free(rt);
}
-static bool _insert(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv);
+unsigned radix_tree_size(struct radix_tree *rt)
+{
+ return rt->nr_entries;
+}
-static bool _insert_unset(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv);
+
+static bool _insert_unset(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
unsigned len = ke - kb;
// value
v->type = VALUE;
v->value = rv;
+ rt->nr_entries++;
} else {
// prefix -> value
struct prefix_chain *pc = zalloc(sizeof(*pc) + len);
memcpy(pc->prefix, kb, len);
v->type = PREFIX_CHAIN;
v->value.ptr = pc;
+ rt->nr_entries++;
}
return true;
}
-static bool _insert_value(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert_value(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
unsigned len = ke - kb;
return false;
vc->value = v->value;
- if (!_insert(&vc->child, kb, ke, rv)) {
+ if (!_insert(rt, &vc->child, kb, ke, rv)) {
free(vc);
return false;
}
return true;
}
-static bool _insert_value_chain(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert_value_chain(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
struct value_chain *vc = v->value.ptr;
- return _insert(&vc->child, kb, ke, rv);
+ return _insert(rt, &vc->child, kb, ke, rv);
}
static unsigned min(unsigned lhs, unsigned rhs)
return rhs;
}
-static bool _insert_prefix_chain(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert_prefix_chain(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
struct prefix_chain *pc = v->value.ptr;
pc->child.value.ptr = pc2;
pc->len = i;
- if (!_insert(&pc->child, kb + i, ke, rv)) {
+ if (!_insert(rt, &pc->child, kb + i, ke, rv)) {
free(pc2);
return false;
}
return false;
n4->keys[0] = *kb;
- if (!_insert(n4->values, kb + 1, ke, rv)) {
+ if (!_insert(rt, n4->values, kb + 1, ke, rv)) {
free(n4);
return false;
}
return true;
}
-static bool _insert_node4(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert_node4(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
struct node4 *n4 = v->value.ptr;
if (n4->nr_entries == 4) {
memcpy(n16->values, n4->values, sizeof(n4->values));
n16->keys[4] = *kb;
- if (!_insert(n16->values + 4, kb + 1, ke, rv)) {
+ if (!_insert(rt, n16->values + 4, kb + 1, ke, rv)) {
free(n16);
return false;
}
v->value.ptr = n16;
} else {
n4 = v->value.ptr;
- if (!_insert(n4->values + n4->nr_entries, kb + 1, ke, rv))
+ if (!_insert(rt, n4->values + n4->nr_entries, kb + 1, ke, rv))
return false;
n4->keys[n4->nr_entries] = *kb;
return true;
}
-static bool _insert_node16(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert_node16(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
struct node16 *n16 = v->value.ptr;
}
n48->keys[*kb] = 16;
- if (!_insert(n48->values + 16, kb + 1, ke, rv)) {
+ if (!_insert(rt, n48->values + 16, kb + 1, ke, rv)) {
free(n48);
return false;
}
v->type = NODE48;
v->value.ptr = n48;
} else {
- if (!_insert(n16->values + n16->nr_entries, kb + 1, ke, rv))
+ if (!_insert(rt, n16->values + n16->nr_entries, kb + 1, ke, rv))
return false;
n16->keys[n16->nr_entries] = *kb;
n16->nr_entries++;
return true;
}
-static bool _insert_node48(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert_node48(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
struct node48 *n48 = v->value.ptr;
if (n48->nr_entries == 48) {
n256->values[i] = n48->values[n48->keys[i]];
}
