]>
Commit | Line | Data |
---|---|---|
1 | /* Double-precision x^y function. | |
2 | Copyright (C) 2018-2024 Free Software Foundation, Inc. | |
3 | This file is part of the GNU C Library. | |
4 | ||
5 | The GNU C Library is free software; you can redistribute it and/or | |
6 | modify it under the terms of the GNU Lesser General Public | |
7 | License as published by the Free Software Foundation; either | |
8 | version 2.1 of the License, or (at your option) any later version. | |
9 | ||
10 | The GNU C Library is distributed in the hope that it will be useful, | |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
13 | Lesser General Public License for more details. | |
14 | ||
15 | You should have received a copy of the GNU Lesser General Public | |
16 | License along with the GNU C Library; if not, see | |
17 | <https://www.gnu.org/licenses/>. */ | |
18 | ||
19 | #include <math.h> | |
20 | #include <stdint.h> | |
21 | #include <math-barriers.h> | |
22 | #include <math-narrow-eval.h> | |
23 | #include <math-svid-compat.h> | |
24 | #include <libm-alias-finite.h> | |
25 | #include <libm-alias-double.h> | |
26 | #include "math_config.h" | |
27 | ||
28 | /* | |
29 | Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53) | |
30 | relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma) | |
31 | ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma) | |
32 | */ | |
33 | ||
34 | #define T __pow_log_data.tab | |
35 | #define A __pow_log_data.poly | |
36 | #define Ln2hi __pow_log_data.ln2hi | |
37 | #define Ln2lo __pow_log_data.ln2lo | |
38 | #define N (1 << POW_LOG_TABLE_BITS) | |
39 | #define OFF 0x3fe6955500000000 | |
40 | ||
41 | /* Top 12 bits of a double (sign and exponent bits). */ | |
42 | static inline uint32_t | |
43 | top12 (double x) | |
44 | { | |
45 | return asuint64 (x) >> 52; | |
46 | } | |
47 | ||
48 | /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about | |
49 | additional 15 bits precision. IX is the bit representation of x, but | |
50 | normalized in the subnormal range using the sign bit for the exponent. */ | |
51 | static inline double_t | |
52 | log_inline (uint64_t ix, double_t *tail) | |
53 | { | |
54 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ | |
55 | double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p; | |
56 | uint64_t iz, tmp; | |
57 | int k, i; | |
58 | ||
59 | /* x = 2^k z; where z is in range [OFF,2*OFF) and exact. | |
60 | The range is split into N subintervals. | |
61 | The ith subinterval contains z and c is near its center. */ | |
62 | tmp = ix - OFF; | |
63 | i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N; | |
64 | k = (int64_t) tmp >> 52; /* arithmetic shift */ | |
65 | iz = ix - (tmp & 0xfffULL << 52); | |
66 | z = asdouble (iz); | |
67 | kd = (double_t) k; | |
68 | ||
69 | /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */ | |
70 | invc = T[i].invc; | |
71 | logc = T[i].logc; | |
72 | logctail = T[i].logctail; | |
73 | ||
74 | /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and | |
75 | |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */ | |
76 | #ifdef __FP_FAST_FMA | |
77 | r = __builtin_fma (z, invc, -1.0); | |
78 | #else | |
79 | /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */ | |
80 | double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32)); | |
81 | double_t zlo = z - zhi; | |
82 | double_t rhi = zhi * invc - 1.0; | |
83 | double_t rlo = zlo * invc; | |
84 | r = rhi + rlo; | |
85 | #endif | |
86 | ||
87 | /* k*Ln2 + log(c) + r. */ | |
88 | t1 = kd * Ln2hi + logc; | |
89 | t2 = t1 + r; | |
90 | lo1 = kd * Ln2lo + logctail; | |
91 | lo2 = t1 - t2 + r; | |
92 | ||
93 | /* Evaluation is optimized assuming superscalar pipelined execution. */ | |
