]> sourceware.org Git - glibc.git/blob - elf/rtld.c
Tue Jun 11 19:13:04 1996 Richard Henderson <rth@tamu.edu>
[glibc.git] / elf / rtld.c
1 /* Run time dynamic linker.
2 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
14
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
19
20 #include <link.h>
21 #include "dynamic-link.h"
22 #include <stddef.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include "../stdio-common/_itoa.h"
26
27
28 #ifdef RTLD_START
29 RTLD_START
30 #else
31 #error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
32 #endif
33
34 /* System-specific function to do initial startup for the dynamic linker.
35 After this, file access calls and getenv must work. This is responsible
36 for setting _dl_secure if we need to be secure (e.g. setuid),
37 and for setting _dl_argc and _dl_argv, and then calling _dl_main. */
38 extern ElfW(Addr) _dl_sysdep_start (void **start_argptr,
39 void (*dl_main) (const ElfW(Phdr) *phdr,
40 ElfW(Half) phent,
41 ElfW(Addr) *user_entry));
42 extern void _dl_sysdep_start_cleanup (void);
43
44 int _dl_secure;
45 int _dl_argc;
46 char **_dl_argv;
47 const char *_dl_rpath;
48
49 struct r_debug _dl_r_debug;
50
51 static void dl_main (const ElfW(Phdr) *phdr,
52 ElfW(Half) phent,
53 ElfW(Addr) *user_entry);
54
55 struct link_map _dl_rtld_map;
56
57 ElfW(Addr)
58 _dl_start (void *arg)
59 {
60 struct link_map bootstrap_map;
61
62 /* Figure out the run-time load address of the dynamic linker itself. */
63 bootstrap_map.l_addr = elf_machine_load_address ();
64
65 /* Read our own dynamic section and fill in the info array.
66 Conveniently, the first element of the GOT contains the
67 offset of _DYNAMIC relative to the run-time load address. */
68 bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + *elf_machine_got ();
69 elf_get_dynamic_info (bootstrap_map.l_ld, bootstrap_map.l_info);
70
71 #ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
72 ELF_MACHINE_BEFORE_RTLD_RELOC (bootstrap_map.l_info);
73 #endif
74
75 /* Relocate ourselves so we can do normal function calls and
76 data access using the global offset table. */
77
78 ELF_DYNAMIC_RELOCATE (&bootstrap_map, 0, NULL);
79
80
81 /* Now life is sane; we can call functions and access global data.
82 Set up to use the operating system facilities, and find out from
83 the operating system's program loader where to find the program
84 header table in core. */
85
86
87 /* Transfer data about ourselves to the permanent link_map structure. */
88 _dl_rtld_map.l_addr = bootstrap_map.l_addr;
89 _dl_rtld_map.l_ld = bootstrap_map.l_ld;
90 memcpy (_dl_rtld_map.l_info, bootstrap_map.l_info,
91 sizeof _dl_rtld_map.l_info);
92 _dl_setup_hash (&_dl_rtld_map);
93
94 /* Cache the DT_RPATH stored in ld.so itself; this will be
95 the default search path. */
96 _dl_rpath = (void *) (_dl_rtld_map.l_addr +
97 _dl_rtld_map.l_info[DT_STRTAB]->d_un.d_ptr +
98 _dl_rtld_map.l_info[DT_RPATH]->d_un.d_val);
99
100 /* Call the OS-dependent function to set up life so we can do things like
101 file access. It will call `dl_main' (below) to do all the real work
102 of the dynamic linker, and then unwind our frame and run the user
103 entry point on the same stack we entered on. */
104 return _dl_sysdep_start (arg, &dl_main);
105 }
106
107
108 /* Now life is peachy; we can do all normal operations.
109 On to the real work. */
110
111 void _start (void);
112
113 unsigned int _dl_skip_args; /* Nonzero if we were run directly. */
114
115 static void
116 dl_main (const ElfW(Phdr) *phdr,
117 ElfW(Half) phent,
118 ElfW(Addr) *user_entry)
119 {
120 const ElfW(Phdr) *ph;
121 struct link_map *l;
122 const char *interpreter_name;
123 int lazy;
124 int list_only = 0;
125
126 if (*user_entry == (ElfW(Addr)) &_start)
127 {
128 /* Ho ho. We are not the program interpreter! We are the program
129 itself! This means someone ran ld.so as a command. Well, that
130 might be convenient to do sometimes. We support it by
131 interpreting the args like this:
132
133 ld.so PROGRAM ARGS...
134
135 The first argument is the name of a file containing an ELF
136 executable we will load and run with the following arguments.
