]>
sourceware.org Git - glibc.git/blob - sysdeps/ieee754/dbl-64/e_pow.c
8f9384662eb662f75287bbfc5c8aa1aab2f1cd75
1 /* Double-precision x^y function.
2 Copyright (C) 2018-2024 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
21 #include <math-barriers.h>
22 #include <math-narrow-eval.h>
23 #include <math-svid-compat.h>
24 #include <libm-alias-finite.h>
25 #include <libm-alias-double.h>
26 #include "math_config.h"
29 Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
30 relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
31 ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
34 #define T __pow_log_data.tab
35 #define A __pow_log_data.poly
36 #define Ln2hi __pow_log_data.ln2hi
37 #define Ln2lo __pow_log_data.ln2lo
38 #define N (1 << POW_LOG_TABLE_BITS)
39 #define OFF 0x3fe6955500000000
41 /* Top 12 bits of a double (sign and exponent bits). */
42 static inline uint32_t
45 return asuint64 (x
) >> 52;
48 /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
49 additional 15 bits precision. IX is the bit representation of x, but
50 normalized in the subnormal range using the sign bit for the exponent. */
51 static inline double_t
52 log_inline (uint64_t ix
, double_t
*tail
)
54 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
55 double_t z
, r
, y
, invc
, logc
, logctail
, kd
, hi
, t1
, t2
, lo
, lo1
, lo2
, p
;
59 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
60 The range is split into N subintervals.
61 The ith subinterval contains z and c is near its center. */
63 i
= (tmp
>> (52 - POW_LOG_TABLE_BITS
)) % N
;
64 k
= (int64_t) tmp
>> 52; /* arithmetic shift */
65 iz
= ix
- (tmp
& 0xfffULL
<< 52);
69 /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
72 logctail
= T
[i
].logctail
;
74 /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
75 |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
77 r
= __builtin_fma (z
, invc
, -1.0);
79 /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
80 double_t zhi
= asdouble ((iz
+ (1ULL << 31)) & (-1ULL << 32));
81 double_t zlo
= z
- zhi
;
82 double_t rhi
= zhi
* invc
- 1.0;
83 double_t rlo
= zlo
* invc
;
87 /* k*Ln2 + log(c) + r. */
88 t1
= kd
* Ln2hi
+ logc
;
90 lo1
= kd
* Ln2lo
+ logctail
;
93 /* Evaluation is optimized assuming superscalar pipelined execution. */
94 double_t ar
, ar2
, ar3
, lo3
, lo4
;
95 ar
= A
[0] * r
; /* A[0] = -0.5. */
98 /* k*Ln2 + log(c) + r + A[0]*r*r. */
101 lo3
= __builtin_fma (ar
, r
, -ar2
);
104 double_t arhi
= A
[0] * rhi
;
105 double_t arhi2
= rhi
* arhi
;
107 lo3
= rlo
* (ar
+ arhi
);
108 lo4
= t2
- hi
+ arhi2
;
110 /* p = log1p(r) - r - A[0]*r*r. */
112 * (A
[1] + r
* A
[2] + ar2
* (A
[3] + r
* A
[4] + ar2
* (A
[5] + r
* A
[6]))));
113 lo
= lo1
+ lo2
+ lo3
+ lo4
+ p
;
121 #define N (1 << EXP_TABLE_BITS)
122 #define InvLn2N __exp_data.invln2N
123 #define NegLn2hiN __exp_data.negln2hiN
124 #define NegLn2loN __exp_data.negln2loN
125 #define Shift __exp_data.shift
126 #define T __exp_data.tab
127 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
128 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
129 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
130 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
131 #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
133 /* Handle cases that may overflow or underflow when computing the result that
