]> sourceware.org Git - glibc.git/blob - elf/rtld.c
(rtld_command): Variable removed. (_dl_skip_args): New variable. (dl_main): Increment...
[glibc.git] / elf / rtld.c
1 /* Run time dynamic linker.
2 Copyright (C) 1995 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
14
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
19
20 #include <link.h>
21 #include "dynamic-link.h"
22 #include <stddef.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25
26
27 #ifdef RTLD_START
28 RTLD_START
29 #else
30 #error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
31 #endif
32
33 /* System-specific function to do initial startup for the dynamic linker.
34 After this, file access calls and getenv must work. This is responsible
35 for setting _dl_secure if we need to be secure (e.g. setuid),
36 and for setting _dl_argc and _dl_argv, and then calling _dl_main. */
37 extern Elf32_Addr _dl_sysdep_start (void **start_argptr,
38 void (*dl_main) (const Elf32_Phdr *phdr,
39 Elf32_Word phent,
40 Elf32_Addr *user_entry));
41
42 int _dl_secure;
43 int _dl_argc;
44 char **_dl_argv;
45
46 struct r_debug dl_r_debug;
47
48 static void dl_main (const Elf32_Phdr *phdr,
49 Elf32_Word phent,
50 Elf32_Addr *user_entry);
51
52 Elf32_Addr
53 _dl_start (void *arg)
54 {
55 struct link_map rtld_map;
56
57 /* Figure out the run-time load address of the dynamic linker itself. */
58 rtld_map.l_addr = elf_machine_load_address ();
59
60 /* Read our own dynamic section and fill in the info array.
61 Conveniently, the first element of the GOT contains the
62 offset of _DYNAMIC relative to the run-time load address. */
63 rtld_map.l_ld = (void *) rtld_map.l_addr + *elf_machine_got ();
64 elf_get_dynamic_info (rtld_map.l_ld, rtld_map.l_info);
65
66 #ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
67 ELF_MACHINE_BEFORE_RTLD_RELOC (rtld_map.l_info);
68 #endif
69
70 /* Relocate ourselves so we can do normal function calls and
71 data access using the global offset table. */
72
73 /* We must initialize `l_type' to make sure it is not `lt_interpreter'.
74 That is the type to describe us, but not during bootstrapping--it
75 indicates to elf_machine_rel{,a} that we were already relocated during
76 bootstrapping, so it must anti-perform each bootstrapping relocation
77 before applying the final relocation when ld.so is linked in as
78 normal a shared library. */
79 rtld_map.l_type = lt_library;
80 ELF_DYNAMIC_RELOCATE (&rtld_map, 0, NULL);
81
82
83 /* Now life is sane; we can call functions and access global data.
84 Set up to use the operating system facilities, and find out from
85 the operating system's program loader where to find the program
86 header table in core. */
87
88 dl_r_debug.r_ldbase = rtld_map.l_addr; /* Record our load address. */
89
90 /* Call the OS-dependent function to set up life so we can do things like
91 file access. It will call `dl_main' (below) to do all the real work
92 of the dynamic linker, and then unwind our frame and run the user
93 entry point on the same stack we entered on. */
94 return _dl_sysdep_start (&arg, &dl_main);
95 }
96
97
98 /* Now life is peachy; we can do all normal operations.
99 On to the real work. */
100
101 void _start (void);
102
103 unsigned int _dl_skip_args; /* Nonzero if we were run directly. */
104
105 static void
106 dl_main (const Elf32_Phdr *phdr,
107 Elf32_Word phent,
108 Elf32_Addr *user_entry)
109 {
110 void doit (void)
111 {
112 const Elf32_Phdr *ph;
113 struct link_map *l;
114 const char *interpreter_name;
115 int lazy;
116
117 if (*user_entry == (Elf32_Addr) &_start)
118 {
119 /* Ho ho. We are not the program interpreter! We are the program
120 itself! This means someone ran ld.so as a command. Well, that
121 might be convenient to do sometimes. We support it by
122 interpreting the args like this:
123
124 ld.so PROGRAM ARGS...
125
126 The first argument is the name of a file containing an ELF
127 executable we will load and run with the following arguments.
