]> sourceware.org Git - glibc.git/blob - elf/rtld.c
Thu Jun 13 00:02:25 1996 Roland McGrath <roland@delasyd.gnu.ai.mit.edu>
[glibc.git] / elf / rtld.c
1 /* Run time dynamic linker.
2 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
14
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If
17 not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18 Cambridge, MA 02139, USA. */
19
20 #include <link.h>
21 #include "dynamic-link.h"
22 #include <stddef.h>
23 #include <stdlib.h>
24 #include <unistd.h>
25 #include "../stdio-common/_itoa.h"
26
27
28 #ifdef RTLD_START
29 RTLD_START
30 #else
31 #error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
32 #endif
33
34 /* System-specific function to do initial startup for the dynamic linker.
35 After this, file access calls and getenv must work. This is responsible
36 for setting _dl_secure if we need to be secure (e.g. setuid),
37 and for setting _dl_argc and _dl_argv, and then calling _dl_main. */
38 extern ElfW(Addr) _dl_sysdep_start (void **start_argptr,
39 void (*dl_main) (const ElfW(Phdr) *phdr,
40 ElfW(Half) phent,
41 ElfW(Addr) *user_entry));
42 extern void _dl_sysdep_start_cleanup (void);
43
44 int _dl_secure;
45 int _dl_argc;
46 char **_dl_argv;
47 const char *_dl_rpath;
48
49 static void dl_main (const ElfW(Phdr) *phdr,
50 ElfW(Half) phent,
51 ElfW(Addr) *user_entry);
52
53 struct link_map _dl_rtld_map;
54
55 ElfW(Addr)
56 _dl_start (void *arg)
57 {
58 struct link_map bootstrap_map;
59
60 /* Figure out the run-time load address of the dynamic linker itself. */
61 bootstrap_map.l_addr = elf_machine_load_address ();
62
63 /* Read our own dynamic section and fill in the info array.
64 Conveniently, the first element of the GOT contains the
65 offset of _DYNAMIC relative to the run-time load address. */
66 bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + *elf_machine_got ();
67 elf_get_dynamic_info (bootstrap_map.l_ld, bootstrap_map.l_info);
68
69 #ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
70 ELF_MACHINE_BEFORE_RTLD_RELOC (bootstrap_map.l_info);
71 #endif
72
73 /* Relocate ourselves so we can do normal function calls and
74 data access using the global offset table. */
75
76 ELF_DYNAMIC_RELOCATE (&bootstrap_map, 0, NULL);
77
78
79 /* Now life is sane; we can call functions and access global data.
80 Set up to use the operating system facilities, and find out from
81 the operating system's program loader where to find the program
82 header table in core. */
83
84
85 /* Transfer data about ourselves to the permanent link_map structure. */
86 _dl_rtld_map.l_addr = bootstrap_map.l_addr;
87 _dl_rtld_map.l_ld = bootstrap_map.l_ld;
88 memcpy (_dl_rtld_map.l_info, bootstrap_map.l_info,
89 sizeof _dl_rtld_map.l_info);
90 _dl_setup_hash (&_dl_rtld_map);
91
92 /* Cache the DT_RPATH stored in ld.so itself; this will be
93 the default search path. */
94 _dl_rpath = (void *) (_dl_rtld_map.l_addr +
95 _dl_rtld_map.l_info[DT_STRTAB]->d_un.d_ptr +
96 _dl_rtld_map.l_info[DT_RPATH]->d_un.d_val);
97
98 /* Call the OS-dependent function to set up life so we can do things like
99 file access. It will call `dl_main' (below) to do all the real work
100 of the dynamic linker, and then unwind our frame and run the user
101 entry point on the same stack we entered on. */
102 return _dl_sysdep_start (arg, &dl_main);
103 }
104
105
106 /* Now life is peachy; we can do all normal operations.
107 On to the real work. */
108
109 void _start (void);
110
111 unsigned int _dl_skip_args; /* Nonzero if we were run directly. */
112
113 static void
114 dl_main (const ElfW(Phdr) *phdr,
115 ElfW(Half) phent,
116 ElfW(Addr) *user_entry)
117 {
118 const ElfW(Phdr) *ph;
119 struct link_map *l;
120 const char *interpreter_name;
121 int lazy;
122 int list_only = 0;
123
124 if (*user_entry == (ElfW(Addr)) &_start)
125 {
126 /* Ho ho. We are not the program interpreter! We are the program
127 itself! This means someone ran ld.so as a command. Well, that
128 might be convenient to do sometimes. We support it by
129 interpreting the args like this:
130
131 ld.so PROGRAM ARGS...
132
133 The first argument is the name of a file containing an ELF
134 executable we will load and run with the following arguments.
