]> sourceware.org Git - newlib-cygwin.git/commitdiff
* mingwex/math/s_erf.c: New file.
authorDanny Smith <dannysmith@users.sourceforge.net>
Sun, 8 Dec 2002 01:46:42 +0000 (01:46 +0000)
committerDanny Smith <dannysmith@users.sourceforge.net>
Sun, 8 Dec 2002 01:46:42 +0000 (01:46 +0000)
* mingwex/math/sf_erf.c: New file.
* mingwex/Makefile.in (MATH_DISTFILES): Add new files.
(MATH_OBJS): Add new objects.
* include/math.h (erf[f]): Add prototypes.
(erfc[f]): Add prototypes.

winsup/mingw/ChangeLog
winsup/mingw/include/math.h
winsup/mingw/mingwex/Makefile.in
winsup/mingw/mingwex/math/s_erf.c [new file with mode: 0644]
winsup/mingw/mingwex/math/sf_erf.c [new file with mode: 0644]

index dacde0b7c19927dcafb9addfc7f571ec0fac3b9d..f1a23e26170f5c34164267857278d802f1da27d0 100644 (file)
@@ -1,3 +1,12 @@
+2002-12-08  Danny Smith  <dannysmith@users.sourceforge.net>
+
+       * mingwex/math/s_erf.c: New file.
+       * mingwex/math/sf_erf.c: New file.
+       * mingwex/Makefile.in (MATH_DISTFILES): Add new files.
+       (MATH_OBJS): Add new objects.
+       * include/math.h (erf[f]): Add prototypes.
+       (erfc[f]): Add prototypes.
+
 2002-12-07  Danny Smith  <dannysmith@users.sourceforge.net>
 
        * include/math.h: Add traditional/XOPEN math constants.
index 15766cd278af752f1fe9da344c1f2beb032a36e3..4d3295eabee9d1e69f76969ce4b86873095f97d1 100644 (file)
@@ -518,9 +518,19 @@ extern long double powl (long double, long double);
 extern float sqrtf (float);
 extern long double sqrtl (long double);
 
-/* TODO */ 
 /* 7.12.8.1 The erf functions  */
+extern double erf (double);
+extern float erff (float);
+/* TODO
+extern long double erfl (long double);
+*/ 
+
 /* 7.12.8.2 The erfc functions  */
+extern double erfc (double);
+extern float erfcf (float);
+/* TODO
+extern long double erfcl (long double);
+*/ 
 
 /* 7.12.8.3 The lgamma functions */
 
index c38ada0d2df235ab210c34626876e033508891b0..bb96cac7173c97ac11241b95608f89ee60f46942 100644 (file)
@@ -56,10 +56,10 @@ MATH_DISTFILES = \
        pow.c powf.c powi.c powif.c powil.c powl.c \
        remainder.S remainderf.S remainderl.S remquo.S \
        remquof.S remquol.S rint.c rintf.c rintl.c round.c roundf.c \
-       roundl.c scalbn.S scalbnf.S scalbnl.S signbit.c signbitf.c \
-       signbitl.c sinf.S sinhf.c sinhl.c sinl.S  sqrtf.c sqrtl.c \
-       tanf.S tanhf.c tanhl.c tanl.S tgamma.c tgammaf.c tgammal.c \
-       trunc.c truncf.c truncl.c
+       roundl.c scalbn.S scalbnf.S scalbnl.S s_erf.c sf_erf.c \
+       signbit.c signbitf.c signbitl.c sinf.S sinhf.c sinhl.c sinl.S \
+       sqrtf.c sqrtl.c tanf.S tanhf.c tanhl.c tanl.S tgamma.c \
+       tgammaf.c tgammal.c trunc.c truncf.c truncl.c
 
