]> sourceware.org Git - glibc.git/blob - elf/rtld.c
Tue Jul 2 10:44:37 1996 Roland McGrath <roland@delasyd.gnu.ai.mit.edu>
[glibc.git] / elf / rtld.c
1 /* Run time dynamic linker.
2 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
14
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
19
20 #include <link.h>
21 #include "dynamic-link.h"
22 #include <stddef.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include "../stdio-common/_itoa.h"
26
27
28 #ifdef RTLD_START
29 RTLD_START
30 #else
31 #error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
32 #endif
33
34 /* System-specific function to do initial startup for the dynamic linker.
35 After this, file access calls and getenv must work. This is responsible
36 for setting _dl_secure if we need to be secure (e.g. setuid),
37 and for setting _dl_argc and _dl_argv, and then calling _dl_main. */
38 extern ElfW(Addr) _dl_sysdep_start (void **start_argptr,
39 void (*dl_main) (const ElfW(Phdr) *phdr,
40 ElfW(Half) phent,
41 ElfW(Addr) *user_entry));
42 extern void _dl_sysdep_start_cleanup (void);
43
44 int _dl_secure;
45 int _dl_argc;
46 char **_dl_argv;
47 const char *_dl_rpath;
48
49 static void dl_main (const ElfW(Phdr) *phdr,
50 ElfW(Half) phent,
51 ElfW(Addr) *user_entry);
52
53 struct link_map _dl_rtld_map;
54
55 ElfW(Addr)
56 _dl_start (void *arg)
57 {
58 struct link_map bootstrap_map;
59
60 /* Figure out the run-time load address of the dynamic linker itself. */
61 bootstrap_map.l_addr = elf_machine_load_address ();
62
63 /* Read our own dynamic section and fill in the info array.
64 Conveniently, the first element of the GOT contains the
65 offset of _DYNAMIC relative to the run-time load address. */
66 bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + *elf_machine_got ();
67 elf_get_dynamic_info (bootstrap_map.l_ld, bootstrap_map.l_info);
68
69 #ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
70 ELF_MACHINE_BEFORE_RTLD_RELOC (bootstrap_map.l_info);
71 #endif
72
73 /* Relocate ourselves so we can do normal function calls and
74 data access using the global offset table. */
75
76 ELF_DYNAMIC_RELOCATE (&bootstrap_map, 0, NULL);
77
78
79 /* Now life is sane; we can call functions and access global data.
80 Set up to use the operating system facilities, and find out from
81 the operating system's program loader where to find the program
82 header table in core. */
83
84
85 /* Transfer data about ourselves to the permanent link_map structure. */
86 _dl_rtld_map.l_addr = bootstrap_map.l_addr;
87 _dl_rtld_map.l_ld = bootstrap_map.l_ld;
88 memcpy (_dl_rtld_map.l_info, bootstrap_map.l_info,
89 sizeof _dl_rtld_map.l_info);
90 _dl_setup_hash (&_dl_rtld_map);
91
92 /* Cache the DT_RPATH stored in ld.so itself; this will be
93 the default search path. */
94 _dl_rpath = (void *) (_dl_rtld_map.l_addr +
95 _dl_rtld_map.l_info[DT_STRTAB]->d_un.d_ptr +
96 _dl_rtld_map.l_info[DT_RPATH]->d_un.d_val);
97
98 /* Call the OS-dependent function to set up life so we can do things like
99 file access. It will call `dl_main' (below) to do all the real work
100 of the dynamic linker, and then unwind our frame and run the user
101 entry point on the same stack we entered on. */
102 return _dl_sysdep_start (arg, &dl_main);
103 }
104
105
106 /* Now life is peachy; we can do all normal operations.
