David Teigland [Wed, 14 Feb 2018 21:45:31 +0000 (15:45 -0600)]
scan: setup bcache for commands using lvmetad
Commands using lvmetad will not begin with a proper
label_scan which initializes bcache, but may later
decide they need to scan a set of devs, in which case
they'll need bcache set up at that point.
David Teigland [Wed, 14 Feb 2018 20:47:28 +0000 (14:47 -0600)]
vgremove: fix force remove on devs with damaged metadata
The improved detection of bad metadata when scanning
(where errors were ignored before) means we now have to
override some errors when forcibly erasing damaged metadata.
David Teigland [Wed, 14 Feb 2018 19:49:56 +0000 (13:49 -0600)]
scan: skip extra scan in vg_read
Drop an extra label scan in the recovery part
of vg_read. This is a temporary improvement
until the pending replacement for the broken
recovery code burried in vg_read.
David Teigland [Tue, 13 Feb 2018 18:50:44 +0000 (12:50 -0600)]
scan: add a dev to bcache before each read to handle write path
This is a temporary hacky workaround to the problem of
reads going through bcache and writes not using bcache.
The write path wants to read parts of data that it is
incrementally writing to disk, but the reads (using
bcache) don't work because the writes are not in the
bcache. For now, add a dev to bcache before each attempt
to read it in case it's being used on the write path.
David Teigland [Tue, 13 Feb 2018 14:58:35 +0000 (08:58 -0600)]
scan: use separate fd for bcache
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
David Teigland [Fri, 9 Feb 2018 17:24:40 +0000 (11:24 -0600)]
process_each_label: use lvmcache
In the same way as the other process_each functions.
In the common case all the info that's needed can be
used from lvmcache after a label scan. But this means
that unchosen devs for duplicate PVs need to be handled
explicitly.
David Teigland [Wed, 1 Nov 2017 14:35:40 +0000 (09:35 -0500)]
lvmcache: simplify metadata cache
The copy of VG metadata stored in lvmcache was not being used
in general. It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation. There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.
This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.
This is a way of passing the VG from suspend to resume in
clvmd. Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.) The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo. These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd. The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.
suspend has both old (current) and new (precommitted)
copies of the VG metadata. It stashes both of these in
the vginfo prior to suspending devices. When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.
resume grabs the VG stashed by suspend. If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG. The VG is then used to resume
LVs.
This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.
Sequence of operations:
- lv_suspend() has both vg_old and vg_new
and stashes a copy of each onto the vginfo:
lvmcache_save_suspended_vg(vg_old);
lvmcache_save_suspended_vg(vg_new);
- vg_commit() happens, which causes all clvmd
instances to call lvmcache_commit_metadata(vg).
A flag is set in the vginfo indicating the
transition from the old to new VG:
vginfo->suspended_vg_committed = 1;
- lv_resume() needs either vg_old or vg_new
to use in resuming LVs. It doesn't want to
read the VG from disk since devices are
suspended, so it gets the VG stashed by
lv_suspend:
vg = lvmcache_get_suspended_vg(vgid);
If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
David Teigland [Mon, 6 Nov 2017 18:09:52 +0000 (12:09 -0600)]
label_scan: remove extra label scan and read for orphan PVs
When process_each_pv() calls vg_read() on the orphan VG, the
internal implementation was doing an unnecessary
lvmcache_label_scan() and two unnecessary label_read() calls
on each orphan. Some of those unnecessary label scans/reads
would sometimes be skipped due to caching, but the code was
always doing at least one unnecessary read on each orphan.
The common format_text case was also unecessarily calling into
the format-specific pv_read() function which actually did nothing.
By analyzing each case in which vg_read() was being called on
the orphan VG, we can say that all of the label scans/reads
in vg_read_orphans are unnecessary:
1. reporting commands: the information saved in lvmcache by
the original label scan can be reported. There is no advantage
to repeating the label scan on the orphans a second time before
reporting it.
2. pvcreate/vgcreate/vgextend: these all share a common
implementation in pvcreate_each_device(). That function
already rescans labels after acquiring the orphan VG lock,
which ensures that the command is using valid lvmcache
information.
David Teigland [Thu, 26 Oct 2017 19:32:30 +0000 (14:32 -0500)]
vgcreate: improve the use of label_scan
The old code was doing unnecessary label scans when
checking to see if the new VG name exists. A single
label_scan is sufficient if it is done after the
new VG lock is held.