 CC = @CC@
 # FIXME: Which is it, CC or CC_FOR_TARGET?
@@ -127,10 +127,10 @@ MATH_OBJS = \
        pow.o powf.o powi.o powif.o powil.o powl.o \
        remainder.o remainderf.o remainderl.o remquo.o \
        remquof.o remquol.o rint.o rintf.o rintl.o round.o roundf.o \
-       roundl.o scalbn.o scalbnf.o scalbnl.o signbit.o signbitf.o \
-       signbitl.o sinf.o sinhf.o sinhl.o sinl.o sqrtf.o sqrtl.o \
-       tanf.o tanhf.o tanhl.o tanl.o tgamma.o tgammaf.o tgammal.o \
-       trunc.o truncf.o truncl.o
+       roundl.o scalbn.o scalbnf.o scalbnl.o s_erf.o sf_erf.o \
+       signbit.o signbitf.o signbitl.o sinf.o sinhf.o sinhl.o sinl.o \
+       sqrtf.o sqrtl.o tanf.o tanhf.o tanhl.o tanl.o tgamma.o \
+       tgammaf.o tgammal.o trunc.o truncf.o truncl.o
 FENV_OBJS = fesetround.o  fegetround.o \
        fegetenv.o fesetenv.o feupdateenv.o \
        feclearexcept.o feholdexcept.o fegetexceptflag.o \
diff --git a/winsup/mingw/mingwex/math/s_erf.c b/winsup/mingw/mingwex/math/s_erf.c
new file mode 100644 (file)
index 0000000..4673f48
--- /dev/null
@@ -0,0 +1,342 @@
+
+/* @(#)s_erf.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+/* double erf(double x)
+ * double erfc(double x)
+ *                          x
+ *                   2      |\
+ *     erf(x)  =  ---------  | exp(-t*t)dt
+ *                sqrt(pi) \| 
+ *                          0
+ *
+ *     erfc(x) =  1-erf(x)
+ *  Note that 
+ *             erf(-x) = -erf(x)
+ *             erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ *     1. For |x| in [0, 0.84375]
+ *         erf(x)  = x + x*R(x^2)
+ *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
+ *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
+ *        where R = P/Q where P is an odd poly of degree 8 and
+ *        Q is an odd poly of degree 10.
+ *                                              -57.90
+ *                     | R - (erf(x)-x)/x | <= 2
+ *     
+ *
+ *        Remark. The formula is derived by noting
+ *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ *        and that
+ *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ *        is close to one. The interval is chosen because the fix
+ *        point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ *        near 0.6174), and by some experiment, 0.84375 is chosen to
+ *        guarantee the error is less than one ulp for erf.
+ *
+ *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ *         c = 0.84506291151 rounded to single (24 bits)
+ *             erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
+ *             erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
+ *                       1+(c+P1(s)/Q1(s))    if x < 0
+ *             |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ *        Remark: here we use the taylor series expansion at x=1.
+ *             erf(1+s) = erf(1) + s*Poly(s)
+ *                      = 0.845.. + P1(s)/Q1(s)
+ *        That is, we use rational approximation to approximate
+ *                     erf(1+s) - (c = (single)0.84506291151)
+ *        Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ *        where 
+ *             P1(s) = degree 6 poly in s
+ *             Q1(s) = degree 6 poly in s
+ *
+ *      3. For x in [1.25,1/0.35(~2.857143)], 
+ *             erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ *             erf(x)  = 1 - erfc(x)
+ *        where 
+ *             R1(z) = degree 7 poly in z, (z=1/x^2)
+ *             S1(z) = degree 8 poly in z
+ *
+ *      4. For x in [1/0.35,28]
+ *             erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ *                     = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+ *                     = 2.0 - tiny            (if x <= -6)
+ *             erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ *             erf(x)  = sign(x)*(1.0 - tiny)
+ *        where
+ *             R2(z) = degree 6 poly in z, (z=1/x^2)
+ *             S2(z) = degree 7 poly in z
+ *
+ *      Note1:
+ *        To compute exp(-x*x-0.5625+R/S), let s be a single
+ *        precision number and s := x; then
+ *             -x*x = -s*s + (s-x)*(s+x)
+ *             exp(-x*x-0.5626+R/S) = 
+ *                     exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ *      Note2:
+ *        Here 4 and 5 make use of the asymptotic series
+ *                       exp(-x*x)
+ *             erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ *                       x*sqrt(pi)
+ *        We use rational approximation to approximate
