]> sourceware.org Git - glibc.git/blob - ports/sysdeps/hppa/dl-machine.h
Don't use broken DL_AUTO_FUNCTION_ADDRESS()
[glibc.git] / ports / sysdeps / hppa / dl-machine.h
1 /* Machine-dependent ELF dynamic relocation inline functions. PA-RISC version.
2 Copyright (C) 1995-2013 Free Software Foundation, Inc.
3 Contributed by David Huggins-Daines <dhd@debian.org>
4 This file is part of the GNU C Library.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library. If not, see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef dl_machine_h
21 #define dl_machine_h 1
22
23 #define ELF_MACHINE_NAME "hppa"
24
25 #include <sys/param.h>
26 #include <assert.h>
27 #include <string.h>
28 #include <link.h>
29 #include <errno.h>
30 #include <dl-fptr.h>
31 #include <abort-instr.h>
32 #include <tls.h>
33
34 /* These two definitions must match the definition of the stub in
35 bfd/elf32-hppa.c (see plt_stub[]).
36
37 a. Define the size of the *entire* stub we place at the end of the PLT
38 table (right up against the GOT).
39
40 b. Define the number of bytes back from the GOT to the entry point of
41 the PLT stub. You see the PLT stub must be entered in the middle
42 so it can depwi to find it's own address (long jump stub)
43
44 c. Define the size of a single PLT entry so we can jump over the
45 last entry to get the stub address */
46
47 #define SIZEOF_PLT_STUB (7*4)
48 #define GOT_FROM_PLT_STUB (4*4)
49 #define PLT_ENTRY_SIZE (2*4)
50
51 /* Initialize the function descriptor table before relocations */
52 static inline void
53 __hppa_init_bootstrap_fdesc_table (struct link_map *map)
54 {
55 ElfW(Addr) *boot_table;
56
57 /* Careful: this will be called before got has been relocated... */
58 ELF_MACHINE_LOAD_ADDRESS(boot_table,_dl_boot_fptr_table);
59
60 map->l_mach.fptr_table_len = ELF_MACHINE_BOOT_FPTR_TABLE_LEN;
61 map->l_mach.fptr_table = boot_table;
62 }
63
64 #define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) \
65 __hppa_init_bootstrap_fdesc_table (&bootstrap_map); \
66 _dl_fptr_init();
67
68 /* Return nonzero iff ELF header is compatible with the running host. */
69 static inline int
70 elf_machine_matches_host (const Elf32_Ehdr *ehdr)
71 {
72 return ehdr->e_machine == EM_PARISC;
73 }
74
75 /* Return the link-time address of _DYNAMIC. */
76 static inline Elf32_Addr
77 elf_machine_dynamic (void) __attribute__ ((const));
78
79 static inline Elf32_Addr
80 elf_machine_dynamic (void)
81 {
82 Elf32_Addr dynamic;
83
84 asm ("b,l 1f,%0\n"
85 " depi 0,31,2,%0\n"
86 "1: addil L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 8),%0\n"
87 " ldw R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 12)(%%r1),%0\n"
88 : "=r" (dynamic) : : "r1");
89
90 return dynamic;
91 }
92
93 /* Return the run-time load address of the shared object. */
94 static inline Elf32_Addr
95 elf_machine_load_address (void) __attribute__ ((const));
96
97 static inline Elf32_Addr
98 elf_machine_load_address (void)
99 {
100 Elf32_Addr dynamic;
101
102 asm (
103 " b,l 1f,%0\n"
104 " depi 0,31,2,%0\n"
105 "1: addil L'_DYNAMIC - ($PIC_pcrel$0 - 8),%0\n"
106 " ldo R'_DYNAMIC - ($PIC_pcrel$0 - 12)(%%r1),%0\n"
107 : "=r" (dynamic) : : "r1");
108