107 On to the real work. */
108
109 void _start (void);
110
111 unsigned int _dl_skip_args; /* Nonzero if we were run directly. */
112
113 static void
114 dl_main (const ElfW(Phdr) *phdr,
115 ElfW(Half) phent,
116 ElfW(Addr) *user_entry)
117 {
118 const ElfW(Phdr) *ph;
119 struct link_map *l;
120 int lazy;
121 int list_only = 0;
122
123 if (*user_entry == (ElfW(Addr)) &_start)
124 {
125 /* Ho ho. We are not the program interpreter! We are the program
126 itself! This means someone ran ld.so as a command. Well, that
127 might be convenient to do sometimes. We support it by
128 interpreting the args like this:
129
130 ld.so PROGRAM ARGS...
131
132 The first argument is the name of a file containing an ELF
133 executable we will load and run with the following arguments.
134 To simplify life here, PROGRAM is searched for using the
135 normal rules for shared objects, rather than $PATH or anything
136 like that. We just load it and use its entry point; we don't
137 pay attention to its PT_INTERP command (we are the interpreter
138 ourselves). This is an easy way to test a new ld.so before
139 installing it. */
140 if (_dl_argc < 2)
141 _dl_sysdep_fatal ("\
142 Usage: ld.so [--list] EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
143 You have invoked `ld.so', the helper program for shared library executables.\n\
144 This program usually lives in the file `/lib/ld.so', and special directives\n\
145 in executable files using ELF shared libraries tell the system's program\n\
146 loader to load the helper program from this file. This helper program loads\n\
147 the shared libraries needed by the program executable, prepares the program\n\
148 to run, and runs it. You may invoke this helper program directly from the\n\
149 command line to load and run an ELF executable file; this is like executing\n\
150 that file itself, but always uses this helper program from the file you\n\
151 specified, instead of the helper program file specified in the executable\n\
152 file you run. This is mostly of use for maintainers to test new versions\n\
153 of this helper program; chances are you did not intend to run this program.\n",
154 NULL);
155
156 /* Note the place where the dynamic linker actually came from. */
157 _dl_rtld_map.l_name = _dl_argv[0];
158
159 if (! strcmp (_dl_argv[1], "--list"))
160 {
161 list_only = 1;
162
163 ++_dl_skip_args;
164 --_dl_argc;
165 ++_dl_argv;
166 }
167
168 ++_dl_skip_args;
169 --_dl_argc;
170 ++_dl_argv;
171
172 l = _dl_map_object (NULL, _dl_argv[0], lt_library);
173 phdr = l->l_phdr;
174 phent = l->l_phnum;
175 l->l_name = (char *) "";
176 *user_entry = l->l_entry;
177 }
178 else
179 {
180 /* Create a link_map for the executable itself.
181 This will be what dlopen on "" returns. */
182 l = _dl_new_object ((char *) "", "", lt_library);
183 l->l_phdr = phdr;
184 l->l_phnum = phent;
185 l->l_entry = *user_entry;
186 }
187
188 if (l != _dl_loaded)
189 {
190 /* GDB assumes that the first element on the chain is the
191 link_map for the executable itself, and always skips it.
