]> sourceware.org Git - glibc.git/commitdiff
AArch64: Improve codegen in users of ADVSIMD expm1f helper
authorJoe Ramsay <Joe.Ramsay@arm.com>
Mon, 23 Sep 2024 14:32:53 +0000 (15:32 +0100)
committerWilco Dijkstra <wilco.dijkstra@arm.com>
Mon, 23 Sep 2024 14:44:07 +0000 (15:44 +0100)
Rearrange operations so MOV is not necessary in reduction or around
the special-case handler.  Reduce memory access by using more indexed
MLAs in polynomial.

Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
sysdeps/aarch64/fpu/expm1f_advsimd.c
sysdeps/aarch64/fpu/sinhf_advsimd.c
sysdeps/aarch64/fpu/tanhf_advsimd.c
sysdeps/aarch64/fpu/v_expm1f_inline.h

index a0616ec7542cbfce69fb718144e33b5c1b76b2a2..8303ca296e030c2e64cafe39b3ff60bda2df606c 100644 (file)
    <https://www.gnu.org/licenses/>.  */
 
 #include "v_math.h"
-#include "poly_advsimd_f32.h"
+#include "v_expm1f_inline.h"
 
 static const struct data
 {
-  float32x4_t poly[5];
-  float invln2_and_ln2[4];
-  float32x4_t shift;
-  int32x4_t exponent_bias;
+  struct v_expm1f_data d;
 #if WANT_SIMD_EXCEPT
   uint32x4_t thresh;
 #else
   float32x4_t oflow_bound;
 #endif
 } data = {
-  /* Generated using fpminimax with degree=5 in [-log(2)/2, log(2)/2].  */
-  .poly = { V4 (0x1.fffffep-2), V4 (0x1.5554aep-3), V4 (0x1.555736p-5),
-           V4 (0x1.12287cp-7), V4 (0x1.6b55a2p-10) },
-  /* Stores constants: invln2, ln2_hi, ln2_lo, 0.  */
-  .invln2_and_ln2 = { 0x1.715476p+0f, 0x1.62e4p-1f, 0x1.7f7d1cp-20f, 0 },
-  .shift = V4 (0x1.8p23f),
-  .exponent_bias = V4 (0x3f800000),
+  .d = V_EXPM1F_DATA,
 #if !WANT_SIMD_EXCEPT
   /* Value above which expm1f(x) should overflow. Absolute value of the
      underflow bound is greater than this, so it catches both cases - there is
@@ -55,67 +46,38 @@ static const struct data
 #define TinyBound v_u32 (0x34000000 << 1)
 
 static float32x4_t VPCS_ATTR NOINLINE
-special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
+special_case (float32x4_t x, uint32x4_t special, const struct data *d)
 {
-  return v_call_f32 (expm1f, x, y, special);
+  return v_call_f32 (
+      expm1f, x, expm1f_inline (v_zerofy_f32 (x, special), &d->d), special);
 }
 
 /* Single-precision vector exp(x) - 1 function.
-   The maximum error is 1.51 ULP:
-   _ZGVnN4v_expm1f (0x1.8baa96p-2) got 0x1.e2fb9p-2
-                                 want 0x1.e2fb94p-2.  */
+   The maximum error is 1.62 ULP:
+   _ZGVnN4v_expm1f(0x1.85f83p-2) got 0x1.da9f4p-2
+                               want 0x1.da9f44p-2.  */
 float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (expm1) (float32x4_t x)
 {
   const struct data *d = ptr_barrier (&data);
-  uint32x4_t ix = vreinterpretq_u32_f32 (x);
 
 #if WANT_SIMD_EXCEPT
+  uint32x4_t ix = vreinterpretq_u32_f32 (x);
   /* If fp exceptions are to be triggered correctly, fall back to scalar for
      |x| < 2^-23, |x| > oflow_bound, Inf & NaN. Add ix to itself for
      shift-left by 1, and compare with thresh which was left-shifted offline -
      this is effectively an absolute compare.  */
   uint32x4_t special
       = vcgeq_u32 (vsubq_u32 (vaddq_u32 (ix, ix), TinyBound), d->thresh);
-  if (__glibc_unlikely (v_any_u32 (special)))
-    x = v_zerofy_f32 (x, special);
 #else
   /* Handles very large values (+ve and -ve), +/-NaN, +/-Inf.  */
   uint32x4_t special = vcagtq_f32 (x, d->oflow_bound);
 #endif
 