135 To simplify life here, PROGRAM is searched for using the
136 normal rules for shared objects, rather than $PATH or anything
137 like that. We just load it and use its entry point; we don't
138 pay attention to its PT_INTERP command (we are the interpreter
139 ourselves). This is an easy way to test a new ld.so before
140 installing it. */
141 if (_dl_argc < 2)
142 _dl_sysdep_fatal ("\
143 Usage: ld.so [--list] EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
144 You have invoked `ld.so', the helper program for shared library executables.\n\
145 This program usually lives in the file `/lib/ld.so', and special directives\n\
146 in executable files using ELF shared libraries tell the system's program\n\
147 loader to load the helper program from this file. This helper program loads\n\
148 the shared libraries needed by the program executable, prepares the program\n\
149 to run, and runs it. You may invoke this helper program directly from the\n\
150 command line to load and run an ELF executable file; this is like executing\n\
151 that file itself, but always uses this helper program from the file you\n\
152 specified, instead of the helper program file specified in the executable\n\
153 file you run. This is mostly of use for maintainers to test new versions\n\
154 of this helper program; chances are you did not intend to run this program.\n",
155 NULL);
156
157 interpreter_name = _dl_argv[0];
158
159 if (! strcmp (_dl_argv[1], "--list"))
160 {
161 list_only = 1;
162
163 ++_dl_skip_args;
164 --_dl_argc;
165 ++_dl_argv;
166 }
167
168 ++_dl_skip_args;
169 --_dl_argc;
170 ++_dl_argv;
171
172 l = _dl_map_object (NULL, _dl_argv[0], lt_library);
173 phdr = l->l_phdr;
174 phent = l->l_phnum;
175 l->l_name = (char *) "";
176 *user_entry = l->l_entry;
177 }
178 else
179 {
180 /* Create a link_map for the executable itself.
181 This will be what dlopen on "" returns. */
182 l = _dl_new_object ((char *) "", "", lt_library);
183 l->l_phdr = phdr;
184 l->l_phnum = phent;
185 interpreter_name = 0;
186 l->l_entry = *user_entry;
187 }
188
189 if (l != _dl_loaded)
190 {
191 /* GDB assumes that the first element on the chain is the
192 link_map for the executable itself, and always skips it.
193 Make sure the first one is indeed that one. */
194 l->l_prev->l_next = l->l_next;
195 if (l->l_next)
196 l->l_next->l_prev = l->l_prev;
197 l->l_prev = NULL;
198 l->l_next = _dl_loaded;
199 _dl_loaded->l_prev = l;
200 _dl_loaded = l;
201 }
202
203 /* Scan the program header table for the dynamic section. */
204 for (ph = phdr; ph < &phdr[phent]; ++ph)
205 switch (ph->p_type)
206 {
207 case PT_DYNAMIC:
208 /* This tells us where to find the dynamic section,
209 which tells us everything we need to do. */
210 l->l_ld = (void *) l->l_addr + ph->p_vaddr;
211 break;
212 case PT_INTERP:
213 /* This "interpreter segment" was used by the program loader to
214 find the program interpreter, which is this program itself, the
215 dynamic linker. We note what name finds us, so that a future
216 dlopen call or DT_NEEDED entry, for something that wants to link
217 against the dynamic linker as a shared library, will know that
218 the shared object is already loaded. */
219 interpreter_name = (void *) l->l_addr + ph->p_vaddr;
220 break;
221 }
222 assert (interpreter_name); /* How else did we get here? */
223
224 /* Extract the contents of the dynamic section for easy access. */
225 elf_get_dynamic_info (l->l_ld, l->l_info);
226 if (l->l_info[DT_HASH])
227 /* Set up our cache of pointers into the hash table. */
228 _dl_setup_hash (l);
229
230 /* Put the link_map for ourselves on the chain so it can be found by
231 name. */
232 _dl_rtld_map.l_name = (char *) _dl_rtld_map.l_libname = interpreter_name;
233 _dl_rtld_map.l_type = lt_library;
234 while (l->l_next)
235 l = l->l_next;
236 l->l_next = &_dl_rtld_map;
237 _dl_rtld_map.l_prev = l;
238
239 /* Load all the libraries specified by DT_NEEDED entries. */
240 _dl_map_object_deps (l);
241
242 /* XXX if kept, move it so l_next list is in dep order because
243 it will determine gdb's search order.