192 Make sure the first one is indeed that one. */
193 l->l_prev->l_next = l->l_next;
194 if (l->l_next)
195 l->l_next->l_prev = l->l_prev;
196 l->l_prev = NULL;
197 l->l_next = _dl_loaded;
198 _dl_loaded->l_prev = l;
199 _dl_loaded = l;
200 }
201
202 /* Scan the program header table for the dynamic section. */
203 for (ph = phdr; ph < &phdr[phent]; ++ph)
204 switch (ph->p_type)
205 {
206 case PT_DYNAMIC:
207 /* This tells us where to find the dynamic section,
208 which tells us everything we need to do. */
209 l->l_ld = (void *) l->l_addr + ph->p_vaddr;
210 break;
211 case PT_INTERP:
212 /* This "interpreter segment" was used by the program loader to
213 find the program interpreter, which is this program itself, the
214 dynamic linker. We note what name finds us, so that a future
215 dlopen call or DT_NEEDED entry, for something that wants to link
216 against the dynamic linker as a shared library, will know that
217 the shared object is already loaded. */
218 _dl_rtld_map.l_libname = (const char *) l->l_addr + ph->p_vaddr;
219 break;
220 }
221 if (! _dl_rtld_map.l_libname && _dl_rtld_map.l_name)
222 /* We were invoked directly, so the program might not have a PT_INTERP. */
223 _dl_rtld_map.l_libname = _dl_rtld_map.l_name;
224 else
225 assert (_dl_rtld_map.l_libname); /* How else did we get here? */
226
227 /* Extract the contents of the dynamic section for easy access. */
228 elf_get_dynamic_info (l->l_ld, l->l_info);
229 if (l->l_info[DT_HASH])
230 /* Set up our cache of pointers into the hash table. */
231 _dl_setup_hash (l);
232
233 /* Put the link_map for ourselves on the chain so it can be found by
234 name. */
235 if (! _dl_rtld_map.l_name)
236 /* If not invoked directly, the dynamic linker shared object file was
237 found by the PT_INTERP name. */
238 _dl_rtld_map.l_name = (char *) _dl_rtld_map.l_libname;
239 _dl_rtld_map.l_type = lt_library;
240 while (l->l_next)
241 l = l->l_next;
242 l->l_next = &_dl_rtld_map;
243 _dl_rtld_map.l_prev = l;
244
245 /* Load all the libraries specified by DT_NEEDED entries. */
246 _dl_map_object_deps (l);
247
248 /* We are done mapping things, so close the zero-fill descriptor. */
249 __close (_dl_zerofd);
250 _dl_zerofd = -1;
251
252 /* Remove _dl_rtld_map from the chain. */
253 _dl_rtld_map.l_prev->l_next = _dl_rtld_map.l_next;
254 if (_dl_rtld_map.l_next)
255 _dl_rtld_map.l_next->l_prev = _dl_rtld_map.l_prev;
256
257 if (_dl_rtld_map.l_opencount)
258 {
259 /* Some DT_NEEDED entry referred to the interpreter object itself, so
260 put it back in the list of visible objects. We insert it into the
261 chain in symbol search order because gdb uses the chain's order as
262 its symbol search order. */
263 unsigned int i = 1;
264 while (l->l_searchlist[i] != &_dl_rtld_map)
265 ++i;
266 _dl_rtld_map.l_prev = l->l_searchlist[i - 1];
267 _dl_rtld_map.l_next = (i + 1 < l->l_nsearchlist ?
268 l->l_searchlist[i + 1] : NULL);
269 assert (_dl_rtld_map.l_prev->l_next == _dl_rtld_map.l_next);
270 _dl_rtld_map.l_prev->l_next = &_dl_rtld_map;
271 if (_dl_rtld_map.l_next)
272 {
273 assert (_dl_rtld_map.l_next->l_prev == _dl_rtld_map.l_prev);
274 _dl_rtld_map.l_next->l_prev = &_dl_rtld_map;
275 }
276 }
277
278 if (list_only)
279 {
280 /* We were run just to list the shared libraries. It is
281 important that we do this before real relocation, because the
282 functions we call below for output may no longer work properly
283 after relocation. */
284
285 int i;
286
287 if (! _dl_loaded->l_info[DT_NEEDED])
288 _dl_sysdep_message ("\t", "statically linked\n", NULL);
289 else
290 for (l = _dl_loaded->l_next; l; l = l->l_next)
