]> sourceware.org Git - glibc.git/blob - sysdeps/i386/fpu/e_pow.S
Fix pow of zero and infinity to large powers.
[glibc.git] / sysdeps / i386 / fpu / e_pow.S
1 /* ix87 specific implementation of pow function.
2 Copyright (C) 1996-1999, 2001, 2004-2005, 2007, 2011-2012
3 Free Software Foundation, Inc.
4 This file is part of the GNU C Library.
5 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; if not, see
19 <http://www.gnu.org/licenses/>. */
20
21 #include <machine/asm.h>
22
23 .section .rodata.cst8,"aM",@progbits,8
24
25 .p2align 3
26 ASM_TYPE_DIRECTIVE(one,@object)
27 one: .double 1.0
28 ASM_SIZE_DIRECTIVE(one)
29 ASM_TYPE_DIRECTIVE(limit,@object)
30 limit: .double 0.29
31 ASM_SIZE_DIRECTIVE(limit)
32 ASM_TYPE_DIRECTIVE(p63,@object)
33 p63: .byte 0, 0, 0, 0, 0, 0, 0xe0, 0x43
34 ASM_SIZE_DIRECTIVE(p63)
35
36 .section .rodata.cst16,"aM",@progbits,16
37
38 .p2align 3
39 ASM_TYPE_DIRECTIVE(infinity,@object)
40 inf_zero:
41 infinity:
42 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
43 ASM_SIZE_DIRECTIVE(infinity)
44 ASM_TYPE_DIRECTIVE(zero,@object)
45 zero: .double 0.0
46 ASM_SIZE_DIRECTIVE(zero)
47 ASM_TYPE_DIRECTIVE(minf_mzero,@object)
48 minf_mzero:
49 minfinity:
50 .byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
51 mzero:
52 .byte 0, 0, 0, 0, 0, 0, 0, 0x80
53 ASM_SIZE_DIRECTIVE(minf_mzero)
54
55 #ifdef PIC
56 # define MO(op) op##@GOTOFF(%ecx)
57 # define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
58 #else
59 # define MO(op) op
60 # define MOX(op,x,f) op(,x,f)
61 #endif
62
63 .text
64 ENTRY(__ieee754_pow)
65 fldl 12(%esp) // y
66 fxam
67
68 #ifdef PIC
69 LOAD_PIC_REG (cx)
70 #endif
71
72 fnstsw
73 movb %ah, %dl
74 andb $0x45, %ah
75 cmpb $0x40, %ah // is y == 0 ?
76 je 11f
77
78 cmpb $0x05, %ah // is y == ±inf ?
79 je 12f
80
81 cmpb $0x01, %ah // is y == NaN ?
82 je 30f
83
84 fldl 4(%esp) // x : y
85
86 subl $8,%esp
87 cfi_adjust_cfa_offset (8)
88
89 fxam
90 fnstsw
91 movb %ah, %dh
92 andb $0x45, %ah
93 cmpb $0x40, %ah
94 je 20f // x is ±0
95
96 cmpb $0x05, %ah
97 je 15f // x is ±inf
98
99 fxch // y : x
100
101 /* fistpll raises invalid exception for |y| >= 1L<<63. */
102 fld %st // y : y : x
103 fabs // |y| : y : x
104 fcompl MO(p63) // y : x
105 fnstsw
106 sahf
107 jnc 2f
108
109 /* First see whether `y' is a natural number. In this case we
110 can use a more precise algorithm. */
111 fld %st // y : y : x
112 fistpll (%esp) // y : x
113 fildll (%esp) // int(y) : y : x
114 fucomp %st(1) // y : x
115 fnstsw
116 sahf
117 jne 2f
118
119 /* OK, we have an integer value for y. */
120 popl %eax
121 cfi_adjust_cfa_offset (-4)
122 popl %edx
123 cfi_adjust_cfa_offset (-4)
124 orl $0, %edx
125 fstp %st(0) // x
126 jns 4f // y >= 0, jump
127 fdivrl MO(one) // 1/x (now referred to as x)
128 negl %eax