109 return dynamic - elf_machine_dynamic ();
110 }
111
112 /* Fixup a PLT entry to bounce directly to the function at VALUE. */
113 static inline struct fdesc __attribute__ ((always_inline))
114 elf_machine_fixup_plt (struct link_map *map, lookup_t t,
115 const Elf32_Rela *reloc,
116 Elf32_Addr *reloc_addr, struct fdesc value)
117 {
118 volatile Elf32_Addr *rfdesc = reloc_addr;
119 /* map is the link_map for the caller, t is the link_map for the object
120 being called */
121 rfdesc[1] = value.gp;
122 /* Need to ensure that the gp is visible before the code
123 entry point is updated */
124 rfdesc[0] = value.ip;
125 return value;
126 }
127
128 /* Return the final value of a plt relocation. */
129 static inline struct fdesc
130 elf_machine_plt_value (struct link_map *map, const Elf32_Rela *reloc,
131 struct fdesc value)
132 {
133 /* We are rela only, return a function descriptor as a plt entry. */
134 return (struct fdesc) { value.ip + reloc->r_addend, value.gp };
135 }
136
137 /* Set up the loaded object described by L so its unrelocated PLT
138 entries will jump to the on-demand fixup code in dl-runtime.c. */
139
140 static inline int
141 elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
142 {
143 Elf32_Addr *got = NULL;
144 Elf32_Addr l_addr, iplt, jmprel, end_jmprel, r_type, r_sym;
145 const Elf32_Rela *reloc;
146 struct fdesc *fptr;
147 static union {
148 unsigned char c[8];
149 Elf32_Addr i[2];
150 } sig = {{0x00,0xc0,0xff,0xee, 0xde,0xad,0xbe,0xef}};
151
152 /* If we don't have a PLT we can just skip all this... */
153 if (__builtin_expect (l->l_info[DT_JMPREL] == NULL,0))
154 return lazy;
155
156 /* All paths use these values */
157 l_addr = l->l_addr;
158 jmprel = D_PTR(l, l_info[DT_JMPREL]);
159 end_jmprel = jmprel + l->l_info[DT_PLTRELSZ]->d_un.d_val;
160
161 extern void _dl_runtime_resolve (void);
162 extern void _dl_runtime_profile (void);
163
164 /* Linking lazily */
165 if (lazy)
166 {
167 /* FIXME: Search for the got, but backwards through the relocs, technically we should
168 find it on the first try. However, assuming the relocs got out of order the
169 routine is made a bit more robust by searching them all in case of failure. */
170 for (iplt = (end_jmprel - sizeof(Elf32_Rela)); iplt >= jmprel; iplt -= sizeof (Elf32_Rela))
171 {
172
173 reloc = (const Elf32_Rela *) iplt;
174 r_type = ELF32_R_TYPE (reloc->r_info);
175 r_sym = ELF32_R_SYM (reloc->r_info);
176
177 got = (Elf32_Addr *) (reloc->r_offset + l_addr + PLT_ENTRY_SIZE + SIZEOF_PLT_STUB);
178
179 /* If we aren't an IPLT, and we aren't NONE then it's a bad reloc */
180 if (__builtin_expect (r_type != R_PARISC_IPLT, 0))
181 {
182 if (__builtin_expect (r_type != R_PARISC_NONE, 0))
183 _dl_reloc_bad_type (l, r_type, 1);
184 continue;
185 }
186
187 /* Check for the plt_stub that binutils placed here for us
188 to use with _dl_runtime_resolve */
189 if (got[-2] != sig.i[0] || got[-1] != sig.i[1])
190 {
191 got = NULL; /* Not the stub... keep looking */
192 }
193 else
194 {
195 /* Found the GOT! */
196 register Elf32_Addr ltp __asm__ ("%r19");
197
198 /* Identify this shared object. Second entry in the got. */
199 got[1] = (Elf32_Addr) l;
200
201 /* This function will be called to perform the relocation. */