134 is scale*(1+TMP) without intermediate rounding. The bit representation of
135 scale is in SBITS, however it has a computed exponent that may have
136 overflown into the sign bit so that needs to be adjusted before using it as
137 a double. (int32_t)KI is the k used in the argument reduction and exponent
138 adjustment of scale, positive k here means the result may overflow and
139 negative k means the result may underflow. */
141 specialcase (double_t tmp
, uint64_t sbits
, uint64_t ki
)
145 if ((ki
& 0x80000000) == 0)
147 /* k > 0, the exponent of scale might have overflowed by <= 460. */
148 sbits
-= 1009ull << 52;
149 scale
= asdouble (sbits
);
150 y
= 0x1p
1009 * (scale
+ scale
* tmp
);
151 return check_oflow (y
);
153 /* k < 0, need special care in the subnormal range. */
154 sbits
+= 1022ull << 52;
155 /* Note: sbits is signed scale. */
156 scale
= asdouble (sbits
);
157 y
= scale
+ scale
* tmp
;
160 /* Round y to the right precision before scaling it into the subnormal
161 range to avoid double rounding that can cause 0.5+E/2 ulp error where
162 E is the worst-case ulp error outside the subnormal range. So this
163 is only useful if the goal is better than 1 ulp worst-case error. */
164 double_t hi
, lo
, one
= 1.0;
167 lo
= scale
- y
+ scale
* tmp
;
169 lo
= one
- hi
+ y
+ lo
;
170 y
= math_narrow_eval (hi
+ lo
) - one
;
171 /* Fix the sign of 0. */
173 y
= asdouble (sbits
& 0x8000000000000000);
174 /* The underflow exception needs to be signaled explicitly. */
175 math_force_eval (math_opt_barrier (0x1p
-1022) * 0x1p
-1022);
178 return check_uflow (y
);
181 #define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
183 /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
184 The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
186 exp_inline (double x
, double xtail
, uint32_t sign_bias
)
189 uint64_t ki
, idx
, top
, sbits
;
190 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
191 double_t kd
, z
, r
, r2
, scale
, tail
, tmp
;
193 abstop
= top12 (x
) & 0x7ff;
194 if (__glibc_unlikely (abstop
- top12 (0x1p
-54)
195 >= top12 (512.0) - top12 (0x1p
-54)))
197 if (abstop
- top12 (0x1p
-54) >= 0x80000000)
199 /* Avoid spurious underflow for tiny x. */
200 /* Note: 0 is common input. */
201 double_t one
= WANT_ROUNDING
? 1.0 + x
: 1.0;
202 return sign_bias
? -one
: one
;
204 if (abstop
>= top12 (1024.0))
206 /* Note: inf and nan are already handled. */
207 if (asuint64 (x
) >> 63)
208 return __math_uflow (sign_bias
);
210 return __math_oflow (sign_bias
);
212 /* Large x is special cased below. */
216 /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
217 /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
220 /* z - kd is in [-0.5, 0.5] in all rounding modes. */
222 ki
= converttoint (z
);
224 /* z - kd is in [-1, 1] in non-nearest rounding modes. */
225 kd
= math_narrow_eval (z
+ Shift
);
229 r
= x
+ kd
* NegLn2hiN
+ kd
* NegLn2loN
;
230 /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
232 /* 2^(k/N) ~= scale * (1 + tail). */
234 top
= (ki
+ sign_bias
) << (52 - EXP_TABLE_BITS
);
235 tail
= asdouble (T
[idx
]);
236 /* This is only a valid scale when -1023*N < k < 1024*N. */
237 sbits
= T
[idx
+ 1] + top
;
238 /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
239 /* Evaluation is optimized assuming superscalar pipelined execution. */
241 /* Without fma the worst case error is 0.25/N ulp larger. */
