]> sourceware.org Git - glibc.git/blob - sysdeps/i386/fpu/e_powf.S
d7342bf56f6cd4bc7b0ed4d4d362fec704126a20
[glibc.git] / sysdeps / i386 / fpu / e_powf.S
1 /* ix87 specific implementation of pow function.
2 Copyright (C) 1996, 1997 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public License as
8 published by the Free Software Foundation; either version 2 of the
9 License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with the GNU C Library; see the file COPYING.LIB. If not,
18 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include <machine/asm.h>
22
23 #ifdef __ELF__
24 .section .rodata
25 #else
26 .text
27 #endif
28
29 .align ALIGNARG(4)
30 ASM_TYPE_DIRECTIVE(infinity,@object)
31 inf_zero:
32 infinity:
33 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
34 ASM_SIZE_DIRECTIVE(infinity)
35 ASM_TYPE_DIRECTIVE(zero,@object)
36 zero: .double 0.0
37 ASM_SIZE_DIRECTIVE(zero)
38 ASM_TYPE_DIRECTIVE(minf_mzero,@object)
39 minf_mzero:
40 minfinity:
41 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
42 mzero:
43 .byte 0, 0, 0, 0, 0, 0, 0, 0x80
44 ASM_SIZE_DIRECTIVE(minf_mzero)
45 ASM_TYPE_DIRECTIVE(one,@object)
46 one: .double 1.0
47 ASM_SIZE_DIRECTIVE(one)
48 ASM_TYPE_DIRECTIVE(limit,@object)
49 limit: .double 0.29
50 ASM_SIZE_DIRECTIVE(limit)
51
52 #ifdef PIC
53 #define MO(op) op##@GOTOFF(%ecx)
54 #define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
55 #else
56 #define MO(op) op
57 #define MOX(op,x,f) op(,x,f)
58 #endif
59
60 .text
61 ENTRY(__ieee754_powf)
62 flds 8(%esp) // y
63 fxam
64
65 #ifdef PIC
66 call 1f
67 1: popl %ecx
68 addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
69 #endif
70
71 fnstsw
72 movb %ah, %dl
73 andb $0x45, %ah
74 cmpb $0x40, %ah // is y == 0 ?
75 je 11f
76
77 cmpb $0x05, %ah // is y == ±inf ?
78 je 12f
79
80 cmpb $0x01, %ah // is y == NaN ?
81 je 30f
82
83 flds 4(%esp) // x : y
84
85 subl $4, %esp
86
87 fxam
88 fnstsw
89 movb %ah, %dh
90 andb $0x45, %ah
91 cmpb $0x40, %ah
92 je 20f // x is ±0
93
94 cmpb $0x05, %ah
95 je 15f // x is ±inf
96
97 fxch // y : x
98
99 /* First see whether `y' is a natural number. In this case we
100 can use a more precise algorithm. */
101 fld %st // y : y : x
102 fistpl (%esp) // y : x
103 fildl (%esp) // int(y) : y : x
104 fucomp %st(1) // y : x
105 fnstsw
106 sahf
107 jne 2f
108
109 /* OK, we have an integer value for y. */
110 popl %edx
111 orl $0, %edx
112 fstp %st(0) // x
113 jns 4f // y >= 0, jump
114 fdivrl MO(one) // 1/x (now referred to as x)
115 negl %edx
116 4: fldl MO(one) // 1 : x
117 fxch
118
119 6: shrl $1, %edx
120 jnc 5f
121 fxch
122 fmul %st(1) // x : ST*x
123 fxch
124 5: fmul %st(0), %st // x*x : ST*x
125 testl %edx, %edx
126 jnz 6b
127 fstp %st(0) // ST*x
128 30: ret
129
130 .align ALIGNARG(4)
131 2: /* y is a real number. */
132 fxch // x : y
133 fldl MO(one) // 1.0 : x : y
134 fld %st(1) // x : 1.0 : x : y
135 fsub %st(1) // x-1 : 1.0 : x : y
136 fabs // |x-1| : 1.0 : x : y
137 fcompl MO(limit) // 1.0 : x : y
138 fnstsw
139 fxch // x : 1.0 : y
140 sahf
141 ja 7f
142 fsub %st(1) // x-1 : 1.0 : y
143 fyl2xp1 // log2(x) : y
144 jmp 8f
145
146 7: fyl2x // log2(x) : y
147 8: fmul %st(1) // y*log2(x) : y
148 fst %st(1) // y*log2(x) : y*log2(x)
149 frndint // int(y*log2(x)) : y*log2(x)
150 fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
151 fxch // fract(y*log2(x)) : int(y*log2(x))
152 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
153 faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
154 fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
155 addl $4, %esp
156 fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
157 ret
158
159
160 // pow(x,±0) = 1
161 .align ALIGNARG(4)
162 11: fstp %st(0) // pop y
163 fldl MO(one)
164 ret
165
166 // y == ±inf
167 .align ALIGNARG(4)
168 12: fstp %st(0) // pop y
169 flds 4(%esp) // x
170 fabs
171 fcompl MO(one) // < 1, == 1, or > 1
172 fnstsw
173 andb $0x45, %ah
174 cmpb $0x45, %ah
175 je 13f // jump if x is NaN
176
177 cmpb $0x40, %ah
178 je 14f // jump if |x| == 1
179
180 shlb $1, %ah
181 xorb %ah, %dl
182 andl $2, %edx
183 fldl MOX(inf_zero, %edx, 4)
184 ret
185
186 .align ALIGNARG(4)
187 14: fldl MO(infinity)
188 fmull MO(zero) // raise invalid exception
189 ret
190
191 .align ALIGNARG(4)
192 13: flds 4(%esp) // load x == NaN
193 ret
194
195 .align ALIGNARG(4)
196 // x is ±inf
197 15: fstp %st(0) // y
198 testb $2, %dh
199 jz 16f // jump if x == +inf
200
201 // We must find out whether y is an odd integer.