137 To simplify life here, PROGRAM is searched for using the
138 normal rules for shared objects, rather than $PATH or anything
139 like that. We just load it and use its entry point; we don't
140 pay attention to its PT_INTERP command (we are the interpreter
141 ourselves). This is an easy way to test a new ld.so before
142 installing it. */
143 if (_dl_argc < 2)
144 _dl_sysdep_fatal ("\
145 Usage: ld.so [--list] EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
146 You have invoked `ld.so', the helper program for shared library executables.\n\
147 This program usually lives in the file `/lib/ld.so', and special directives\n\
148 in executable files using ELF shared libraries tell the system's program\n\
149 loader to load the helper program from this file. This helper program loads\n\
150 the shared libraries needed by the program executable, prepares the program\n\
151 to run, and runs it. You may invoke this helper program directly from the\n\
152 command line to load and run an ELF executable file; this is like executing\n\
153 that file itself, but always uses this helper program from the file you\n\
154 specified, instead of the helper program file specified in the executable\n\
155 file you run. This is mostly of use for maintainers to test new versions\n\
156 of this helper program; chances are you did not intend to run this program.\n",
157 NULL);
158
159 interpreter_name = _dl_argv[0];
160
161 if (! strcmp (_dl_argv[1], "--list"))
162 {
163 list_only = 1;
164
165 ++_dl_skip_args;
166 --_dl_argc;
167 ++_dl_argv;
168 }
169
170 ++_dl_skip_args;
171 --_dl_argc;
172 ++_dl_argv;
173
174 l = _dl_map_object (NULL, _dl_argv[0], lt_library);
175 phdr = l->l_phdr;
176 phent = l->l_phnum;
177 l->l_name = (char *) "";
178 *user_entry = l->l_entry;
179 }
180 else
181 {
182 /* Create a link_map for the executable itself.
183 This will be what dlopen on "" returns. */
184 l = _dl_new_object ((char *) "", "", lt_library);
185 l->l_phdr = phdr;
186 l->l_phnum = phent;
187 interpreter_name = 0;
188 l->l_entry = *user_entry;
189 }
190
191 if (l != _dl_loaded)
192 {
193 /* GDB assumes that the first element on the chain is the
194 link_map for the executable itself, and always skips it.
195 Make sure the first one is indeed that one. */
196 l->l_prev->l_next = l->l_next;
197 if (l->l_next)
198 l->l_next->l_prev = l->l_prev;
199 l->l_prev = NULL;
200 l->l_next = _dl_loaded;
201 _dl_loaded->l_prev = l;
202 _dl_loaded = l;
203 }
204
205 /* Scan the program header table for the dynamic section. */
206 for (ph = phdr; ph < &phdr[phent]; ++ph)
207 switch (ph->p_type)
208 {
209 case PT_DYNAMIC:
210 /* This tells us where to find the dynamic section,
211 which tells us everything we need to do. */
212 l->l_ld = (void *) l->l_addr + ph->p_vaddr;
213 break;
214 case PT_INTERP:
215 /* This "interpreter segment" was used by the program loader to
216 find the program interpreter, which is this program itself, the
217 dynamic linker. We note what name finds us, so that a future
218 dlopen call or DT_NEEDED entry, for something that wants to link
219 against the dynamic linker as a shared library, will know that
220 the shared object is already loaded. */
221 interpreter_name = (void *) l->l_addr + ph->p_vaddr;
222 break;
223 }
224 assert (interpreter_name); /* How else did we get here? */
225
226 /* Extract the contents of the dynamic section for easy access. */
227 elf_get_dynamic_info (l->l_ld, l->l_info);
228 if (l->l_info[DT_HASH])
229 /* Set up our cache of pointers into the hash table. */
230 _dl_setup_hash (l);
231
232 if (l->l_info[DT_DEBUG])
233 /* There is a DT_DEBUG entry in the dynamic section. Fill it in
234 with the run-time address of the r_debug structure, which we
235 will set up later to communicate with the debugger. */
236 l->l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) &_dl_r_debug;
237
238 /* Put the link_map for ourselves on the chain so it can be found by
239 name. */
240 _dl_rtld_map.l_name = (char *) _dl_rtld_map.l_libname = interpreter_name;
241 _dl_rtld_map.l_type = lt_library;
242 while (l->l_next)
243 l = l->l_next;
244 l->l_next = &_dl_rtld_map;
245 _dl_rtld_map.l_prev = l;
246
247 /* Load all the libraries specified by DT_NEEDED entries. */
248 _dl_map_object_deps (l);
249
250 /* XXX if kept, move it so l_next list is in dep order because
251 it will determine gdb's search order.