- if (!_insert(n256->values + *kb, kb + 1, ke, rv)) {
+ if (!_insert(rt, n256->values + *kb, kb + 1, ke, rv)) {
free(n256);
return false;
}
v->value.ptr = n256;
} else {
- if (!_insert(n48->values + n48->nr_entries, kb + 1, ke, rv))
+ if (!_insert(rt, n48->values + n48->nr_entries, kb + 1, ke, rv))
return false;
n48->keys[*kb] = n48->nr_entries;
return true;
}
-static bool _insert_node256(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert_node256(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
struct node256 *n256 = v->value.ptr;
bool was_unset = n256->values[*kb].type == UNSET;
- if (!_insert(n256->values + *kb, kb + 1, ke, rv))
+ if (!_insert(rt, n256->values + *kb, kb + 1, ke, rv))
return false;
if (was_unset)
}
// FIXME: the tree should not be touched if insert fails (eg, OOM)
-static bool _insert(struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
+static bool _insert(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
if (kb == ke) {
if (v->type == UNSET) {
v->type = VALUE;
v->value = rv;
+ rt->nr_entries++;
} else if (v->type == VALUE) {
v->value = rv;
vc->child = *v;
v->type = VALUE_CHAIN;
v->value.ptr = vc;
+ rt->nr_entries++;
}
return true;
}
switch (v->type) {
case UNSET:
- return _insert_unset(v, kb, ke, rv);
+ return _insert_unset(rt, v, kb, ke, rv);
case VALUE:
- return _insert_value(v, kb, ke, rv);
+ return _insert_value(rt, v, kb, ke, rv);
case VALUE_CHAIN:
- return _insert_value_chain(v, kb, ke, rv);
+ return _insert_value_chain(rt, v, kb, ke, rv);
case PREFIX_CHAIN:
- return _insert_prefix_chain(v, kb, ke, rv);
+ return _insert_prefix_chain(rt, v, kb, ke, rv);
case NODE4:
- return _insert_node4(v, kb, ke, rv);
+ return _insert_node4(rt, v, kb, ke, rv);
case NODE16:
- return _insert_node16(v, kb, ke, rv);
+ return _insert_node16(rt, v, kb, ke, rv);
case NODE48:
- return _insert_node48(v, kb, ke, rv);
+ return _insert_node48(rt, v, kb, ke, rv);
case NODE256:
- return _insert_node256(v, kb, ke, rv);
+ return _insert_node256(rt, v, kb, ke, rv);
}
// can't get here
bool radix_tree_insert(struct radix_tree *rt, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
struct lookup_result lr = _lookup_prefix(&rt->root, kb, ke);
- if (_insert(lr.v, lr.kb, ke, rv)) {
- rt->nr_entries++;
- return true;
- }
-
- return false;
+ return _insert(rt, lr.v, lr.kb, ke, rv);
}
// Note the degrade functions also free the original node.
return false;
}
+// FIXME: build up the keys too
+static bool _iterate(struct value *v, struct radix_tree_iterator *it)
+{
+ unsigned i;
+ struct value_chain *vc;
+ struct prefix_chain *pc;
+ struct node4 *n4;
+ struct node16 *n16;
+ struct node48 *n48;
+ struct node256 *n256;
+
+ switch (v->type) {
+ case UNSET:
+ // can't happen
+ break;
+
+ case VALUE:
+ return it->visit(it, NULL, NULL, v->value);
+
+ case VALUE_CHAIN:
+ vc = v->value.ptr;
+ return it->visit(it, NULL, NULL, vc->value) && _iterate(&vc->child, it);
+
+ case PREFIX_CHAIN:
+ pc = v->value.ptr;
+ return _iterate(&pc->child, it);
+
+ case NODE4:
+ n4 = (struct node4 *) v->value.ptr;
+ for (i = 0; i < n4->nr_entries; i++)
+ if (!_iterate(n4->values + i, it))
+ return false;
+ return true;
+
+ case NODE16:
+ n16 = (struct node16 *) v->value.ptr;
+ for (i = 0; i < n16->nr_entries; i++)
+ if (!_iterate(n16->values + i, it))
+ return false;
+ return true;
+
+ case NODE48:
+ n48 = (struct node48 *) v->value.ptr;