129 adcl $0, %edx
130 negl %edx
131 4: fldl MO(one) // 1 : x
132 fxch
133
134 6: shrdl $1, %edx, %eax
135 jnc 5f
136 fxch
137 fmul %st(1) // x : ST*x
138 fxch
139 5: fmul %st(0), %st // x*x : ST*x
140 shrl $1, %edx
141 movl %eax, %ecx
142 orl %edx, %ecx
143 jnz 6b
144 fstp %st(0) // ST*x
145 ret
146
147 /* y is ±NAN */
148 30: fldl 4(%esp) // x : y
149 fldl MO(one) // 1.0 : x : y
150 fucomp %st(1) // x : y
151 fnstsw
152 sahf
153 je 31f
154 fxch // y : x
155 31: fstp %st(1)
156 ret
157
158 cfi_adjust_cfa_offset (8)
159 .align ALIGNARG(4)
160 2: /* y is a real number. */
161 fxch // x : y
162 fldl MO(one) // 1.0 : x : y
163 fldl MO(limit) // 0.29 : 1.0 : x : y
164 fld %st(2) // x : 0.29 : 1.0 : x : y
165 fsub %st(2) // x-1 : 0.29 : 1.0 : x : y
166 fabs // |x-1| : 0.29 : 1.0 : x : y
167 fucompp // 1.0 : x : y
168 fnstsw
169 fxch // x : 1.0 : y
170 sahf
171 ja 7f
172 fsub %st(1) // x-1 : 1.0 : y
173 fyl2xp1 // log2(x) : y
174 jmp 8f
175
176 7: fyl2x // log2(x) : y
177 8: fmul %st(1) // y*log2(x) : y
178 fst %st(1) // y*log2(x) : y*log2(x)
179 frndint // int(y*log2(x)) : y*log2(x)
180 fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
181 fxch // fract(y*log2(x)) : int(y*log2(x))
182 f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
183 faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
184 fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
185 addl $8, %esp
186 cfi_adjust_cfa_offset (-8)
187 fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
188 ret
189
190
191 // pow(x,±0) = 1
192 .align ALIGNARG(4)
193 11: fstp %st(0) // pop y
194 fldl MO(one)
195 ret
196
197 // y == ±inf
198 .align ALIGNARG(4)
199 12: fstp %st(0) // pop y
200 fldl MO(one) // 1
201 fldl 4(%esp) // x : 1
202 fabs // abs(x) : 1
203 fucompp // < 1, == 1, or > 1
204 fnstsw
205 andb $0x45, %ah
206 cmpb $0x45, %ah
207 je 13f // jump if x is NaN
208
209 cmpb $0x40, %ah
210 je 14f // jump if |x| == 1
211
212 shlb $1, %ah
213 xorb %ah, %dl
214 andl $2, %edx
215 fldl MOX(inf_zero, %edx, 4)
216 ret
217
218 .align ALIGNARG(4)
219 14: fldl MO(one)
220 ret
221
222 .align ALIGNARG(4)
223 13: fldl 4(%esp) // load x == NaN
224 ret
225
226 cfi_adjust_cfa_offset (8)
227 .align ALIGNARG(4)
228 // x is ±inf
229 15: fstp %st(0) // y
230 testb $2, %dh
231 jz 16f // jump if x == +inf
232
233 // fistpll raises invalid exception for |y| >= 1L<<63, so test
234 // that (in which case y is certainly even) before testing
235 // whether y is odd.
236 fld %st // y : y
237 fabs // |y| : y
238 fcompl MO(p63) // y
239 fnstsw
240 sahf
241 jnc 16f
242
243 // We must find out whether y is an odd integer.
244 fld %st // y : y
245 fistpll (%esp) // y
246 fildll (%esp) // int(y) : y
247 fucompp // <empty>
248 fnstsw
249 sahf
250 jne 17f
251
252 // OK, the value is an integer.