242 /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
243 tmp
= tail
+ r
+ r2
* (C2
+ r
* C3
) + r2
* r2
* (C4
+ r
* C5
);
244 if (__glibc_unlikely (abstop
== 0))
245 return specialcase (tmp
, sbits
, ki
);
246 scale
= asdouble (sbits
);
247 /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
248 is no spurious underflow here even without fma. */
249 return scale
+ scale
* tmp
;
252 /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
253 the bit representation of a non-zero finite floating-point value. */
255 checkint (uint64_t iy
)
257 int e
= iy
>> 52 & 0x7ff;
262 if (iy
& ((1ULL << (0x3ff + 52 - e
)) - 1))
264 if (iy
& (1ULL << (0x3ff + 52 - e
)))
269 /* Returns 1 if input is the bit representation of 0, infinity or nan. */
271 zeroinfnan (uint64_t i
)
273 return 2 * i
- 1 >= 2 * asuint64 (INFINITY
) - 1;
282 __pow (double x
, double y
)
284 uint32_t sign_bias
= 0;
292 if (__glibc_unlikely (topx
- 0x001 >= 0x7ff - 0x001
293 || (topy
& 0x7ff) - 0x3be >= 0x43e - 0x3be))
295 /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
296 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
297 /* Special cases: (x < 0x1p-126 or inf or nan) or
298 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
299 if (__glibc_unlikely (zeroinfnan (iy
)))
302 return issignaling_inline (x
) ? x
+ y
: 1.0;
303 if (ix
== asuint64 (1.0))
304 return issignaling_inline (y
) ? x
+ y
: 1.0;
305 if (2 * ix
> 2 * asuint64 (INFINITY
)
306 || 2 * iy
> 2 * asuint64 (INFINITY
))
308 if (2 * ix
== 2 * asuint64 (1.0))
310 if ((2 * ix
< 2 * asuint64 (1.0)) == !(iy
>> 63))
311 return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
314 if (__glibc_unlikely (zeroinfnan (ix
)))
317 if (ix
>> 63 && checkint (iy
) == 1)
322 if (WANT_ERRNO
&& 2 * ix
== 0 && iy
>> 63)
323 return __math_divzero (sign_bias
);
324 /* Without the barrier some versions of clang hoist the 1/x2 and
325 thus division by zero exception can be signaled spuriously. */
326 return iy
>> 63 ? math_opt_barrier (1 / x2
) : x2
;
328 /* Here x and y are non-zero finite. */
332 int yint
= checkint (iy
);
334 return __math_invalid (x
);
336 sign_bias
= SIGN_BIAS
;
337 ix
&= 0x7fffffffffffffff;
340 if ((topy
& 0x7ff) - 0x3be >= 0x43e - 0x3be)
342 /* Note: sign_bias == 0 here because y is not odd. */
343 if (ix
== asuint64 (1.0))
345 if ((topy
& 0x7ff) < 0x3be)
347 /* |y| < 2^-65, x^y ~= 1 + y*log(x). */
349 return ix
> asuint64 (1.0) ? 1.0 + y
: 1.0 - y
;
353 return (ix
> asuint64 (1.0)) == (topy
< 0x800) ? __math_oflow (0)
358 /* Normalize subnormal x so exponent becomes negative. */
359 ix
= asuint64 (x
* 0x1p
52);
360 ix
&= 0x7fffffffffffffff;
366 double_t hi
= log_inline (ix
, &lo
);
370 elo
= y
* lo
+ __builtin_fma (y
, hi
, -ehi
);
372 double_t yhi
= asdouble (iy
& -1ULL << 27);
373 double_t ylo
= y
- yhi
;
374 double_t lhi
= asdouble (asuint64 (hi
) & -1ULL << 27);
375 double_t llo
= hi
- lhi
+ lo
;
377 elo
= ylo
* lhi
+ y
* llo
; /* |elo| < |ehi| * 2^-25. */
379 return exp_inline (ehi
, elo
, sign_bias
);
382 strong_alias (__pow
, __ieee754_pow
)
383 libm_alias_finite (__ieee754_pow
, __pow
)
384 # if LIBM_SVID_COMPAT
385 versioned_symbol (libm
, __pow
, pow
, GLIBC_2_29
);
386 libm_alias_double_other (__pow
, pow
)
388 libm_alias_double (__pow
, pow
)
This page took 0.066478 seconds and 6 git commands to generate.