128 To simplify life here, PROGRAM is searched for using the
129 normal rules for shared objects, rather than $PATH or anything
130 like that. We just load it and use its entry point; we don't
131 pay attention to its PT_INTERP command (we are the interpreter
132 ourselves). This is an easy way to test a new ld.so before
133 installing it. */
134 if (_dl_argc < 2)
135 _dl_sysdep_fatal ("\
136 Usage: ld.so EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
137 You have invoked `ld.so', the helper program for shared library executables.\n\
138 This program usually lives in the file `/lib/ld.so', and special directives\n\
139 in executable files using ELF shared libraries tell the system's program\n\
140 loader to load the helper program from this file. This helper program loads\n\
141 the shared libraries needed by the program executable, prepares the program\n\
142 to run, and runs it. You may invoke this helper program directly from the\n\
143 command line to load and run an ELF executable file; this is like executing\n\
144 that file itself, but always uses this helper program from the file you\n\
145 specified, instead of the helper program file specified in the executable\n\
146 file you run. This is mostly of use for maintainers to test new versions\n\
147 of this helper program; chances are you did not intend to run this program.\n",
148 NULL);
149
150 ++_dl_skip_args;
151 interpreter_name = _dl_argv[0];
152 --_dl_argc;
153 ++_dl_argv;
154 l = _dl_map_object (NULL, _dl_argv[0], user_entry);
155 phdr = l->l_phdr;
156 phent = l->l_phnum;
157 l->l_type = lt_executable;
158 l->l_libname = (char *) "";
159 }
160 else
161 {
162 /* Create a link_map for the executable itself.
163 This will be what dlopen on "" returns. */
164 l = _dl_new_object ((char *) "", "", lt_executable);
165 l->l_phdr = phdr;
166 l->l_phnum = phent;
167 interpreter_name = 0;
168 }
169
170 if (l != _dl_loaded)
171 {
172 /* GDB assumes that the first element on the chain is the
173 link_map for the executable itself, and always skips it.
174 Make sure the first one is indeed that one. */
175 l->l_prev->l_next = l->l_next;
176 if (l->l_next)
177 l->l_next->l_prev = l->l_prev;
178 l->l_prev = NULL;
179 l->l_next = _dl_loaded;
180 _dl_loaded->l_prev = l;
181 _dl_loaded = l;
182 }
183
184 /* Scan the program header table for the dynamic section. */
185 for (ph = phdr; ph < &phdr[phent]; ++ph)
186 switch (ph->p_type)
187 {
188 case PT_DYNAMIC:
189 /* This tells us where to find the dynamic section,
190 which tells us everything we need to do. */
191 l->l_ld = (void *) l->l_addr + ph->p_vaddr;
192 break;
193 case PT_INTERP:
194 /* This "interpreter segment" was used by the program loader to
195 find the program interpreter, which is this program itself, the
196 dynamic linker. We note what name finds us, so that a future
197 dlopen call or DT_NEEDED entry, for something that wants to link
198 against the dynamic linker as a shared library, will know that
199 the shared object is already loaded. */
200 interpreter_name = (void *) l->l_addr + ph->p_vaddr;
201 break;
202 }
203 assert (interpreter_name); /* How else did we get here? */
204
205 /* Extract the contents of the dynamic section for easy access. */
206 elf_get_dynamic_info (l->l_ld, l->l_info);
207 /* Set up our cache of pointers into the hash table. */
208 _dl_setup_hash (l);
209
210 if (l->l_info[DT_DEBUG])
211 /* There is a DT_DEBUG entry in the dynamic section. Fill it in
212 with the run-time address of the r_debug structure, which we
213 will set up later to communicate with the debugger. */
214 l->l_info[DT_DEBUG]->d_un.d_ptr = (Elf32_Addr) &dl_r_debug;
215
216 l = _dl_new_object ((char *) interpreter_name, interpreter_name,
217 lt_interpreter);
218
219 /* Now process all the DT_NEEDED entries and map in the objects.
