\documentclass[12pt]{article} \pagestyle{empty} \begin{document} \section{$E_k(x)$ : Eulerian Polynomials} \begin{eqnarray} E_0(x) &=& 1 \\ E_1(x) &=& x \\ E_2(x) &=& x^2 + x \\ E_3(x) &=& x^3 + 4x^2 + x \\ E_4(x) &=& x^4 + 11x^3 + 11x^2 + x \\ E_5(x) &=& x^5 + 26x^4 + 66x^3 + 26x^2 + x \end{eqnarray} \begin{equation} E_k(x) = (x-x^2)E_{k-1}'(x)+xkE_{k-1}(x) \end{equation} \begin{equation} E_k(1) = k! \end{equation} \section{$T_k(x)$ : Chebyshev Polynomials, 1st Kind} \begin{eqnarray} T_0(x) &=& 1 \\ T_1(x) &=& x \\ T_2(x) &=& 2x^2 - 1 \\ T_3(x) &=& 4x^3 - 3x \\ T_4(x) &=& 8x^4 - 8x^2 + 1 \\ T_5(x) &=& 16x^5 - 20x^3 + 5x \end{eqnarray} \begin{equation} T_k(x) = 2xT_{k-1}(x)-T_{k-2}(x) \end{equation} \begin{equation} (1-x^2) \frac{d^2}{dx^2} T_k(x) - x \frac{d}{dx} T_k(x) + k^2 T_k(x) = 0 \end{equation} \begin{equation} \sum_{k \geq 0} t^k T_k(x) = \frac{1-tx}{1-2tx+t^2} \end{equation} \begin{equation} T_0(x) + 2 \sum_{k \geq 1} t^k T_k(x) = \frac{1-t^2}{1-2tx+t^2} \end{equation} \section{$P_k(x)$ : Legendre Polynomials} \begin{eqnarray} P_0(x) &=& 1 \\ P_1(x) &=& x \\ P_2(x) &=& \frac{1}{2} (3x^2 - 1) \\ P_3(x) &=& \frac{1}{2} (5x^3 - 3x) \\ P_4(x) &=& \frac{1}{8} (35x^4 - 30x^2 + 3) \\ P_5(x) &=& \frac{1}{8} (63x^5 - 70x^3 + 15x) \end{eqnarray} \begin{equation} P_k(x) = 2x(1-\frac{1}{2k})P_{k-1}(x)-(1-\frac{1}{k})P_{k-2}(x) \end{equation} \begin{equation} (1-x^2) \frac{d^2}{dx^2} P_k(x) - 2x \frac{d}{dx} P_k(x) + k(k+1) P_k(x) = 0 \end{equation} \begin{equation} \frac{d}{dx} \left( (1-x^2) \frac{d}{dx} P_k(x) \right) + k(k+1) P_k(x) = 0 \end{equation} \begin{equation} \sum_{k \geq 0} t^k P_k(x) = (1-2tx+t^2)^{-1/2} \end{equation} \end{document}