253 popl %eax
254 cfi_adjust_cfa_offset (-4)
255 popl %edx
256 cfi_adjust_cfa_offset (-4)
257 andb $1, %al
258 jz 18f // jump if not odd
259 // It's an odd integer.
260 shrl $31, %edx
261 fldl MOX(minf_mzero, %edx, 8)
262 ret
263
264 cfi_adjust_cfa_offset (8)
265 .align ALIGNARG(4)
266 16: fcompl MO(zero)
267 addl $8, %esp
268 cfi_adjust_cfa_offset (-8)
269 fnstsw
270 shrl $5, %eax
271 andl $8, %eax
272 fldl MOX(inf_zero, %eax, 1)
273 ret
274
275 cfi_adjust_cfa_offset (8)
276 .align ALIGNARG(4)
277 17: shll $30, %edx // sign bit for y in right position
278 addl $8, %esp
279 cfi_adjust_cfa_offset (-8)
280 18: shrl $31, %edx
281 fldl MOX(inf_zero, %edx, 8)
282 ret
283
284 cfi_adjust_cfa_offset (8)
285 .align ALIGNARG(4)
286 // x is ±0
287 20: fstp %st(0) // y
288 testb $2, %dl
289 jz 21f // y > 0
290
291 // x is ±0 and y is < 0. We must find out whether y is an odd integer.
292 testb $2, %dh
293 jz 25f
294
295 // fistpll raises invalid exception for |y| >= 1L<<63, so test
296 // that (in which case y is certainly even) before testing
297 // whether y is odd.
298 fld %st // y : y
299 fabs // |y| : y
300 fcompl MO(p63) // y
301 fnstsw
302 sahf
303 jnc 25f
304
305 fld %st // y : y
306 fistpll (%esp) // y
307 fildll (%esp) // int(y) : y
308 fucompp // <empty>
309 fnstsw
310 sahf
311 jne 26f
312
313 // OK, the value is an integer.
314 popl %eax
315 cfi_adjust_cfa_offset (-4)
316 popl %edx
317 cfi_adjust_cfa_offset (-4)
318 andb $1, %al
319 jz 27f // jump if not odd
320 // It's an odd integer.
321 // Raise divide-by-zero exception and get minus infinity value.
322 fldl MO(one)
323 fdivl MO(zero)
324 fchs
325 ret
326
327 cfi_adjust_cfa_offset (8)
328 25: fstp %st(0)
329 26: addl $8, %esp
330 cfi_adjust_cfa_offset (-8)
331 27: // Raise divide-by-zero exception and get infinity value.
332 fldl MO(one)
333 fdivl MO(zero)
334 ret
335
336 cfi_adjust_cfa_offset (8)
337 .align ALIGNARG(4)
338 // x is ±0 and y is > 0. We must find out whether y is an odd integer.
339 21: testb $2, %dh
340 jz 22f
341
342 // fistpll raises invalid exception for |y| >= 1L<<63, so test
343 // that (in which case y is certainly even) before testing
344 // whether y is odd.
345 fcoml MO(p63) // y
346 fnstsw
347 sahf
348 jnc 22f
349
350 fld %st // y : y
351 fistpll (%esp) // y
352 fildll (%esp) // int(y) : y
353 fucompp // <empty>
354 fnstsw
355 sahf
356 jne 23f
357
358 // OK, the value is an integer.
359 popl %eax
360 cfi_adjust_cfa_offset (-4)
361 popl %edx
362 cfi_adjust_cfa_offset (-4)
363 andb $1, %al
364 jz 24f // jump if not odd
365 // It's an odd integer.
366 fldl MO(mzero)
367 ret
368
369 cfi_adjust_cfa_offset (8)
370 22: fstp %st(0)
371 23: addl $8, %esp // Don't use 2 x pop
372 cfi_adjust_cfa_offset (-8)
373 24: fldl MO(zero)
374 ret
375
376 END(__ieee754_pow)
377 strong_alias (__ieee754_pow, __pow_finite)
This page took 0.062431 seconds and 6 git commands to generate.