220 Each new link_map will go on the end of the chain, so we will
221 come across it later in the loop to map in its dependencies. */
222 for (l = _dl_loaded; l; l = l->l_next)
223 {
224 if (l->l_info[DT_NEEDED])
225 {
226 const char *strtab
227 = (void *) l->l_addr + l->l_info[DT_STRTAB]->d_un.d_ptr;
228 const Elf32_Dyn *d;
229 for (d = l->l_ld; d->d_tag != DT_NULL; ++d)
230 if (d->d_tag == DT_NEEDED)
231 _dl_map_object (l, strtab + d->d_un.d_val, NULL);
232 }
233 l->l_deps_loaded = 1;
234 }
235
236 l = _dl_loaded->l_next;
237 while (l->l_type != lt_interpreter)
238 l = l->l_next;
239 if (l->l_opencount == 0)
240 {
241 /* No DT_NEEDED entry referred to the interpreter object itself.
242 Remove it from the maps we will use for symbol resolution. */
243 l->l_prev->l_next = l->l_next;
244 if (l->l_next)
245 l->l_next->l_prev = l->l_prev;
246 }
247
248 lazy = !_dl_secure && *(getenv ("LD_BIND_NOW") ?: "") == '\0';
249
250 /* Now we have all the objects loaded. Relocate them all.
251 We do this in reverse order so that copy relocs of earlier
252 objects overwrite the data written by later objects. */
253 l = _dl_loaded;
254 while (l->l_next)
255 l = l->l_next;
256 do
257 {
258 _dl_relocate_object (l, lazy);
259 l = l->l_prev;
260 } while (l);
261
262 /* Tell the debugger where to find the map of loaded objects. */
263 dl_r_debug.r_version = 1 /* R_DEBUG_VERSION XXX */;
264 dl_r_debug.r_map = _dl_loaded;
265 dl_r_debug.r_brk = (Elf32_Addr) &_dl_r_debug_state;
266 }
267 const char *errstring;
268 const char *errobj;
269 int err;
270
271 err = _dl_catch_error (&errstring, &errobj, &doit);
272 if (errstring)
273 _dl_sysdep_fatal (_dl_argv[0] ?: "<program name unknown>",
274 ": error in loading shared libraries\n",
275 errobj ?: "", errobj ? ": " : "",
276 errstring, err ? ": " : "",
277 err ? strerror (err) : "", "\n", NULL);
278
279 /* Once we return, _dl_sysdep_start will invoke
280 the DT_INIT functions and then *USER_ENTRY. */
281 }
282
283 /* This function exists solely to have a breakpoint set on it by the
284 debugger. */
285 void
286 _dl_r_debug_state (void)
287 {
288 }
289 \f
290 #ifndef NDEBUG
291
292 /* Define (weakly) our own assert failure function which doesn't use stdio.
293 If we are linked into the user program (-ldl), the normal __assert_fail
294 defn can override this one. */
295
296 #include "../stdio/_itoa.h"
297
298 void
299 __assert_fail (const char *assertion,
300 const char *file, unsigned int line, const char *function)
301 {
302 char buf[64];
303 buf[sizeof buf - 1] = '\0';
304 _dl_sysdep_fatal ("BUG IN DYNAMIC LINKER ld.so: ",
305 file, ": ", _itoa (line, buf + sizeof buf - 1, 10, 0),
306 ": ", function ?: "", function ? ": " : "",
307 "Assertion `", assertion, "' failed!\n",
308 NULL);
309
310 }
311 weak_symbol (__assert_fail)
312
313 void
314 __assert_perror_fail (int errnum,
315 const char *file, unsigned int line,
316 const char *function)
317 {
318 char buf[64];
319 buf[sizeof buf - 1] = '\0';
320 _dl_sysdep_fatal ("BUG IN DYNAMIC LINKER ld.so: ",
321 file, ": ", _itoa (line, buf + sizeof buf - 1, 10, 0),
322 ": ", function ?: "", function ? ": " : "",
323 "Unexpected error: ", strerror (errnum), "\n", NULL);
324
325 }
326 weak_symbol (__assert_perror_fail)
327
328 #endif
This page took 0.057328 seconds and 6 git commands to generate.