+ *             g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ *        Here is the error bound for R1/S1 and R2/S2
+ *             |R1/S1 - f(x)|  < 2**(-62.57)
+ *             |R2/S2 - f(x)|  < 2**(-61.52)
+ *
+ *      5. For inf > x >= 28
+ *             erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
+ *             erfc(x) = tiny*tiny (raise underflow) if x > 0
+ *                     = 2 - tiny if x<0
+ *
+ *      7. Special case:
+ *             erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
+ *             erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, 
+ *             erfc/erf(NaN) is NaN
+ */
+
+
+/* #include "fdlibm.h" */
+
+#include <math.h>
+#include <stdint.h>
+
+#define __ieee754_exp exp
+
+typedef union 
+{
+  double value;
+  struct 
+  {
+    uint32_t lsw;
+    uint32_t msw;
+  } parts;
+} ieee_double_shape_type;
+
+
+static inline int __get_hi_word(const double x)
+{
+  ieee_double_shape_type u;
+  u.value = x;
+  return u.parts.msw;
+}
+
+static inline void __trunc_lo_word(double *x)
+{
+  ieee_double_shape_type u;
+  u.value = *x;
+  u.parts.lsw = 0;
+  *x = u.value;
+}
+
+
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+tiny       = 1e-300,
+half=  5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+two =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
+       /* c = (float)0.84506291151 */
+erx =  8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
+/*
+ * Coefficients for approximation to  erf on [0,0.84375]
+ */
+efx =  1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
+efx8=  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
+pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
+pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
+pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
+pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
+pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
+qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
+qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
+qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
+qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
+qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
+/*
+ * Coefficients for approximation to  erf  in [0.84375,1.25] 
+ */
+pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
+pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
+pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
+pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
+pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
+pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
+pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
+qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
+qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
+qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
+qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
+qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
+qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
+/*
+ * Coefficients for approximation to  erfc in [1.25,1/0.35]
+ */
+ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
+ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
+ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
+ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
+ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
+ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
+ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
+ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
+sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
+sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
+sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
+sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
+sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
+sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
+sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
+sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
+/*
+ * Coefficients for approximation to  erfc in [1/.35,28]
+ */
+rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
+rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
+rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
+rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
+rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
+rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
+rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
+sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
+sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
+sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
+sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
+sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
+sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
+sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
+
+#ifdef __STDC__
+       double erf(double x) 
+#else
+       double erf(x) 
+       double x;
+#endif
+{
+       int hx,ix,i;
+       double R,S,P,Q,s,y,z,r;
+       hx = __get_hi_word(x);
+       ix = hx&0x7fffffff;
+       if(ix>=0x7ff00000) {            /* erf(nan)=nan */
+           i = ((unsigned)hx>>31)<<1;
+           return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
+       }
+
+       if(ix < 0x3feb0000) {           /* |x|<0.84375 */
+           if(ix < 0x3e300000) {       /* |x|<2**-28 */
+               if (ix < 0x00800000) 
+                   return 0.125*(8.0*x+efx8*x);  /*avoid underflow */
+               return x + efx*x;
+           }
+           z = x*x;
+           r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+           s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+           y = r/s;
+           return x + x*y;
+       }
+       if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
+           s = fabs(x)-one;
+           P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+           Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+           if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+       }
+       if (ix >= 0x40180000) {         /* inf>|x|>=6 */
+           if(hx>=0) return one-tiny; else return tiny-one;
+       }
+       x = fabs(x);
+       s = one/(x*x);
+       if(ix< 0x4006DB6E) {    /* |x| < 1/0.35 */
+           R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+                               ra5+s*(ra6+s*ra7))))));
+           S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+                               sa5+s*(sa6+s*(sa7+s*sa8)))))));
+       } else {        /* |x| >= 1/0.35 */
+           R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+                               rb5+s*rb6)))));
+           S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+                               sb5+s*(sb6+s*sb7))))));
+       }
+       z  = x;  
+       __trunc_lo_word(&z);
+       r  =  __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
+       if(hx>=0) return one-r/x; else return  r/x-one;
+}
+
+#ifdef __STDC__
+       double erfc(double x) 
+#else
+       double erfc(x) 
+       double x;
+#endif
+{
+       int hx,ix;
+       double R,S,P,Q,s,y,z,r;
+       hx = __get_hi_word(x);
+       ix = hx&0x7fffffff;
+       if(ix>=0x7ff00000) {                    /* erfc(nan)=nan */
+                                               /* erfc(+-inf)=0,2 */
+           return (double)(((unsigned)hx>>31)<<1)+one/x;
+       }
+
+       if(ix < 0x3feb0000) {           /* |x|<0.84375 */
+           if(ix < 0x3c700000)         /* |x|<2**-56 */
+               return one-x;
+           z = x*x;
+           r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+           s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+           y = r/s;
+           if(hx < 0x3fd00000) {       /* x<1/4 */
+               return one-(x+x*y);
+           } else {
+               r = x*y;
+               r += (x-half);
+               return half - r ;
+           }
+       }
+       if(ix < 0x3ff40000) {           /* 0.84375 <= |x| < 1.25 */
+           s = fabs(x)-one;
+           P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+           Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+           if(hx>=0) {
+               z  = one-erx; return z - P/Q; 
+           } else {
+               z = erx+P/Q; return one+z;
+           }
+       }
+       if (ix < 0x403c0000) {          /* |x|<28 */
+           x = fabs(x);
+           s = one/(x*x);
+           if(ix< 0x4006DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
+               R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+                               ra5+s*(ra6+s*ra7))))));
+               S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+                               sa5+s*(sa6+s*(sa7+s*sa8)))))));
+           } else {                    /* |x| >= 1/.35 ~ 2.857143 */
+               if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
+               R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+                               rb5+s*rb6)))));
+               S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+                               sb5+s*(sb6+s*sb7))))));
+           }
+           z  = x;
+           __trunc_lo_word(&z);