244 Perhaps do this always, so later dlopen by name finds it?
245 XXX But then gdb always considers it present. */
246 if (_dl_rtld_map.l_opencount == 0)
247 {
248 /* No DT_NEEDED entry referred to the interpreter object itself,
249 so remove it from the list of visible objects. */
250 _dl_rtld_map.l_prev->l_next = _dl_rtld_map.l_next;
251 if (_dl_rtld_map.l_next)
252 _dl_rtld_map.l_next->l_prev = _dl_rtld_map.l_prev;
253 }
254
255 if (list_only)
256 {
257 /* We were run just to list the shared libraries. It is
258 important that we do this before real relocation, because the
259 functions we call below for output may no longer work properly
260 after relocation. */
261
262 int i;
263
264 if (! _dl_loaded->l_info[DT_NEEDED])
265 _dl_sysdep_message ("\t", "statically linked\n", NULL);
266 else
267 for (l = _dl_loaded->l_next; l; l = l->l_next)
268 {
269 char buf[20], *bp;
270 buf[sizeof buf - 1] = '\0';
271 bp = _itoa (l->l_addr, &buf[sizeof buf - 1], 16, 0);
272 while (&buf[sizeof buf - 1] - bp < sizeof l->l_addr * 2)
273 *--bp = '0';
274 _dl_sysdep_message ("\t", l->l_libname, " => ", l->l_name,
275 " (0x", bp, ")\n", NULL);
276 }
277
278 for (i = 1; i < _dl_argc; ++i)
279 {
280 const ElfW(Sym) *ref = NULL;
281 ElfW(Addr) loadbase = _dl_lookup_symbol (_dl_argv[i], &ref,
282 &_dl_default_scope[2],
283 "argument", 0, 0);
284 char buf[20], *bp;
285 buf[sizeof buf - 1] = '\0';
286 bp = _itoa (ref->st_value, &buf[sizeof buf - 1], 16, 0);
287 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
288 *--bp = '0';
289 _dl_sysdep_message (_dl_argv[i], " found at 0x", bp, NULL);
290 buf[sizeof buf - 1] = '\0';
291 bp = _itoa (loadbase, &buf[sizeof buf - 1], 16, 0);
292 while (&buf[sizeof buf - 1] - bp < sizeof loadbase * 2)
293 *--bp = '0';
294 _dl_sysdep_message (" in object at 0x", bp, "\n", NULL);
295 }
296
297 _exit (0);
298 }
299
300 lazy = !_dl_secure && *(getenv ("LD_BIND_NOW") ?: "") == '\0';
301
302 {
303 /* Now we have all the objects loaded. Relocate them all except for
304 the dynamic linker itself. We do this in reverse order so that copy
305 relocs of earlier objects overwrite the data written by later
306 objects. We do not re-relocate the dynamic linker itself in this
307 loop because that could result in the GOT entries for functions we
308 call being changed, and that would break us. It is safe to relocate
309 the dynamic linker out of order because it has no copy relocs (we
310 know that because it is self-contained). */
311
312 l = _dl_loaded;
313 while (l->l_next)
314 l = l->l_next;
315 do
316 {
317 if (l != &_dl_rtld_map)
318 {
319 _dl_relocate_object (l, _dl_object_relocation_scope (l), lazy);
320 *_dl_global_scope_end = NULL;
321 }
322 l = l->l_prev;
323 } while (l);
324
325 /* Do any necessary cleanups for the startup OS interface code.
326 We do these now so that no calls are made after rtld re-relocation
327 which might be resolved to different functions than we expect.
328 We cannot do this before relocating the other objects because
329 _dl_relocate_object might need to call `mprotect' for DT_TEXTREL. */
330 _dl_sysdep_start_cleanup ();
331
332 if (_dl_rtld_map.l_opencount > 0)
333 /* There was an explicit ref to the dynamic linker as a shared lib.
334 Re-relocate ourselves with user-controlled symbol definitions. */
335 _dl_relocate_object (&_dl_rtld_map, &_dl_default_scope[2], 0);
336 }
337
338 {
339 /* Initialize _r_debug. */
340 struct r_debug *r = _dl_debug_initialize (_dl_rtld_map.l_addr);
341
342 l = _dl_loaded;
343 if (l->l_info[DT_DEBUG])
344 /* There is a DT_DEBUG entry in the dynamic section. Fill it in
345 with the run-time address of the r_debug structure */
346 l->l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
347
348 /* Notify the debugger that all objects are now mapped in. */
349 r->r_state = RT_ADD;
350 _dl_debug_state ();
351 }
352
353 if (_dl_rtld_map.l_info[DT_INIT])
354 {
355 /* Call the initializer for the compatibility version of the
356 dynamic linker. There is no additional initialization
357 required for the ABI-compliant dynamic linker. */
358
359 (*(void (*) (void)) (_dl_rtld_map.l_addr +
360 _dl_rtld_map.l_info[DT_INIT]->d_un.d_ptr)) ();
361
362 /* Clear the field so a future dlopen won't run it again. */
363 _dl_rtld_map.l_info[DT_INIT] = NULL;
364 }
365
366 /* Once we return, _dl_sysdep_start will invoke
367 the DT_INIT functions and then *USER_ENTRY. */
368 }
This page took 0.058176 seconds and 6 git commands to generate.