-  /* Reduce argument to smaller range:
-     Let i = round(x / ln2)
-     and f = x - i * ln2, then f is in [-ln2/2, ln2/2].
-     exp(x) - 1 = 2^i * (expm1(f) + 1) - 1
-     where 2^i is exact because i is an integer.  */
-  float32x4_t invln2_and_ln2 = vld1q_f32 (d->invln2_and_ln2);
-  float32x4_t j
-      = vsubq_f32 (vfmaq_laneq_f32 (d->shift, x, invln2_and_ln2, 0), d->shift);
-  int32x4_t i = vcvtq_s32_f32 (j);
-  float32x4_t f = vfmsq_laneq_f32 (x, j, invln2_and_ln2, 1);
-  f = vfmsq_laneq_f32 (f, j, invln2_and_ln2, 2);
-
-  /* Approximate expm1(f) using polynomial.
-     Taylor expansion for expm1(x) has the form:
-        x + ax^2 + bx^3 + cx^4 ....
-     So we calculate the polynomial P(f) = a + bf + cf^2 + ...
-     and assemble the approximation expm1(f) ~= f + f^2 * P(f).  */
-  float32x4_t p = v_horner_4_f32 (f, d->poly);
-  p = vfmaq_f32 (f, vmulq_f32 (f, f), p);
-
-  /* Assemble the result.
-     expm1(x) ~= 2^i * (p + 1) - 1
-     Let t = 2^i.  */
-  int32x4_t u = vaddq_s32 (vshlq_n_s32 (i, 23), d->exponent_bias);
-  float32x4_t t = vreinterpretq_f32_s32 (u);
-
   if (__glibc_unlikely (v_any_u32 (special)))
-    return special_case (vreinterpretq_f32_u32 (ix),
-                        vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t),
-                        special);
+    return special_case (x, special, d);
 
   /* expm1(x) ~= p * t + (t - 1).  */
-  return vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t);
+  return expm1f_inline (x, &d->d);
 }
 libmvec_hidden_def (V_NAME_F1 (expm1))
 HALF_WIDTH_ALIAS_F1 (expm1)
index 6bb7482dc28795c1a73bbfbdfe55920f3187330f..c6ed7598e7deca1b98c44a0f84e917d6dde841ac 100644 (file)
 static const struct data
 {
   struct v_expm1f_data expm1f_consts;
-  uint32x4_t halff;
 #if WANT_SIMD_EXCEPT
   uint32x4_t tiny_bound, thresh;
 #else
-  uint32x4_t oflow_bound;
+  float32x4_t oflow_bound;
 #endif
 } data = {
   .expm1f_consts = V_EXPM1F_DATA,
-  .halff = V4 (0x3f000000),
 #if WANT_SIMD_EXCEPT
   /* 0x1.6a09e8p-32, below which expm1f underflows.  */
   .tiny_bound = V4 (0x2fb504f4),
@@ -39,14 +37,15 @@ static const struct data
   .thresh = V4 (0x12fbbbb3),
 #else
   /* 0x1.61814ep+6, above which expm1f helper overflows.  */
-  .oflow_bound = V4 (0x42b0c0a7),
+  .oflow_bound = V4 (0x1.61814ep+6),
 #endif
 };
 
 static float32x4_t NOINLINE VPCS_ATTR
-special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
+special_case (float32x4_t x, float32x4_t t, float32x4_t halfsign,
+             uint32x4_t special)
 {
-  return v_call_f32 (sinhf, x, y, special);
+  return v_call_f32 (sinhf, x, vmulq_f32 (t, halfsign), special);
 }
 
 /* Approximation for vector single-precision sinh(x) using expm1.
@@ -60,15 +59,15 @@ float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (sinh) (float32x4_t x)
 
   uint32x4_t ix = vreinterpretq_u32_f32 (x);
   float32x4_t ax = vabsq_f32 (x);
-  uint32x4_t iax = vreinterpretq_u32_f32 (ax);
-  uint32x4_t sign = veorq_u32 (ix, iax);
-  float32x4_t halfsign = vreinterpretq_f32_u32 (vorrq_u32 (sign, d->halff));
+  float32x4_t halfsign = vreinterpretq_f32_u32 (
+      vbslq_u32 (v_u32 (0x80000000), ix, vreinterpretq_u32_f32 (v_f32 (0.5))));
 