202 if (__builtin_expect (!profile, 1))
203 {
204 /* If a static application called us, then _dl_runtime_resolve is not
205 a function descriptor, but the *real* address of the function... */
206 if((unsigned long) &_dl_runtime_resolve & 3)
207 {
208 got[-2] = (Elf32_Addr) ((struct fdesc *)
209 ((unsigned long) &_dl_runtime_resolve & ~3))->ip;
210 }
211 else
212 {
213 /* Static executable! */
214 got[-2] = (Elf32_Addr) &_dl_runtime_resolve;
215 }
216 }
217 else
218 {
219 if (GLRO(dl_profile) != NULL
220 && _dl_name_match_p (GLRO(dl_profile), l))
221 {
222 /* This is the object we are looking for. Say that
223 we really want profiling and the timers are
224 started. */
225 GL(dl_profile_map) = l;
226 }
227
228 if((unsigned long) &_dl_runtime_profile & 3)
229 {
230 got[-2] = (Elf32_Addr) ((struct fdesc *)
231 ((unsigned long) &_dl_runtime_profile & ~3))->ip;
232 }
233 else
234 {
235 /* Static executable */
236 got[-2] = (Elf32_Addr) &_dl_runtime_profile;
237 }
238 }
239 /* Plunk in the gp of this function descriptor so we
240 can make the call to _dl_runtime_xxxxxx */
241 got[-1] = ltp;
242 break;
243 /* Done looking for the GOT, and stub is setup */
244 } /* else we found the GOT */
245 } /* for, walk the relocs backwards */
246
247 if(!got)
248 return 0; /* No lazy linking for you! */
249
250 /* Process all the relocs, now that we know the GOT... */
251 for (iplt = jmprel; iplt < end_jmprel; iplt += sizeof (Elf32_Rela))
252 {
253 reloc = (const Elf32_Rela *) iplt;
254 r_type = ELF32_R_TYPE (reloc->r_info);
255 r_sym = ELF32_R_SYM (reloc->r_info);
256
257 if (__builtin_expect (r_type == R_PARISC_IPLT, 1))
258 {
259 fptr = (struct fdesc *) (reloc->r_offset + l_addr);
260 if (r_sym != 0)
261 {
262 /* Relocate the pointer to the stub. */
263 fptr->ip = (Elf32_Addr) got - GOT_FROM_PLT_STUB;
264
265 /* Instead of the LTP value, we put the reloc offset
266 here. The trampoline code will load the proper
267 LTP and pass the reloc offset to the fixup
268 function. */
269 fptr->gp = iplt - jmprel;
270 } /* r_sym != 0 */
271 else
272 {
273 /* Relocate this *ABS* entry. */
274 fptr->ip = reloc->r_addend + l_addr;
275 fptr->gp = D_PTR (l, l_info[DT_PLTGOT]);
276 }
277 } /* r_type == R_PARISC_IPLT */
278 } /* for all the relocations */
279 } /* if lazy */
280 else
281 {
282 for (iplt = jmprel; iplt < end_jmprel; iplt += sizeof (Elf32_Rela))
283 {
284 reloc = (const Elf32_Rela *) iplt;
285 r_type = ELF32_R_TYPE (reloc->r_info);
286 r_sym = ELF32_R_SYM (reloc->r_info);
287
288 if (__builtin_expect ((r_type == R_PARISC_IPLT) && (r_sym == 0), 1))
289 {
290 fptr = (struct fdesc *) (reloc->r_offset + l_addr);
291 /* Relocate this *ABS* entry, set only the gp, the rest is set later
292 when elf_machine_rela_relative is called (WITHOUT the linkmap) */
293 fptr->gp = D_PTR (l, l_info[DT_PLTGOT]);
294 } /* r_type == R_PARISC_IPLT */
295 } /* for all the relocations */
296 }
297 return lazy;
298 }
299
300
301 /* Names of the architecture-specific auditing callback functions. */
302 #define ARCH_LA_PLTENTER hppa_gnu_pltenter
303 #define ARCH_LA_PLTEXIT hppa_gnu_pltexit
304
305 /* Initial entry point code for the dynamic linker.