94 | double_t ar, ar2, ar3, lo3, lo4; | |
95 | ar = A[0] * r; /* A[0] = -0.5. */ | |
96 | ar2 = r * ar; | |
97 | ar3 = r * ar2; | |
98 | /* k*Ln2 + log(c) + r + A[0]*r*r. */ | |
99 | #ifdef __FP_FAST_FMA | |
100 | hi = t2 + ar2; | |
101 | lo3 = __builtin_fma (ar, r, -ar2); | |
102 | lo4 = t2 - hi + ar2; | |
103 | #else | |
104 | double_t arhi = A[0] * rhi; | |
105 | double_t arhi2 = rhi * arhi; | |
106 | hi = t2 + arhi2; | |
107 | lo3 = rlo * (ar + arhi); | |
108 | lo4 = t2 - hi + arhi2; | |
109 | #endif | |
110 | /* p = log1p(r) - r - A[0]*r*r. */ | |
111 | p = (ar3 | |
112 | * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6])))); | |
113 | lo = lo1 + lo2 + lo3 + lo4 + p; | |
114 | y = hi + lo; | |
115 | *tail = hi - y + lo; | |
116 | return y; | |
117 | } | |
118 | ||
119 | #undef N | |
120 | #undef T | |
121 | #define N (1 << EXP_TABLE_BITS) | |
122 | #define InvLn2N __exp_data.invln2N | |
123 | #define NegLn2hiN __exp_data.negln2hiN | |
124 | #define NegLn2loN __exp_data.negln2loN | |
125 | #define Shift __exp_data.shift | |
126 | #define T __exp_data.tab | |
127 | #define C2 __exp_data.poly[5 - EXP_POLY_ORDER] | |
128 | #define C3 __exp_data.poly[6 - EXP_POLY_ORDER] | |
129 | #define C4 __exp_data.poly[7 - EXP_POLY_ORDER] | |
130 | #define C5 __exp_data.poly[8 - EXP_POLY_ORDER] | |
131 | #define C6 __exp_data.poly[9 - EXP_POLY_ORDER] | |
132 | ||
133 | /* Handle cases that may overflow or underflow when computing the result that | |
134 | is scale*(1+TMP) without intermediate rounding. The bit representation of | |
135 | scale is in SBITS, however it has a computed exponent that may have | |
136 | overflown into the sign bit so that needs to be adjusted before using it as | |
137 | a double. (int32_t)KI is the k used in the argument reduction and exponent | |
138 | adjustment of scale, positive k here means the result may overflow and | |
139 | negative k means the result may underflow. */ | |
140 | static inline double | |
141 | specialcase (double_t tmp, uint64_t sbits, uint64_t ki) | |
142 | { | |
143 | double_t scale, y; | |
144 | ||
145 | if ((ki & 0x80000000) == 0) | |
146 | { | |
147 | /* k > 0, the exponent of scale might have overflowed by <= 460. */ | |
148 | sbits -= 1009ull << 52; | |
149 | scale = asdouble (sbits); | |
150 | y = 0x1p1009 * (scale + scale * tmp); | |
151 | return check_oflow (y); | |
152 | } | |
153 | /* k < 0, need special care in the subnormal range. */ | |
154 | sbits += 1022ull << 52; | |
155 | /* Note: sbits is signed scale. */ | |
156 | scale = asdouble (sbits); | |
157 | y = scale + scale * tmp; | |
158 | if (fabs (y) < 1.0) | |
159 | { | |
160 | /* Round y to the right precision before scaling it into the subnormal | |
161 | range to avoid double rounding that can cause 0.5+E/2 ulp error where | |
162 | E is the worst-case ulp error outside the subnormal range. So this | |
163 | is only useful if the goal is better than 1 ulp worst-case error. */ | |
164 | double_t hi, lo, one = 1.0; | |
165 | if (y < 0.0) | |
166 | one = -1.0; | |
167 | lo = scale - y + scale * tmp; | |
168 | hi = one + y; | |
169 | lo = one - hi + y + lo; | |
170 | y = math_narrow_eval (hi + lo) - one; | |
171 | /* Fix the sign of 0. */ | |
172 | if (y == 0.0) | |
173 | y = asdouble (sbits & 0x8000000000000000); | |
174 | /* The underflow exception needs to be signaled explicitly. */ | |
175 | math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022); | |
176 | } | |
177 | y = 0x1p-1022 * y; | |
178 | return check_uflow (y); | |
179 | } | |
180 | ||
181 | #define SIGN_BIAS (0x800 << EXP_TABLE_BITS) | |
182 | ||
183 | /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. | |