+           r  =  __ieee754_exp(-z*z-0.5625)*
+                       __ieee754_exp((z-x)*(z+x)+R/S);
+           if(hx>0) return r/x; else return two-r/x;
+       } else {
+           if(hx>0) return tiny*tiny; else return two-tiny;
+       }
+}
diff --git a/winsup/mingw/mingwex/math/sf_erf.c b/winsup/mingw/mingwex/math/sf_erf.c
new file mode 100644 (file)
index 0000000..20a20fc
--- /dev/null
@@ -0,0 +1,259 @@
+/* sf_erf.c -- float version of s_erf.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice 
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+#include "fdlibm.h"
+*/
+#include <stdint.h>
+#define __ieee754_expf expf
+
+#include <math.h>
+
+typedef union
+{
+  float value;
+  uint32_t word;
+} ieee_float_shape_type;
+
+/* Get a 32 bit int from a float.  */
+
+static inline int
+__get_float_word(float d)
+{
+  ieee_float_shape_type u;
+  u.value = d;
+  return u.word;
+}
+
+/* Set a float from a 32 bit int.  */
+
+#define SET_FLOAT_WORD(d,i)                                    \
+do {                                                           \
+  ieee_float_shape_type sf_u;                                  \
+  sf_u.word = (i);                                             \
+  (d) = sf_u.value;                                            \
+} while (0)
+
+static inline void __trunc_float_word(float * x)
+{
+  ieee_float_shape_type u;
+  u.value = * x;         
+  u.word &= 0xfffff000;
+}
+
+#ifdef __v810__
+#define const
+#endif
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+tiny       = 1e-30,
+half=  5.0000000000e-01, /* 0x3F000000 */
+one =  1.0000000000e+00, /* 0x3F800000 */
+two =  2.0000000000e+00, /* 0x40000000 */
+       /* c = (subfloat)0.84506291151 */
+erx =  8.4506291151e-01, /* 0x3f58560b */
+/*
+ * Coefficients for approximation to  erf on [0,0.84375]
+ */
+efx =  1.2837916613e-01, /* 0x3e0375d4 */
+efx8=  1.0270333290e+00, /* 0x3f8375d4 */
+pp0  =  1.2837916613e-01, /* 0x3e0375d4 */
+pp1  = -3.2504209876e-01, /* 0xbea66beb */
+pp2  = -2.8481749818e-02, /* 0xbce9528f */
+pp3  = -5.7702702470e-03, /* 0xbbbd1489 */
+pp4  = -2.3763017452e-05, /* 0xb7c756b1 */
+qq1  =  3.9791721106e-01, /* 0x3ecbbbce */
+qq2  =  6.5022252500e-02, /* 0x3d852a63 */
+qq3  =  5.0813062117e-03, /* 0x3ba68116 */
+qq4  =  1.3249473704e-04, /* 0x390aee49 */
+qq5  = -3.9602282413e-06, /* 0xb684e21a */
+/*
+ * Coefficients for approximation to  erf  in [0.84375,1.25] 
+ */
+pa0  = -2.3621185683e-03, /* 0xbb1acdc6 */
+pa1  =  4.1485610604e-01, /* 0x3ed46805 */
+pa2  = -3.7220788002e-01, /* 0xbebe9208 */
+pa3  =  3.1834661961e-01, /* 0x3ea2fe54 */
+pa4  = -1.1089469492e-01, /* 0xbde31cc2 */
+pa5  =  3.5478305072e-02, /* 0x3d1151b3 */
+pa6  = -2.1663755178e-03, /* 0xbb0df9c0 */
+qa1  =  1.0642088205e-01, /* 0x3dd9f331 */
+qa2  =  5.4039794207e-01, /* 0x3f0a5785 */
+qa3  =  7.1828655899e-02, /* 0x3d931ae7 */
+qa4  =  1.2617121637e-01, /* 0x3e013307 */
+qa5  =  1.3637083583e-02, /* 0x3c5f6e13 */
+qa6  =  1.1984500103e-02, /* 0x3c445aa3 */
+/*
+ * Coefficients for approximation to  erfc in [1.25,1/0.35]
+ */
+ra0  = -9.8649440333e-03, /* 0xbc21a093 */
+ra1  = -6.9385856390e-01, /* 0xbf31a0b7 */
+ra2  = -1.0558626175e+01, /* 0xc128f022 */
+ra3  = -6.2375331879e+01, /* 0xc2798057 */
+ra4  = -1.6239666748e+02, /* 0xc322658c */
+ra5  = -1.8460508728e+02, /* 0xc3389ae7 */
+ra6  = -8.1287437439e+01, /* 0xc2a2932b */
+ra7  = -9.8143291473e+00, /* 0xc11d077e */
+sa1  =  1.9651271820e+01, /* 0x419d35ce */
+sa2  =  1.3765776062e+02, /* 0x4309a863 */
+sa3  =  4.3456588745e+02, /* 0x43d9486f */
+sa4  =  6.4538726807e+02, /* 0x442158c9 */
+sa5  =  4.2900814819e+02, /* 0x43d6810b */
+sa6  =  1.0863500214e+02, /* 0x42d9451f */
+sa7  =  6.5702495575e+00, /* 0x40d23f7c */
+sa8  = -6.0424413532e-02, /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to  erfc in [1/.35,28]
+ */
+rb0  = -9.8649431020e-03, /* 0xbc21a092 */
+rb1  = -7.9928326607e-01, /* 0xbf4c9dd4 */
+rb2  = -1.7757955551e+01, /* 0xc18e104b */
+rb3  = -1.6063638306e+02, /* 0xc320a2ea */
+rb4  = -6.3756646729e+02, /* 0xc41f6441 */
+rb5  = -1.0250950928e+03, /* 0xc480230b */
+rb6  = -4.8351919556e+02, /* 0xc3f1c275 */
+sb1  =  3.0338060379e+01, /* 0x41f2b459 */
+sb2  =  3.2579251099e+02, /* 0x43a2e571 */
+sb3  =  1.5367296143e+03, /* 0x44c01759 */
+sb4  =  3.1998581543e+03, /* 0x4547fdbb */
+sb5  =  2.5530502930e+03, /* 0x451f90ce */
+sb6  =  4.7452853394e+02, /* 0x43ed43a7 */
+sb7  = -2.2440952301e+01; /* 0xc1b38712 */
+
+#ifdef __STDC__
+       float erff(float x) 
+#else
+       float erff(x) 
+       float x;
+#endif
+{
+       int32_t hx,ix,i;