306 The C function `_dl_start' is the real entry point;
307 its return value is the user program's entry point. */
308
309 #define RTLD_START \
310 /* Set up dp for any non-PIC lib constructors that may be called. */ \
311 static struct link_map * __attribute__((used)) \
312 set_dp (struct link_map *map) \
313 { \
314 register Elf32_Addr dp asm ("%r27"); \
315 dp = D_PTR (map, l_info[DT_PLTGOT]); \
316 asm volatile ("" : : "r" (dp)); \
317 return map; \
318 } \
319 \
320 asm ( \
321 " .text\n" \
322 " .globl _start\n" \
323 " .type _start,@function\n" \
324 "_start:\n" \
325 /* The kernel does not give us an initial stack frame. */ \
326 " ldo 64(%sp),%sp\n" \
327 /* Save the relevant arguments (yes, those are the correct \
328 registers, the kernel is weird) in their stack slots. */ \
329 " stw %r25,-40(%sp)\n" /* argc */ \
330 " stw %r24,-44(%sp)\n" /* argv */ \
331 \
332 /* We need the LTP, and we need it now. \
333 $PIC_pcrel$0 points 8 bytes past the current instruction, \
334 just like a branch reloc. This sequence gets us the \
335 runtime address of _DYNAMIC. */ \
336 " bl 0f,%r19\n" \
337 " depi 0,31,2,%r19\n" /* clear priviledge bits */ \
338 "0: addil L'_DYNAMIC - ($PIC_pcrel$0 - 8),%r19\n" \
339 " ldo R'_DYNAMIC - ($PIC_pcrel$0 - 12)(%r1),%r26\n" \
340 \
341 /* The link time address is stored in the first entry of the \
342 GOT. */ \
343 " addil L'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 16),%r19\n" \
344 " ldw R'_GLOBAL_OFFSET_TABLE_ - ($PIC_pcrel$0 - 20)(%r1),%r20\n" \
345 \
346 " sub %r26,%r20,%r20\n" /* Calculate load offset */ \
347 \
348 /* Rummage through the dynamic entries, looking for \
349 DT_PLTGOT. */ \
350 " ldw,ma 8(%r26),%r19\n" \
351 "1: cmpib,=,n 3,%r19,2f\n" /* tag == DT_PLTGOT? */ \
352 " cmpib,<>,n 0,%r19,1b\n" \
353 " ldw,ma 8(%r26),%r19\n" \
354 \
355 /* Uh oh! We didn't find one. Abort. */ \
356 " iitlbp %r0,(%sr0,%r0)\n" \
357 \
358 "2: ldw -4(%r26),%r19\n" /* Found it, load value. */ \
359 " add %r19,%r20,%r19\n" /* And add the load offset. */ \
360 \
361 /* Our initial stack layout is rather different from everyone \
362 else's due to the unique PA-RISC ABI. As far as I know it \
363 looks like this: \
364 \
365 ----------------------------------- (this frame created above) \
366 | 32 bytes of magic | \
367 |---------------------------------| \
368 | 32 bytes argument/sp save area | \
369 |---------------------------------| ((current->mm->env_end) \
370 | N bytes of slack | + 63 & ~63) \
371 |---------------------------------| \
372 | envvar and arg strings | \
373 |---------------------------------| \
374 | ELF auxiliary info | \
375 | (up to 28 words) | \
376 |---------------------------------| \
377 | Environment variable pointers | \
378 | upwards to NULL | \
379 |---------------------------------| \
380 | Argument pointers | \
381 | upwards to NULL | \
382 |---------------------------------| \