 #if WANT_SIMD_EXCEPT
-  uint32x4_t special = vcgeq_u32 (vsubq_u32 (iax, d->tiny_bound), d->thresh);
+  uint32x4_t special = vcgeq_u32 (
+      vsubq_u32 (vreinterpretq_u32_f32 (ax), d->tiny_bound), d->thresh);
   ax = v_zerofy_f32 (ax, special);
 #else
-  uint32x4_t special = vcgeq_u32 (iax, d->oflow_bound);
+  uint32x4_t special = vcageq_f32 (x, d->oflow_bound);
 #endif
 
   /* Up to the point that expm1f overflows, we can use it to calculate sinhf
@@ -80,7 +79,7 @@ float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (sinh) (float32x4_t x)
   /* Fall back to the scalar variant for any lanes that should trigger an
      exception.  */
   if (__glibc_unlikely (v_any_u32 (special)))
-    return special_case (x, vmulq_f32 (t, halfsign), special);
+    return special_case (x, t, halfsign, special);
 
   return vmulq_f32 (t, halfsign);
 }
index 50defd6ef03926f4a442895e2e21b8d8936b4870..3ced9b7a414c812c47adc90145542bf91f30cca7 100644 (file)
@@ -28,13 +28,16 @@ static const struct data
   /* 0x1.205966p+3, above which tanhf rounds to 1 (or -1 for  negative).  */
   .boring_bound = V4 (0x41102cb3),
   .large_bound = V4 (0x7f800000),
-  .onef = V4 (0x3f800000),
 };
 
 static float32x4_t NOINLINE VPCS_ATTR
-special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
+special_case (float32x4_t x, uint32x4_t is_boring, float32x4_t boring,
+             float32x4_t q, uint32x4_t special)
 {
-  return v_call_f32 (tanhf, x, y, special);
+  return v_call_f32 (
+      tanhf, x,
+      vbslq_f32 (is_boring, boring, vdivq_f32 (q, vaddq_f32 (q, v_f32 (2.0)))),
+      special);
 }
 
 /* Approximation for single-precision vector tanh(x), using a simplified
@@ -50,7 +53,9 @@ float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (tanh) (float32x4_t x)
   uint32x4_t iax = vreinterpretq_u32_f32 (ax);
   uint32x4_t sign = veorq_u32 (ix, iax);
   uint32x4_t is_boring = vcgtq_u32 (iax, d->boring_bound);
-  float32x4_t boring = vreinterpretq_f32_u32 (vorrq_u32 (sign, d->onef));
+  /* expm1 exponent bias is 1.0f reinterpreted to int.  */
+  float32x4_t boring = vreinterpretq_f32_u32 (vorrq_u32 (
+      sign, vreinterpretq_u32_s32 (d->expm1f_consts.exponent_bias)));
 
 #if WANT_SIMD_EXCEPT
   /* If fp exceptions are to be triggered properly, set all special and boring
@@ -66,10 +71,12 @@ float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (tanh) (float32x4_t x)
 
   /* tanh(x) = (e^2x - 1) / (e^2x + 1).  */
   float32x4_t q = expm1f_inline (vmulq_n_f32 (x, 2), &d->expm1f_consts);
-  float32x4_t y = vdivq_f32 (q, vaddq_f32 (q, v_f32 (2.0)));
+
   if (__glibc_unlikely (v_any_u32 (special)))
-    return special_case (vreinterpretq_f32_u32 (ix),
-                        vbslq_f32 (is_boring, boring, y), special);
+    return special_case (vreinterpretq_f32_u32 (ix), is_boring, boring, q,
+                        special);
+
+  float32x4_t y = vdivq_f32 (q, vaddq_f32 (q, v_f32 (2.0)));
   return vbslq_f32 (is_boring, boring, y);
 }
 libmvec_hidden_def (V_NAME_F1 (tanh))
index 59b552da6b74785eb8b61f7f2def96734e5a905e..1daedfdd51cfc54b6ec99efb9dffbe372cb1df64 100644 (file)
 #define AARCH64_FPU_V_EXPM1F_INLINE_H
 
