
+ \
+ static __inline__ unsigned VEC_OP (T,lower_bound) \
+ (VEC(T) *vec_, const T obj_, \
+ int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \
+ { \
+ unsigned int len_ = VEC_OP (T, length) (vec_); \
+ unsigned int half_, middle_; \
+ unsigned int first_ = 0; \
+ while (len_ > 0) \
+ { \
+ T middle_elem_; \
+ half_ = len_ >> 1; \
+ middle_ = first_; \
+ middle_ += half_; \
+ middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
+ if (lessthan_ (middle_elem_, obj_)) \
+ { \
+ first_ = middle_; \
+ ++first_; \
+ len_ = len_ - half_ - 1; \
+ } \
+ else \
+ len_ = half_; \
+ } \
+ return first_; \
+ }
+
+ #define DEF_VEC_ALLOC_FUNC_P(T) \
+ static __inline__ VEC(T) *VEC_OP (T,alloc) \
+ (int alloc_) \
+ { \
+ /* We must request exact size allocation, hence the negation. */ \
+ return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \
+ } \
+ \
+ static __inline__ void VEC_OP (T,free) \
+ (VEC(T) **vec_) \
+ { \
+ if (*vec_) \
+ vec_free (*vec_); \
+ *vec_ = NULL; \
+ } \
+ \
+ static __inline__ VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
+ { \
+ size_t len_ = vec_ ? vec_->num : 0; \
+ VEC (T) *new_vec_ = NULL; \
+ \
+ if (len_) \
+ { \
+ /* We must request exact size allocation, hence the negation. */ \
+ new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \
+ \
+ new_vec_->num = len_; \
+ memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
+ } \
+ return new_vec_; \
+ } \
+ \
+ static __inline__ int VEC_OP (T,reserve) \
+ (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
+ { \
+ int extend = !VEC_OP (T,space) \
+ (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \
+ \
+ if (extend) \
+ *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \
+ \
+ return extend; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,safe_grow) \
+ (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
+ "safe_grow"); \
+ VEC_OP (T,reserve) \
+ (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
+ (*vec_)->num = size_; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,safe_push) \
+ (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \
+ { \
+ VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
+ \
+ return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,safe_insert) \
+ (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \
+ { \
+ VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
+ \
+ return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
+ }
+
+ #define DEF_VEC_FUNC_O(T) \
+ static __inline__ unsigned VEC_OP (T,length) (const VEC(T) *vec_) \
+ { \
+ return vec_ ? vec_->num : 0; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (vec_ && vec_->num, "last"); \
+ \
+ return &vec_->vec[vec_->num - 1]; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,index) \
+ (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (vec_ && ix_ < vec_->num, "index"); \
+ \
+ return &vec_->vec[ix_]; \
+ } \
+ \
+ static __inline__ int VEC_OP (T,iterate) \
+ (VEC(T) *vec_, unsigned ix_, T **ptr) \
+ { \
+ if (vec_ && ix_ < vec_->num) \
+ { \
+ *ptr = &vec_->vec[ix_]; \
+ return 1; \
+ } \
+ else \
+ { \
+ *ptr = 0; \
+ return 0; \
+ } \
+ } \
+ \
+ static __inline__ size_t VEC_OP (T,embedded_size) \
+ (int alloc_) \
+ { \
+ return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \
+ } \
+ \
+ static __inline__ void VEC_OP (T,embedded_init) \
+ (VEC(T) *vec_, int alloc_) \
+ { \
+ vec_->num = 0; \
+ vec_->alloc = alloc_; \
+ } \
+ \
+ static __inline__ int VEC_OP (T,space) \
+ (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (alloc_ >= 0, "space"); \
+ return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,quick_push) \
+ (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ \
+ vec_assert (vec_->num < vec_->alloc, "quick_push"); \
+ slot_ = &vec_->vec[vec_->num++]; \
+ if (obj_) \
+ *slot_ = *obj_; \
+ \
+ return slot_; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (vec_->num, "pop"); \
+ --vec_->num; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,truncate) \
+ (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \
+ if (vec_) \
+ vec_->num = size_; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,replace) \
+ (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ \
+ vec_assert (ix_ < vec_->num, "replace"); \
+ slot_ = &vec_->vec[ix_]; \
+ if (obj_) \
+ *slot_ = *obj_; \
+ \
+ return slot_; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,quick_insert) \
+ (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ \
+ vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \
+ slot_ = &vec_->vec[ix_]; \
+ memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
+ if (obj_) \
+ *slot_ = *obj_; \
+ \
+ return slot_; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,ordered_remove) \
+ (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ \
+ vec_assert (ix_ < vec_->num, "ordered_remove"); \
+ slot_ = &vec_->vec[ix_]; \
+ memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
+ } \
+ \
+ static __inline__ void VEC_OP (T,unordered_remove) \
+ (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (ix_ < vec_->num, "unordered_remove"); \
+ vec_->vec[ix_] = vec_->vec[--vec_->num]; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,block_remove) \
+ (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \
+ { \
+ T *slot_; \
+ \
+ vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \
+ slot_ = &vec_->vec[ix_]; \
+ vec_->num -= len_; \
+ memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,address) \
+ (VEC(T) *vec_) \
+ { \
+ return vec_ ? vec_->vec : 0; \
+ } \
+ \
+ static __inline__ unsigned VEC_OP (T,lower_bound) \
+ (VEC(T) *vec_, const T *obj_, \
+ int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \
+ { \
+ unsigned int len_ = VEC_OP (T, length) (vec_); \
+ unsigned int half_, middle_; \
+ unsigned int first_ = 0; \
+ while (len_ > 0) \
+ { \
+ T *middle_elem_; \
+ half_ = len_ >> 1; \
+ middle_ = first_; \
+ middle_ += half_; \
+ middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \
+ if (lessthan_ (middle_elem_, obj_)) \
+ { \
+ first_ = middle_; \
+ ++first_; \
+ len_ = len_ - half_ - 1; \
+ } \
+ else \
+ len_ = half_; \
+ } \
+ return first_; \
+ }
+
+ #define DEF_VEC_ALLOC_FUNC_O(T) \
+ static __inline__ VEC(T) *VEC_OP (T,alloc) \
+ (int alloc_) \
+ { \
+ /* We must request exact size allocation, hence the negation. */ \
+ return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \
+ offsetof (VEC(T),vec), sizeof (T)); \
+ } \
+ \
+ static __inline__ VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \
+ { \
+ size_t len_ = vec_ ? vec_->num : 0; \
+ VEC (T) *new_vec_ = NULL; \
+ \
+ if (len_) \
+ { \
+ /* We must request exact size allocation, hence the negation. */ \
+ new_vec_ = (VEC (T) *) \
+ vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \
+ \
+ new_vec_->num = len_; \
+ memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \
+ } \
+ return new_vec_; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,free) \
+ (VEC(T) **vec_) \
+ { \
+ if (*vec_) \
+ vec_free (*vec_); \
+ *vec_ = NULL; \
+ } \
+ \
+ static __inline__ int VEC_OP (T,reserve) \
+ (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \
+ { \
+ int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \
+ VEC_ASSERT_PASS); \
+ \
+ if (extend) \
+ *vec_ = (VEC(T) *) \
+ vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \
+ \
+ return extend; \
+ } \
+ \
+ static __inline__ void VEC_OP (T,safe_grow) \
+ (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \
+ { \
+ vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \
+ "safe_grow"); \
+ VEC_OP (T,reserve) \
+ (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \
+ (*vec_)->num = size_; \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,safe_push) \
+ (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \
+ { \
+ VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
+ \
+ return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \
+ } \
+ \
+ static __inline__ T *VEC_OP (T,safe_insert) \
+ (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \
+ { \
+ VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \
+ \
+ return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \
+ }
+
+ #endif /* GDB_VEC_H */
Index: doc/gdbint.texinfo
===================================================================
RCS file: /cvs/src/src/gdb/doc/gdbint.texinfo,v
retrieving revision 1.243
diff -c -3 -p -r1.243 gdbint.texinfo
*** doc/gdbint.texinfo 15 May 2006 04:39:03 -0000 1.243
--- doc/gdbint.texinfo 13 Jul 2006 18:20:37 -0000
*************** Regex conditionals.
*** 4865,4870 ****
--- 4865,4964 ----
@item sparc
@end table
+ @section Array Containers
+ @cindex Array Containers
+ @cindex VEC
+
+ The @file{vec.h} file contains macros for defining and using a
+ typesafe vector type. The functions defined will be inlined when
+ compiling, and so the abstraction cost should be zero. Domain checks
+ are added to detect programming errors.