202 fld %st // y : y
203 fistpl (%esp) // y
204 fildl (%esp) // int(y) : y
205 fucompp // <empty>
206 fnstsw
207 sahf
208 jne 17f
209
210 // OK, the value is an integer, but is the number of bits small
211 // enough so that all are coming from the mantissa?
212 popl %edx
213 testb $1, %dl
214 jz 18f // jump if not odd
215 movl %edx, %eax
216 orl %edx, %edx
217 jns 155f
218 negl %eax
219 155: cmpl $0x01000000, %eax
220 ja 18f // does not fit in mantissa bits
221 // It's an odd integer.
222 shrl $31, %edx
223 fldl MOX(minf_mzero, %edx, 8)
224 ret
225
226 .align ALIGNARG(4)
227 16: fcompl MO(zero)
228 addl $4, %esp
229 fnstsw
230 shrl $5, %eax
231 andl $8, %eax
232 fldl MOX(inf_zero, %eax, 1)
233 ret
234
235 .align ALIGNARG(4)
236 17: shll $30, %edx // sign bit for y in right position
237 addl $4, %esp
238 18: shrl $31, %edx
239 fldl MOX(inf_zero, %edx, 8)
240 ret
241
242 .align ALIGNARG(4)
243 // x is ±0
244 20: fstp %st(0) // y
245 testb $2, %dl
246 jz 21f // y > 0
247
248 // x is ±0 and y is < 0. We must find out whether y is an odd integer.
249 testb $2, %dh
250 jz 25f
251
252 fld %st // y : y
253 fistpl (%esp) // y
254 fildl (%esp) // int(y) : y
255 fucompp // <empty>
256 fnstsw
257 sahf
258 jne 26f
259
260 // OK, the value is an integer, but is the number of bits small
261 // enough so that all are coming from the mantissa?
262 popl %edx
263 testb $1, %dl
264 jz 27f // jump if not odd
265 cmpl $0xff000000, %edx
266 jbe 27f // does not fit in mantissa bits
267 // It's an odd integer.
268 // Raise divide-by-zero exception and get minus infinity value.
269 fldl MO(one)
270 fdivl MO(zero)
271 fchs
272 ret
273
274 25: fstp %st(0)
275 26: popl %eax
276 27: // Raise divide-by-zero exception and get infinity value.
277 fldl MO(one)
278 fdivl MO(zero)
279 ret
280
281 .align ALIGNARG(4)
282 // x is ±0 and y is > 0. We must find out whether y is an odd integer.
283 21: testb $2, %dh
284 jz 22f
285
286 fld %st // y : y
287 fistpl (%esp) // y
288 fildl (%esp) // int(y) : y
289 fucompp // <empty>
290 fnstsw
291 sahf
292 jne 23f
293
294 // OK, the value is an integer, but is the number of bits small
295 // enough so that all are coming from the mantissa?
296 popl %edx
297 testb $1, %dl
298 jz 24f // jump if not odd
299 cmpl $0xff000000, %edx
300 jae 24f // does not fit in mantissa bits
301 // It's an odd integer.
302 fldl MO(mzero)
303 ret
304
305 22: fstp %st(0)
306 23: popl %eax
307 24: fldl MO(zero)
308 ret
309
310 END(__ieee754_powf)
This page took 0.049321 seconds and 4 git commands to generate.