291 {
292 char buf[20], *bp;
293 buf[sizeof buf - 1] = '\0';
294 bp = _itoa (l->l_addr, &buf[sizeof buf - 1], 16, 0);
295 while (&buf[sizeof buf - 1] - bp < sizeof l->l_addr * 2)
296 *--bp = '0';
297 _dl_sysdep_message ("\t", l->l_libname, " => ", l->l_name,
298 " (0x", bp, ")\n", NULL);
299 }
300
301 for (i = 1; i < _dl_argc; ++i)
302 {
303 const ElfW(Sym) *ref = NULL;
304 ElfW(Addr) loadbase = _dl_lookup_symbol (_dl_argv[i], &ref,
305 &_dl_default_scope[2],
306 "argument", 0, 0);
307 char buf[20], *bp;
308 buf[sizeof buf - 1] = '\0';
309 bp = _itoa (ref->st_value, &buf[sizeof buf - 1], 16, 0);
310 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
311 *--bp = '0';
312 _dl_sysdep_message (_dl_argv[i], " found at 0x", bp, NULL);
313 buf[sizeof buf - 1] = '\0';
314 bp = _itoa (loadbase, &buf[sizeof buf - 1], 16, 0);
315 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
316 *--bp = '0';
317 _dl_sysdep_message (" in object at 0x", bp, "\n", NULL);
318 }
319
320 _exit (0);
321 }
322
323 lazy = !_dl_secure && *(getenv ("LD_BIND_NOW") ?: "") == '\0';
324
325 {
326 /* Now we have all the objects loaded. Relocate them all except for
327 the dynamic linker itself. We do this in reverse order so that copy
328 relocs of earlier objects overwrite the data written by later
329 objects. We do not re-relocate the dynamic linker itself in this
330 loop because that could result in the GOT entries for functions we
331 call being changed, and that would break us. It is safe to relocate
332 the dynamic linker out of order because it has no copy relocs (we
333 know that because it is self-contained). */
334
335 l = _dl_loaded;
336 while (l->l_next)
337 l = l->l_next;
338 do
339 {
340 if (l != &_dl_rtld_map)
341 {
342 _dl_relocate_object (l, _dl_object_relocation_scope (l), lazy);
343 *_dl_global_scope_end = NULL;
344 }
345 l = l->l_prev;
346 } while (l);
347
348 /* Do any necessary cleanups for the startup OS interface code.
349 We do these now so that no calls are made after rtld re-relocation
350 which might be resolved to different functions than we expect.
351 We cannot do this before relocating the other objects because
352 _dl_relocate_object might need to call `mprotect' for DT_TEXTREL. */
353 _dl_sysdep_start_cleanup ();
354
355 if (_dl_rtld_map.l_opencount > 0)
356 /* There was an explicit ref to the dynamic linker as a shared lib.
357 Re-relocate ourselves with user-controlled symbol definitions. */
358 _dl_relocate_object (&_dl_rtld_map, &_dl_default_scope[2], 0);
359 }
360
361 {
362 /* Initialize _r_debug. */
363 struct r_debug *r = _dl_debug_initialize (_dl_rtld_map.l_addr);
364
365 l = _dl_loaded;
366 if (l->l_info[DT_DEBUG])
367 /* There is a DT_DEBUG entry in the dynamic section. Fill it in
368 with the run-time address of the r_debug structure */
369 l->l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
370
371 /* Notify the debugger that all objects are now mapped in. */
372 r->r_state = RT_ADD;
373 _dl_debug_state ();
374 }
375
376 if (_dl_rtld_map.l_info[DT_INIT])
377 {
378 /* Call the initializer for the compatibility version of the
379 dynamic linker. There is no additional initialization
380 required for the ABI-compliant dynamic linker. */
381
382 (*(void (*) (void)) (_dl_rtld_map.l_addr +
383 _dl_rtld_map.l_info[DT_INIT]->d_un.d_ptr)) ();
384
385 /* Clear the field so a future dlopen won't run it again. */
386 _dl_rtld_map.l_info[DT_INIT] = NULL;
387 }
388
389 /* Once we return, _dl_sysdep_start will invoke
390 the DT_INIT functions and then *USER_ENTRY. */
391 }
This page took 0.065548 seconds and 6 git commands to generate.