252 Perhaps do this always, so later dlopen by name finds it?
253 XXX But then gdb always considers it present. */
254 if (_dl_rtld_map.l_opencount == 0)
255 {
256 /* No DT_NEEDED entry referred to the interpreter object itself,
257 so remove it from the list of visible objects. */
258 _dl_rtld_map.l_prev->l_next = _dl_rtld_map.l_next;
259 if (_dl_rtld_map.l_next)
260 _dl_rtld_map.l_next->l_prev = _dl_rtld_map.l_prev;
261 }
262
263 if (list_only)
264 {
265 /* We were run just to list the shared libraries. It is
266 important that we do this before real relocation, because the
267 functions we call below for output may no longer work properly
268 after relocation. */
269
270 int i;
271
272 if (! _dl_loaded->l_info[DT_NEEDED])
273 _dl_sysdep_message ("\t", "statically linked\n", NULL);
274 else
275 for (l = _dl_loaded->l_next; l; l = l->l_next)
276 {
277 char buf[20], *bp;
278 buf[sizeof buf - 1] = '\0';
279 bp = _itoa (l->l_addr, &buf[sizeof buf - 1], 16, 0);
280 while (&buf[sizeof buf - 1] - bp < sizeof l->l_addr * 2)
281 *--bp = '0';
282 _dl_sysdep_message ("\t", l->l_libname, " => ", l->l_name,
283 " (0x", bp, ")\n", NULL);
284 }
285
286 for (i = 1; i < _dl_argc; ++i)
287 {
288 const ElfW(Sym) *ref = NULL;
289 ElfW(Addr) loadbase = _dl_lookup_symbol (_dl_argv[i], &ref,
290 &_dl_default_scope[2],
291 "argument", 0, 0);
292 char buf[20], *bp;
293 buf[sizeof buf - 1] = '\0';
294 bp = _itoa (ref->st_value, &buf[sizeof buf - 1], 16, 0);
295 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
296 *--bp = '0';
297 _dl_sysdep_message (_dl_argv[i], " found at 0x", bp, NULL);
298 buf[sizeof buf - 1] = '\0';
299 bp = _itoa (loadbase, &buf[sizeof buf - 1], 16, 0);
300 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
301 *--bp = '0';
302 _dl_sysdep_message (" in object at 0x", bp, "\n", NULL);
303 }
304
305 _exit (0);
306 }
307
308 lazy = !_dl_secure && *(getenv ("LD_BIND_NOW") ?: "") == '\0';
309
310 {
311 /* Now we have all the objects loaded. Relocate them all except for
312 the dynamic linker itself. We do this in reverse order so that copy
313 relocs of earlier objects overwrite the data written by later
314 objects. We do not re-relocate the dynamic linker itself in this
315 loop because that could result in the GOT entries for functions we
316 call being changed, and that would break us. It is safe to relocate
317 the dynamic linker out of order because it has no copy relocs (we
318 know that because it is self-contained). */
319
320 l = _dl_loaded;
321 while (l->l_next)
322 l = l->l_next;
323 do
324 {
325 if (l != &_dl_rtld_map)
326 {
327 _dl_relocate_object (l, _dl_object_relocation_scope (l), lazy);
328 *_dl_global_scope_end = NULL;
329 }
330 l = l->l_prev;
331 } while (l);
332
333 /* Do any necessary cleanups for the startup OS interface code.
334 We do these now so that no calls are made after rtld re-relocation
335 which might be resolved to different functions than we expect.
336 We cannot do this before relocating the other objects because
337 _dl_relocate_object might need to call `mprotect' for DT_TEXTREL. */
338 _dl_sysdep_start_cleanup ();
339
340 if (_dl_rtld_map.l_opencount > 0)
341 /* There was an explicit ref to the dynamic linker as a shared lib.
342 Re-relocate ourselves with user-controlled symbol definitions. */
343 _dl_relocate_object (&_dl_rtld_map, &_dl_default_scope[2], 0);
344 }
345
346 /* Tell the debugger where to find the map of loaded objects. */
347 _dl_r_debug.r_version = 1 /* R_DEBUG_VERSION XXX */;
348 _dl_r_debug.r_ldbase = _dl_rtld_map.l_addr; /* Record our load address. */
349 _dl_r_debug.r_map = _dl_loaded;
350 _dl_r_debug.r_brk = (ElfW(Addr)) &_dl_r_debug_state;
351
352 if (_dl_rtld_map.l_info[DT_INIT])
353 {
354 /* Call the initializer for the compatibility version of the
355 dynamic linker. There is no additional initialization
356 required for the ABI-compliant dynamic linker. */
357
358 (*(void (*) (void)) (_dl_rtld_map.l_addr +
359 _dl_rtld_map.l_info[DT_INIT]->d_un.d_ptr)) ();
360
361 /* Clear the field so a future dlopen won't run it again. */
362 _dl_rtld_map.l_info[DT_INIT] = NULL;
363 }
364
365 /* Once we return, _dl_sysdep_start will invoke
366 the DT_INIT functions and then *USER_ENTRY. */
367 }
368
369 /* This function exists solely to have a breakpoint set on it by the
370 debugger. */
371 void
372 _dl_r_debug_state (void)
373 {
374 }
This page took 0.059174 seconds and 6 git commands to generate.