383 | argc (1 word) | \
384 ----------------------------------- \
385 \
386 So, obviously, we can't just pass %sp to _dl_start. That's \
387 okay, argv-4 will do just fine. \
388 \
389 The pleasant part of this is that if we need to skip \
390 arguments we can just decrement argc and move argv, because \
391 the stack pointer is utterly unrelated to the location of \
392 the environment and argument vectors. */ \
393 \
394 /* This is always within range so we'll be okay. */ \
395 " bl _dl_start,%rp\n" \
396 " ldo -4(%r24),%r26\n" \
397 \
398 " .globl _dl_start_user\n" \
399 " .type _dl_start_user,@function\n" \
400 "_dl_start_user:\n" \
401 /* Save the entry point in %r3. */ \
402 " copy %ret0,%r3\n" \
403 \
404 /* Remember the lowest stack address. */ \
405 " addil LT'__libc_stack_end,%r19\n" \
406 " ldw RT'__libc_stack_end(%r1),%r20\n" \
407 " stw %sp,0(%r20)\n" \
408 \
409 /* See if we were called as a command with the executable file \
410 name as an extra leading argument. */ \
411 " addil LT'_dl_skip_args,%r19\n" \
412 " ldw RT'_dl_skip_args(%r1),%r20\n" \
413 " ldw 0(%r20),%r20\n" \
414 \
415 " ldw -40(%sp),%r25\n" /* argc */ \
416 " comib,= 0,%r20,.Lnofix\n" /* FIXME: Mispredicted branch */\
417 " ldw -44(%sp),%r24\n" /* argv (delay slot) */ \
418 \
419 " sub %r25,%r20,%r25\n" \
420 " stw %r25,-40(%sp)\n" \
421 " sh2add %r20,%r24,%r24\n" \
422 " stw %r24,-44(%sp)\n" \
423 \
424 ".Lnofix:\n" \
425 " addil LT'_rtld_local,%r19\n" \
426 " ldw RT'_rtld_local(%r1),%r26\n" \
427 " bl set_dp, %r2\n" \
428 " ldw 0(%r26),%r26\n" \
429 \
430 /* Call _dl_init(_dl_loaded, argc, argv, envp). */ \
431 " copy %r28,%r26\n" \
432 \
433 /* envp = argv + argc + 1 */ \
434 " sh2add %r25,%r24,%r23\n" \
435 " bl _dl_init_internal,%r2\n" \
436 " ldo 4(%r23),%r23\n" /* delay slot */ \
437 \
438 /* Reload argc, argv to the registers start.S expects. */ \
439 " ldw -40(%sp),%r25\n" \
440 " ldw -44(%sp),%r24\n" \
441 \
442 /* _dl_fini is a local function in the loader, so we construct \
443 a false OPD here and pass this to the application. */ \
444 /* FIXME: Should be able to use P%, and LR RR to have the \
445 the linker construct a proper OPD. */ \
446 " .section .data\n" \
447 "__dl_fini_plabel:\n" \
448 " .word _dl_fini\n" \
449 " .word 0xdeadbeef\n" \
450 " .previous\n" \
451 \
452 /* %r3 contains a function pointer, we need to mask out the \
453 lower bits and load the gp and jump address. */ \
454 " depi 0,31,2,%r3\n" \
455 " ldw 0(%r3),%r2\n" \
456 " addil LT'__dl_fini_plabel,%r19\n" \
457 " ldw RT'__dl_fini_plabel(%r1),%r23\n" \
458 " stw %r19,4(%r23)\n" \
459 " ldw 4(%r3),%r19\n" /* load the object's gp */ \
460 " bv %r0(%r2)\n" \
461 " depi 2,31,2,%r23\n" /* delay slot */ \
462 );
463
464 /* ELF_RTYPE_CLASS_PLT iff TYPE describes relocation of a PLT entry or
465 a TLS variable, so references should not be allowed to define the value.