David Teigland [Thu, 26 Oct 2017 15:58:23 +0000 (10:58 -0500)]
lvmetad: use new label_scan for update from lvmlockd
When lvmlockd indicates that the lvmetad cache is out of
date because of changes by another node, lvmetad_pvscan_vg()
rescans the devices in the VG to update lvmetad. Use the
new label_scan in this function to use the common code and
take advantage of the new aio and reduced reads.
David Teigland [Wed, 25 Oct 2017 18:39:46 +0000 (13:39 -0500)]
label_scan: fix independent metadata areas
This fixes the use of lvmcache_label_rescan_vg() in the previous
commit for the special case of independent metadata areas.
label scan is about discovering VG name to device associations
using information from disks, but devices in VGs with
independent metadata areas have no information on disk, so
the label scan does nothing for these VGs/devices.
With independent metadata areas, only the VG metadata found
in files is used. This metadata is found and read in
vg_read in the processing phase.
lvmcache_label_rescan_vg() drops lvmcache info for the VG devices
before repeating the label scan on them. In the case of
independent metadata areas, there is no metadata on devices, so the
label scan of the devices will find nothing, so will not recreate
the necessary vginfo/info data in lvmcache for the VG. Fix this
by setting a flag in the lvmcache vginfo struct indicating that
the VG uses independent metadata areas, and label rescanning should
be skipped.
In the case of independent metadata areas, it is the metadata
processing in the vg_read phase that sets up the lvmcache
vginfo/info information, and label scan has no role.
David Teigland [Wed, 7 Feb 2018 19:26:37 +0000 (13:26 -0600)]
scan: do scanning at the start of a command
Move the location of scans to make it clearer and avoid
unnecessary repeated scanning. There should be one scan
at the start of a command which is then used through the
rest of command processing.
Previously, the initial label scan was called as a side effect
from various utility functions. This would lead to it being called
unnecessarily. It is an expensive operation, and should only be
called when necessary. Also, this is a primary step in the
function of the command, and as such it should be called prominently
at the top level of command processing, not as a hidden side effect
of a utility function. lvm knows exactly where and when the
label scan needs to be done. Because of this, move the label scan
calls from the internal functions to the top level of processing.
Other specific instances of lvmcache_label_scan() are still called
unnecessarily or unclearly by specific commands that do not use
the common process_each functions. These will be improved in
future commits.
During the processing phase, rescanning labels for devices in a VG
needs to be done after the VG lock is acquired in case things have
changed since the initial label scan. This was being done by way
of rescanning devices that had the INVALID flag set in lvmcache.
This usually approximated the right set of devices, but it was not
exact, and obfuscated the real requirement. Correct this by using
a new function that rescans the devices in the VG:
lvmcache_label_rescan_vg().
Apart from being inexact, the rescanning was extremely well hidden.
_vg_read() would call ->create_instance(), _text_create_text_instance(),
_create_vg_text_instance() which would call lvmcache_label_scan()
which would call _scan_invalid() which repeats the label scan on
devices flagged INVALID. lvmcache_label_rescan_vg() is now called
prominently by _vg_read() directly.
David Teigland [Wed, 7 Feb 2018 19:14:08 +0000 (13:14 -0600)]
scan: use new label_scan for lvmcache_label_scan
To do label scanning, lvm code calls lvmcache_label_scan().
Change lvmcache_label_scan() to use the new label_scan()
based on bcache.
Also add lvmcache_label_rescan_vg() which calls the new
label_scan_devs() which does label scanning on only the
specified devices. This is for a subsequent commit and
is not yet used.
Since extent_size is no longer power_of_2 this max region size
evalution was rather producing random bitsize as a combination
of lowest bit from number of extents and extent size itself.
Correct calculation to use whole LV size and pick biggest
possible power of 2 value smaller then UINT32_MAX.
Drop mirrored mirror log limitation that applies only in very limited
use-case and actually mirrored mirror log is deprecated anyway.
So 'disk' mirror log is selecting the correct minimal size, and
bigger size is only enforced with real mirrored mirror log.
Also for mirrored mirror log we let use 'smalled' region size if needed
so if user uses 1G region size, we still keep small mirror log
with much smaller region size in this case when needed.
Also mirror log extent calculation is now properly detecting error
with too big mirrors where previosly trimmed uint32_t was applies
unintentionally.
activation: add generic rule for visibility change
Whenever we make visible LV out of previously invisible one,
reload it's table - the is mandator for proper udev rule
processing as well as ensure content of dm table is correct.
TODO: this new generic rule probably make extra raid rules unnecessary.