+
+ Because of the different behavior of structure objects, scalar objects
+ and of pointers, there are three flavors of vector, one for each of
+ these variants. Both the structure object and pointer variants pass
+ pointers to objects around -- in the former case the pointers are
+ stored into the vector and in the latter case the pointers are
+ dereferenced and the objects copied into the vector. The scalar
+ object variant is suitable for int-like objects, and the vector
+ elements are returned by value.
+
+ There are both 'index' and 'iterate' accessors. The iterator returns
+ a boolean iteration condition and updates the iteration variable
+ passed by reference. Because the iterator will be inlined, the
+ address-of can be optimized away. The index accessor returns an
+ lvalue (except for the structure case, where it returns an rvalue
+ pointer to the structure object).
+
+ The vectors are implemented using the trailing array idiom, thus they
+ are not resizeable without changing the address of the vector object
+ itself. This means you cannot have variables or fields of vector type
+ -- always use a pointer to a vector. The one exception is the final
+ field of a structure, which could be a vector type. You will have to
+ use the embedded_size & embedded_init calls to create such objects,
+ and they will probably not be resizeable (so don't use the 'safe'
+ allocation variants). The trailing array idiom is used (rather than a
+ pointer to an array of data), because, if we allow NULL to also
+ represent an empty vector, empty vectors occupy minimal space in the
+ structure containing them.
+
+ Each operation that increases the number of active elements is
+ available in 'quick' and 'safe' variants. The former presumes that
+ there is sufficient allocated space for the operation to succeed (it
+ dies if there is not). The latter will reallocate the vector, if
+ needed. Reallocation causes an exponential increase in vector size.
+ If you know you will be adding N elements, it would be more efficient
+ to use the reserve operation before adding the elements with the
+ 'quick' operation. This will ensure there are at least as many
+ elements as you ask for, it will exponentially increase if there are
+ too few spare slots. If you want reserve a specific number of slots,
+ but do not want the exponential increase (for instance, you know this
+ is the last allocation), use a negative number for reservation. You
+ can also create a vector of a specific size from the get go.
+
+ You should prefer the push and pop operations, as they append and
+ remove from the end of the vector. If you need to remove several items
+ in one go, use the truncate operation. The insert and remove
+ operations allow you to change elements in the middle of the vector.
+ There are two remove operations, one which preserves the element
+ ordering 'ordered_remove', and one which does not 'unordered_remove'.
+ The latter function copies the end element into the removed slot,
+ rather than invoke a memmove operation. The 'lower_bound' function
+ will determine where to place an item in the array using insert that
+ will maintain sorted order.
+
+ If you need to directly manipulate a vector, then the 'address'
+ accessor will return the address of the start of the vector. Also the
+ 'space' predicate will tell you whether there is spare capacity in the
+ vector. You will not normally need to use these two functions.
+
+ Vector types are defined using a DEF_VEC_@{O,P,I@}(TYPEDEF) macro.
+ Variables of vector type are declared using a VEC(TYPEDEF) macro. The
+ characters O, P and I indicate whether TYPEDEF is a pointer (P),
+ object (O) or integral (I) type. Be careful to pick the correct one,
+ as you'll get an awkward and inefficient API if you use the wrong one.
+ There is a check, which results in a compile-time warning, for the P
+ and I versions, but there is no check for the O versions, as that is
+ not possible in plain C.
+
+ An example of their use would be,
+
+ @smallexample
+ DEF_VEC_P(tree); // non-managed tree vector.
+
+ struct my_struct @{
+ VEC(tree) *v; // A (pointer to) a vector of tree pointers.
+ @};
+
+ struct my_struct *s;
+
+ if (VEC_length(tree, s->v)) @{ we have some contents @}
+ VEC_safe_push(tree, s->v, decl); // append some decl onto the end
+ for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++)
+ @{ do something with elt @}
+
+ @end smallexample
+
@section include
@node Coding