466 ELF_RTYPE_CLASS_NOCOPY iff TYPE should not be allowed to resolve to one
467 of the main executable's symbols, as for a COPY reloc. */
468 #if defined USE_TLS && (!defined RTLD_BOOTSTRAP || USE___THREAD)
469 # define elf_machine_type_class(type) \
470 ((((type) == R_PARISC_IPLT \
471 || (type) == R_PARISC_EPLT \
472 || (type) == R_PARISC_TLS_DTPMOD32 \
473 || (type) == R_PARISC_TLS_DTPOFF32 \
474 || (type) == R_PARISC_TLS_TPREL32) \
475 * ELF_RTYPE_CLASS_PLT) \
476 | (((type) == R_PARISC_COPY) * ELF_RTYPE_CLASS_COPY))
477 #else
478 #define elf_machine_type_class(type) \
479 ((((type) == R_PARISC_IPLT \
480 || (type) == R_PARISC_EPLT) \
481 * ELF_RTYPE_CLASS_PLT) \
482 | (((type) == R_PARISC_COPY) * ELF_RTYPE_CLASS_COPY))
483 #endif
484
485 /* Used by the runtime in fixup to figure out if reloc is *really* PLT */
486 #define ELF_MACHINE_JMP_SLOT R_PARISC_IPLT
487 #define ELF_MACHINE_SIZEOF_JMP_SLOT PLT_ENTRY_SIZE
488
489 /* We only use RELA. */
490 #define ELF_MACHINE_NO_REL 1
491
492 /* Return the address of the entry point. */
493 #define ELF_MACHINE_START_ADDRESS(map, start) \
494 ({ \
495 ElfW(Addr) addr; \
496 DL_DT_FUNCTION_ADDRESS(map, start, static, addr) \
497 addr; \
498 })
499
500 /* We define an initialization functions. This is called very early in
501 * _dl_sysdep_start. */
502 #define DL_PLATFORM_INIT dl_platform_init ()
503
504 static inline void __attribute__ ((unused))
505 dl_platform_init (void)
506 {
507 if (GLRO(dl_platform) != NULL && *GLRO(dl_platform) == '\0')
508 /* Avoid an empty string which would disturb us. */
509 GLRO(dl_platform) = NULL;
510 }
511
512 #endif /* !dl_machine_h */
513
514 /* These are only actually used where RESOLVE_MAP is defined, anyway. */
515 #ifdef RESOLVE_MAP
516
517 #define reassemble_21(as21) \
518 ( (((as21) & 0x100000) >> 20) \
519 | (((as21) & 0x0ffe00) >> 8) \
520 | (((as21) & 0x000180) << 7) \
521 | (((as21) & 0x00007c) << 14) \
522 | (((as21) & 0x000003) << 12))
523
524 #define reassemble_14(as14) \
525 ( (((as14) & 0x1fff) << 1) \
526 | (((as14) & 0x2000) >> 13))
527
528 auto void __attribute__((always_inline))
529 elf_machine_rela (struct link_map *map,
530 const Elf32_Rela *reloc,
531 const Elf32_Sym *sym,
532 const struct r_found_version *version,
533 void *const reloc_addr_arg,
534 int skip_ifunc)
535 {
536 Elf32_Addr *const reloc_addr = reloc_addr_arg;
537 const Elf32_Sym *const refsym = sym;
538 unsigned long const r_type = ELF32_R_TYPE (reloc->r_info);
539 struct link_map *sym_map;
540 Elf32_Addr value;
541
542 # if !defined RTLD_BOOTSTRAP && !defined HAVE_Z_COMBRELOC && !defined SHARED
543 /* This is defined in rtld.c, but nowhere in the static libc.a; make the
544 reference weak so static programs can still link. This declaration
545 cannot be done when compiling rtld.c (i.e. #ifdef RTLD_BOOTSTRAP)
546 because rtld.c contains the common defn for _dl_rtld_map, which is
547 incompatible with a weak decl in the same file. */
548 weak_extern (GL(dl_rtld_map));
549 # endif
550
551 /* RESOLVE_MAP will return a null value for undefined syms, and
552 non-null for all other syms. In particular, relocs with no
553 symbol (symbol index of zero), also called *ABS* relocs, will be
554 resolved to MAP. (The first entry in a symbol table is all
555 zeros, and an all zero Elf32_Sym has a binding of STB_LOCAL.)