Fixing regresion on argument acceptance where any lv can be passed
with paramaterless lvconvert which is meant to figure out needed
operation - i.e. wait for mirror synchronization.
User has no other 'effective' method to wait for mirror getting in-sync.
Zdenek Kabelac [Tue, 27 Mar 2018 19:08:40 +0000 (21:08 +0200)]
pvmove: support properly subLV locking
Since we support snapshot of mirrors, we do need to properly check
for stacked lock holder - fixes problem of pvmove in cluster
with mirrors under snapshot.
WHATS_NEW for this patch goes with 'Restore pvmove support...'
Martin Wilck [Tue, 17 Apr 2018 09:38:12 +0000 (11:38 +0200)]
udev: keep systemd vars on change event in 69-dm-lvm-metad.rules for systemd reload
The current logic that avoids setting SYSTEMD_ALIAS and SYSTEMD_WANTS
on "change" events is flawed in the default "systemd background job"
configuration. For systemd, it's important that device properties don't
change spuriously.
If an "add" event starts lvm2-pvscan@.service for a device, and a
"change" event follows, removing SYSTEMD_ALIAS and SYSTEMD_WANTS from the
udev db, information about unit dependencies between the device and the
pvscan service can be lost in systemd, in particular if the daemon
configuration is reloaded.
Steps to reproduce problem:
- create a device with an LVM PV
- remove device
- add device (generates "add" and "change" uevents for the device)
(at this point SYSTEMD_ALIAS and SYSTEMD_WANTS are clear in udev db)
- systemctl daemon-reload
(systemd reloads udev db)
- vgchange -a n
- remove device
=> the lvm2-pvscan@.service for the device is still active although the
device is gone.
- add device again
=> the PV is not detected, because systemd sees the lvm2-pvscan@.service
as active and thus doesn't restart it.
The original purpose of this logic was to avoid volumes being scanned
over and over again. With systemd background jobs, that isn't necessary,
because systemd will not restart the job as long as it's active.
Martin Wilck [Tue, 17 Apr 2018 09:32:52 +0000 (11:32 +0200)]
udev: explicit pvscan rule in 69-dm-lvm-metad.rules
Make the distinction between the cases with and without systemd
background jobs explicit in 69-dm-lvm-metad.rules rather than
substituting the rule from the Makefile. At this stage,
this improves only readibility, at the cost of one GOTO statement.
This patch introduces no functional change to the udev rules.
Test that no (Sub)LV remnants persist if the volume group is
not listed in configuration variable activation/volume_list,
hence not activatable thus causing initialization of rmeta
SubLVs to fail.
Zdenek Kabelac [Tue, 20 Mar 2018 10:13:22 +0000 (11:13 +0100)]
libdm: enhance mounted fs detection
btrfs is using fake major:minor device numbers.
try to be smarter and detect used node via DM device name.
This shortens delays, where i.e. lvm2 is asked to deactivate
volume with mounted btrfs as such operation is not retryed
and user is informed about device being in use.
Zdenek Kabelac [Mon, 19 Mar 2018 09:23:48 +0000 (10:23 +0100)]
cache: disallow to combine format 2 with mq
Only policy 'smq' is meant to be used with format version 2.
Code used to let pass 'mq' policy also with format 2. But 'mq'
is obsoloted wth smq and kernel currently matches it. But this
is incompatible with older original mq logic - so disallow creation
of this rather useless combination.
Zdenek Kabelac [Sat, 17 Mar 2018 12:53:12 +0000 (13:53 +0100)]
coverity: validate descriptor
Since this function is called with 'fd == -1', but Coverity can't see
this path can't be visited with this argument, add explicit check for
valid descriptor.
Zdenek Kabelac [Sat, 17 Mar 2018 20:50:03 +0000 (21:50 +0100)]
pools: skip checks when tools are missing
If the tools for checking thin_pool or cache metadata are missing,
issue rather just a WARNING, but let the operation of activation
continue.
This has the advantage, the if user is missing those tools,
but he already started to use thinpool or cacheing, he can
access these volumes with a WARNING.
Also if the user is using too old tools i.e. for CacheV2 format
dmpd tool 0.7 is required - provide informative WARNING and
skip failure from older tool version which can't understand
new format V2.
In case a newly created RaidLV is blacklisted using config
\"activation { volume list = [ ... ] }\" (i.e. its SubLVs stay inactive),
the metadata SubLVs can't get wiped thus failing the creation.
As a result, the RaidLV together with its SubLVs
is left behind in an inconsistent state.
Fix by removing the RaidLV and provide a hint about volume_list reasoning.