 #include "v_math.h"
-#include "poly_advsimd_f32.h"
+#include "math_config.h"
 
 struct v_expm1f_data
 {
-  float32x4_t poly[5];
-  float invln2_and_ln2[4];
-  float32x4_t shift;
+  float32x4_t c0, c2;
   int32x4_t exponent_bias;
+  float c1, c3, inv_ln2, c4;
+  float ln2_hi, ln2_lo;
 };
 
 /* Coefficients generated using fpminimax with degree=5 in [-log(2)/2,
-   log(2)/2]. Exponent bias is asuint(1.0f).
-   invln2_and_ln2 Stores constants: invln2, ln2_lo, ln2_hi, 0.  */
+   log(2)/2]. Exponent bias is asuint(1.0f).  */
 #define V_EXPM1F_DATA                                                         \
   {                                                                           \
-    .poly = { V4 (0x1.fffffep-2), V4 (0x1.5554aep-3), V4 (0x1.555736p-5),     \
-             V4 (0x1.12287cp-7), V4 (0x1.6b55a2p-10) },                      \
-    .shift = V4 (0x1.8p23f), .exponent_bias = V4 (0x3f800000),                \
-    .invln2_and_ln2 = { 0x1.715476p+0f, 0x1.62e4p-1f, 0x1.7f7d1cp-20f, 0 },   \
+    .c0 = V4 (0x1.fffffep-2), .c1 = 0x1.5554aep-3, .c2 = V4 (0x1.555736p-5),  \
+    .c3 = 0x1.12287cp-7, .c4 = 0x1.6b55a2p-10,                                \
+    .exponent_bias = V4 (0x3f800000), .inv_ln2 = 0x1.715476p+0f,              \
+    .ln2_hi = 0x1.62e4p-1f, .ln2_lo = 0x1.7f7d1cp-20f,                        \
   }
 
 static inline float32x4_t
 expm1f_inline (float32x4_t x, const struct v_expm1f_data *d)
 {
-  /* Helper routine for calculating exp(x) - 1.
-     Copied from v_expm1f_1u6.c, with all special-case handling removed - the
-     calling routine should handle special values if required.  */
+  /* Helper routine for calculating exp(x) - 1.  */
+
+  float32x2_t ln2 = vld1_f32 (&d->ln2_hi);
+  float32x4_t lane_consts = vld1q_f32 (&d->c1);
 
   /* Reduce argument: f in [-ln2/2, ln2/2], i is exact.  */
-  float32x4_t invln2_and_ln2 = vld1q_f32 (d->invln2_and_ln2);
-  float32x4_t j
-      = vsubq_f32 (vfmaq_laneq_f32 (d->shift, x, invln2_and_ln2, 0), d->shift);
+  float32x4_t j = vrndaq_f32 (vmulq_laneq_f32 (x, lane_consts, 2));
   int32x4_t i = vcvtq_s32_f32 (j);
-  float32x4_t f = vfmsq_laneq_f32 (x, j, invln2_and_ln2, 1);
-  f = vfmsq_laneq_f32 (f, j, invln2_and_ln2, 2);
+  float32x4_t f = vfmsq_lane_f32 (x, j, ln2, 0);
+  f = vfmsq_lane_f32 (f, j, ln2, 1);
 
-  /* Approximate expm1(f) with polynomial P, expm1(f) ~= f + f^2 * P(f).
-     Uses Estrin scheme, where the main _ZGVnN4v_expm1f routine uses
-     Horner.  */
+  /* Approximate expm1(f) with polynomial P, expm1(f) ~= f + f^2 * P(f).  */
   float32x4_t f2 = vmulq_f32 (f, f);
   float32x4_t f4 = vmulq_f32 (f2, f2);
-  float32x4_t p = v_estrin_4_f32 (f, f2, f4, d->poly);
+  float32x4_t p01 = vfmaq_laneq_f32 (d->c0, f, lane_consts, 0);
+  float32x4_t p23 = vfmaq_laneq_f32 (d->c2, f, lane_consts, 1);
+  float32x4_t p = vfmaq_f32 (p01, f2, p23);
+  p = vfmaq_laneq_f32 (p, f4, lane_consts, 3);
   p = vfmaq_f32 (f, f2, p);
 
   /* t = 2^i.  */
This page took 0.051766 seconds and 5 git commands to generate.