556 See RESOLVE_MAP definition in elf/dl-reloc.c */
557 # ifdef RTLD_BOOTSTRAP
558 /* RESOLVE_MAP in rtld.c doesn't have the local sym test. */
559 sym_map = (ELF32_ST_BIND (sym->st_info) != STB_LOCAL
560 ? RESOLVE_MAP (&sym, version, r_type) : map);
561 # else
562 sym_map = RESOLVE_MAP (&sym, version, r_type);
563 # endif
564
565 if (sym_map)
566 {
567 value = sym ? sym_map->l_addr + sym->st_value : 0;
568 value += reloc->r_addend;
569 }
570 else
571 value = 0;
572
573 switch (r_type)
574 {
575 case R_PARISC_DIR32:
576 /* .eh_frame can have unaligned relocs. */
577 if ((unsigned long) reloc_addr_arg & 3)
578 {
579 char *rel_addr = (char *) reloc_addr_arg;
580 rel_addr[0] = value >> 24;
581 rel_addr[1] = value >> 16;
582 rel_addr[2] = value >> 8;
583 rel_addr[3] = value;
584 return;
585 }
586 break;
587
588 case R_PARISC_DIR21L:
589 {
590 unsigned int insn = *(unsigned int *)reloc_addr;
591 value = sym_map->l_addr + sym->st_value
592 + ((reloc->r_addend + 0x1000) & -0x2000);
593 value = value >> 11;
594 insn = (insn &~ 0x1fffff) | reassemble_21 (value);
595 *(unsigned int *)reloc_addr = insn;
596 }
597 return;
598
599 case R_PARISC_DIR14R:
600 {
601 unsigned int insn = *(unsigned int *)reloc_addr;
602 value = ((sym_map->l_addr + sym->st_value) & 0x7ff)
603 + (((reloc->r_addend & 0x1fff) ^ 0x1000) - 0x1000);
604 insn = (insn &~ 0x3fff) | reassemble_14 (value);
605 *(unsigned int *)reloc_addr = insn;
606 }
607 return;
608
609 case R_PARISC_PLABEL32:
610 /* Easy rule: If there is a symbol and it is global, then we
611 need to make a dynamic function descriptor. Otherwise we
612 have the address of a PLT slot for a local symbol which we
613 know to be unique. */
614 if (sym == NULL
615 || sym_map == NULL
616 || ELF32_ST_BIND (sym->st_info) == STB_LOCAL)
617 {
618 break;
619 }
620 /* Set bit 30 to indicate to $$dyncall that this is a PLABEL.
621 We have to do this outside of the generic function descriptor
622 code, since it doesn't know about our requirement for setting
623 protection bits */
624 value = (Elf32_Addr)((unsigned int)_dl_make_fptr (sym_map, sym, value) | 2);
625 break;
626
627 case R_PARISC_PLABEL21L:
628 case R_PARISC_PLABEL14R:
629 {
630 unsigned int insn = *(unsigned int *)reloc_addr;
631
632 if (__builtin_expect (sym == NULL, 0))
633 break;
634
635 value = (Elf32_Addr)((unsigned int)_dl_make_fptr (sym_map, sym, value) | 2);
636
637 if (r_type == R_PARISC_PLABEL21L)
638 {
639 value >>= 11;
640 insn = (insn &~ 0x1fffff) | reassemble_21 (value);
641 }
642 else
643 {
644 value &= 0x7ff;
645 insn = (insn &~ 0x3fff) | reassemble_14 (value);
646 }
647
648 *(unsigned int *)reloc_addr = insn;
649 }
650 return;
651
652 case R_PARISC_IPLT:
653 if (__builtin_expect (sym_map != NULL, 1))
654 {
655 elf_machine_fixup_plt (NULL, sym_map, reloc, reloc_addr,
656 DL_FIXUP_MAKE_VALUE(sym_map, value));
657 }
658 else
659 {
660 /* If we get here, it's a (weak) undefined sym. */
661 elf_machine_fixup_plt (NULL, map, reloc, reloc_addr,
662 DL_FIXUP_MAKE_VALUE(map, value));
663 }
664 return;
665
666 case R_PARISC_COPY:
667 if (__builtin_expect (sym == NULL, 0))
668 /* This can happen in trace mode if an object could not be
669 found. */
670 break;
671 if (__builtin_expect (sym->st_size > refsym->st_size, 0)
672 || (__builtin_expect (sym->st_size < refsym->st_size, 0)
673 && __builtin_expect (GLRO(dl_verbose), 0)))
674 {
675 const char *strtab;
676
677 strtab = (const char *) D_PTR (map, l_info[DT_STRTAB]);
678 _dl_error_printf ("%s: Symbol `%s' has different size in shared object, "
679 "consider re-linking\n",
680 RTLD_PROGNAME, strtab + refsym->st_name);
681 }
682 memcpy (reloc_addr_arg, (void *) value,
683 MIN (sym->st_size, refsym->st_size));
684 return;
685
686 #if defined USE_TLS && (!defined RTLD_BOOTSTRAP)
687 case R_PARISC_TLS_DTPMOD32:
688 value = sym_map->l_tls_modid;
689 break;
690
691 case R_PARISC_TLS_DTPOFF32:
692 /* During relocation all TLS symbols are defined and used.