+ for (i = 0; i < n48->nr_entries; i++)
+ if (!_iterate(n48->values + i, it))
+ return false;
+ return true;
+
+ case NODE256:
+ n256 = (struct node256 *) v->value.ptr;
+ for (i = 0; i < 256; i++)
+ if (n256->values[i].type != UNSET && !_iterate(n256->values + i, it))
+ return false;
+ return true;
+ }
+
+ // can't get here
+ return false;
+}
+
+void radix_tree_iterate(struct radix_tree *rt, uint8_t *kb, uint8_t *ke,
+ struct radix_tree_iterator *it)
+{
+ struct lookup_result lr = _lookup_prefix(&rt->root, kb, ke);
+ if (lr.kb == ke)
+ _iterate(lr.v, it);
+}
+
//----------------------------------------------------------------
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#include "base/data-struct/radix-tree.h"
+#include "base/memory/container_of.h"
#include "units.h"
T_ASSERT_EQUAL(radix_tree_remove_prefix(rt, k, k + 1), count);
}
+static void test_size(void *fixture)
+{
+ struct radix_tree *rt = fixture;
+ unsigned i, dup_count = 0;
+ uint8_t k[2];
+ union radix_value v;
+
+ // populate some random 16bit keys
+ for (i = 0; i < 10000; i++) {
+ _gen_key(k, k + sizeof(k));
+ if (radix_tree_lookup(rt, k, k + sizeof(k), &v))
+ dup_count++;
+ v.n = i;
+ T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
+ }
+
+ T_ASSERT_EQUAL(radix_tree_size(rt), 10000 - dup_count);
+}
+
+struct visitor {
+ struct radix_tree_iterator it;
+ unsigned count;
+};
+
+static bool _visit(struct radix_tree_iterator *it,
+ uint8_t *kb, uint8_t *ke, union radix_value v)
+{
+ struct visitor *vt = container_of(it, struct visitor, it);
+ vt->count++;
+ return true;
+}
+
+static void test_iterate_all(void *fixture)
+{
+ struct radix_tree *rt = fixture;
+ unsigned i;
+ uint8_t k[4];
+ union radix_value v;
+ struct visitor vt;
+
+ // populate some random 32bit keys
+ for (i = 0; i < 100000; i++) {
+ _gen_key(k, k + sizeof(k));
+ v.n = i;
+ T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
+ }
+
+ vt.count = 0;
+ vt.it.visit = _visit;
+ radix_tree_iterate(rt, NULL, NULL, &vt.it);
+ T_ASSERT_EQUAL(vt.count, radix_tree_size(rt));
+}
+
+static void test_iterate_subset(void *fixture)
+{
+ struct radix_tree *rt = fixture;
+ unsigned i, subset_count = 0;
+ uint8_t k[3];
+ union radix_value v;
+ struct visitor vt;
+
+ // populate some random 32bit keys
+ for (i = 0; i < 100000; i++) {
+ _gen_key(k, k + sizeof(k));
+ if (k[0] == 21 && k[1] == 12)
+ subset_count++;
+ v.n = i;
+ T_ASSERT(radix_tree_insert(rt, k, k + sizeof(k), v));
+ }
+
+ vt.count = 0;
+ vt.it.visit = _visit;
+ k[0] = 21;
+ k[1] = 12;
+ radix_tree_iterate(rt, k, k + 2, &vt.it);
+ T_ASSERT_EQUAL(vt.count, subset_count);
+}
+
//----------------------------------------------------------------
#define T(path, desc, fn) register_test(ts, "/base/data-struct/radix-tree/" path, desc, fn)
T("remove-prefix-keys", "remove a set of keys that have common prefixes", test_remove_prefix_keys);
T("remove-prefix-keys-reversed", "remove a set of keys that have common prefixes (reversed)", test_remove_prefix_keys_reversed);
T("remove-prefix", "remove a subrange", test_remove_prefix);
+ T("size-spots-duplicates", "duplicate entries aren't counted twice", test_size);
+ T("iterate-all", "iterate all entries in tree", test_iterate_all);
+ T("iterate-subset", "iterate a subset of entries in tree", test_iterate_subset);
dm_list_add(all_tests, &ts->list);
}