+       float R,S,P,Q,s,y,z,r;
+       hx = __get_float_word(x);
+       ix = hx&0x7fffffff;
+       if(!(ix<0x7f800000L)) {         /* erf(nan)=nan */
+           i = ((uint32_t)hx>>31)<<1;
+           return (float)(1-i)+one/x;  /* erf(+-inf)=+-1 */
+       }
+
+       if(ix < 0x3f580000) {           /* |x|<0.84375 */
+           if(ix < 0x31800000) {       /* |x|<2**-28 */
+               if (ix < 0x04000000) 
+                   /*avoid underflow */
+                   return (float)0.125*((float)8.0*x+efx8*x);
+               return x + efx*x;
+           }
+           z = x*x;
+           r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+           s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+           y = r/s;
+           return x + x*y;
+       }
+       if(ix < 0x3fa00000) {           /* 0.84375 <= |x| < 1.25 */
+           s = fabsf(x)-one;
+           P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+           Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+           if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+       }
+       if (ix >= 0x40c00000) {         /* inf>|x|>=6 */
+           if(hx>=0) return one-tiny; else return tiny-one;
+       }
+       x = fabsf(x);
+       s = one/(x*x);
+       if(ix< 0x4036DB6E) {    /* |x| < 1/0.35 */
+           R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+                               ra5+s*(ra6+s*ra7))))));
+           S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+                               sa5+s*(sa6+s*(sa7+s*sa8)))))));
+       } else {        /* |x| >= 1/0.35 */
+           R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+                               rb5+s*rb6)))));
+           S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+                               sb5+s*(sb6+s*sb7))))));
+       }
+       __trunc_float_word (&z);
+       r  =  __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
+       if(hx>=0) return one-r/x; else return  r/x-one;
+}
+
+#ifdef __STDC__
+       float erfcf(float x) 
+#else
+       float erfcf(x) 
+       float x;
+#endif
+{
+       int32_t hx,ix;
+       float R,S,P,Q,s,y,z,r;
+       hx = __get_float_word(x);
+       ix = hx&0x7fffffff;
+       if(!(ix<0x7f800000L)) {                 /* erfc(nan)=nan */
+                                               /* erfc(+-inf)=0,2 */
+           return (float)(((uint32_t)hx>>31)<<1)+one/x;
+       }
+
+       if(ix < 0x3f580000) {           /* |x|<0.84375 */
+           if(ix < 0x23800000)         /* |x|<2**-56 */
+               return one-x;
+           z = x*x;
+           r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+           s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+           y = r/s;
+           if(hx < 0x3e800000) {       /* x<1/4 */
+               return one-(x+x*y);
+           } else {
+               r = x*y;
+               r += (x-half);
+               return half - r ;
+           }
+       }
+       if(ix < 0x3fa00000) {           /* 0.84375 <= |x| < 1.25 */
+           s = fabsf(x)-one;
+           P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+           Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+           if(hx>=0) {
+               z  = one-erx; return z - P/Q; 
+           } else {
+               z = erx+P/Q; return one+z;
+           }
+       }
+
+       if (ix < 0x41e00000) {          /* |x|<28 */
+           x = fabsf(x);
+           s = one/(x*x);
+           if(ix< 0x4036DB6D) {        /* |x| < 1/.35 ~ 2.857143*/
+               R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+                               ra5+s*(ra6+s*ra7))))));
+               S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+                               sa5+s*(sa6+s*(sa7+s*sa8)))))));
+           } else {                    /* |x| >= 1/.35 ~ 2.857143 */
+               if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
+               R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+                               rb5+s*rb6)))));
+               S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+                               sb5+s*(sb6+s*sb7))))));
+           }
+           __trunc_float_word (&z);
+           r  =  __ieee754_expf(-z*z-(float)0.5625)*
+                       __ieee754_expf((z-x)*(z+x)+R/S);
+           if(hx>0) return r/x; else return two-r/x;
+       } else {
+           if(hx>0) return tiny*tiny; else return two-tiny;
+       }
+}
This page took 0.049982 seconds and 5 git commands to generate.