693 Therefore the offset is already correct. */
694 if (sym != NULL)
695 *reloc_addr = sym->st_value;
696 return;
697
698 case R_PARISC_TLS_TPREL32:
699 /* The offset is negative, forward from the thread pointer */
700 if (sym != NULL)
701 {
702 CHECK_STATIC_TLS (map, sym_map);
703 value = sym_map->l_tls_offset + sym->st_value + reloc->r_addend;
704 }
705 break;
706 #endif /* use TLS */
707
708 case R_PARISC_NONE: /* Alright, Wilbur. */
709 return;
710
711 default:
712 _dl_reloc_bad_type (map, r_type, 0);
713 }
714
715 *reloc_addr = value;
716 }
717
718 /* hppa doesn't have an R_PARISC_RELATIVE reloc, but uses relocs with
719 ELF32_R_SYM (info) == 0 for a similar purpose. */
720 auto void __attribute__((always_inline))
721 elf_machine_rela_relative (Elf32_Addr l_addr,
722 const Elf32_Rela *reloc,
723 void *const reloc_addr_arg)
724 {
725 unsigned long const r_type = ELF32_R_TYPE (reloc->r_info);
726 Elf32_Addr *const reloc_addr = reloc_addr_arg;
727 static char msgbuf[] = { "Unknown" };
728 struct link_map map;
729 Elf32_Addr value;
730
731 value = l_addr + reloc->r_addend;
732
733 if (ELF32_R_SYM (reloc->r_info) != 0){
734 _dl_error_printf ("%s: In elf_machine_rela_relative "
735 "ELF32_R_SYM (reloc->r_info) != 0. Aborting.",
736 RTLD_PROGNAME);
737 ABORT_INSTRUCTION; /* Crash. */
738 }
739
740 switch (r_type)
741 {
742 case R_PARISC_DIR32:
743 /* .eh_frame can have unaligned relocs. */
744 if ((unsigned long) reloc_addr_arg & 3)
745 {
746 char *rel_addr = (char *) reloc_addr_arg;
747 rel_addr[0] = value >> 24;
748 rel_addr[1] = value >> 16;
749 rel_addr[2] = value >> 8;
750 rel_addr[3] = value;
751 return;
752 }
753 break;
754
755 case R_PARISC_PLABEL32:
756 break;
757
758 case R_PARISC_IPLT: /* elf_machine_runtime_setup already set gp */
759 break;
760
761 case R_PARISC_NONE:
762 return;
763
764 default: /* Bad reloc, map unknown (really it's the current map) */
765 map.l_name = msgbuf;
766 _dl_reloc_bad_type (&map, r_type, 0);
767 return;
768 }
769
770 *reloc_addr = value;
771 }
772
773 auto void __attribute__((always_inline))
774 elf_machine_lazy_rel (struct link_map *map,
775 Elf32_Addr l_addr, const Elf32_Rela *reloc,
776 int skip_ifunc)
777 {
778 /* We don't have anything to do here. elf_machine_runtime_setup has
779 done all the relocs already. */
780 }
781
782 #endif /* RESOLVE_MAP */
This page took 0.072686 seconds and 5 git commands to generate.