184 | The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */ | |
185 | static inline double | |
186 | exp_inline (double x, double xtail, uint32_t sign_bias) | |
187 | { | |
188 | uint32_t abstop; | |
189 | uint64_t ki, idx, top, sbits; | |
190 | /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ | |
191 | double_t kd, z, r, r2, scale, tail, tmp; | |
192 | ||
193 | abstop = top12 (x) & 0x7ff; | |
194 | if (__glibc_unlikely (abstop - top12 (0x1p-54) | |
195 | >= top12 (512.0) - top12 (0x1p-54))) | |
196 | { | |
197 | if (abstop - top12 (0x1p-54) >= 0x80000000) | |
198 | { | |
199 | /* Avoid spurious underflow for tiny x. */ | |
200 | /* Note: 0 is common input. */ | |
201 | double_t one = WANT_ROUNDING ? 1.0 + x : 1.0; | |
202 | return sign_bias ? -one : one; | |
203 | } | |
204 | if (abstop >= top12 (1024.0)) | |
205 | { | |
206 | /* Note: inf and nan are already handled. */ | |
207 | if (asuint64 (x) >> 63) | |
208 | return __math_uflow (sign_bias); | |
209 | else | |
210 | return __math_oflow (sign_bias); | |
211 | } | |
212 | /* Large x is special cased below. */ | |
213 | abstop = 0; | |
214 | } | |
215 | ||
216 | /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ | |
217 | /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ | |
218 | z = InvLn2N * x; | |
219 | #if TOINT_INTRINSICS | |
220 | /* z - kd is in [-0.5, 0.5] in all rounding modes. */ | |
221 | kd = roundtoint (z); | |
222 | ki = converttoint (z); | |
223 | #else | |
224 | /* z - kd is in [-1, 1] in non-nearest rounding modes. */ | |
225 | kd = math_narrow_eval (z + Shift); | |
226 | ki = asuint64 (kd); | |
227 | kd -= Shift; | |
228 | #endif | |
229 | r = x + kd * NegLn2hiN + kd * NegLn2loN; | |
230 | /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ | |
231 | r += xtail; | |
232 | /* 2^(k/N) ~= scale * (1 + tail). */ | |
233 | idx = 2 * (ki % N); | |
234 | top = (ki + sign_bias) << (52 - EXP_TABLE_BITS); | |
235 | tail = asdouble (T[idx]); | |
236 | /* This is only a valid scale when -1023*N < k < 1024*N. */ | |
237 | sbits = T[idx + 1] + top; | |
238 | /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ | |
239 | /* Evaluation is optimized assuming superscalar pipelined execution. */ | |
240 | r2 = r * r; | |
241 | /* Without fma the worst case error is 0.25/N ulp larger. */ | |
242 | /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ | |
243 | tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); | |
244 | if (__glibc_unlikely (abstop == 0)) | |
245 | return specialcase (tmp, sbits, ki); | |
246 | scale = asdouble (sbits); | |
247 | /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there | |
248 | is no spurious underflow here even without fma. */ | |
249 | return scale + scale * tmp; | |
250 | } | |
251 | ||
252 | /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is | |
253 | the bit representation of a non-zero finite floating-point value. */ | |
254 | static inline int | |
255 | checkint (uint64_t iy) | |
256 | { | |
257 | int e = iy >> 52 & 0x7ff; | |
258 | if (e < 0x3ff) | |
259 | return 0; | |
260 | if (e > 0x3ff + 52) | |
261 | return 2; | |
262 | if (iy & ((1ULL << (0x3ff + 52 - e)) - 1)) | |
263 | return 0; | |
264 | if (iy & (1ULL << (0x3ff + 52 - e))) | |
265 | return 1; | |
266 | return 2; | |
267 | } | |
268 | ||
269 | /* Returns 1 if input is the bit representation of 0, infinity or nan. */ | |
270 | static inline int | |
271 | zeroinfnan (uint64_t i) | |
272 | { | |
273 | return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1; | |
274 | } | |
275 | ||
276 | #ifndef SECTION | |
277 | # define SECTION | |
278 | #endif | |
279 | ||
280 | double | |
281 | SECTION | |
282 | __pow (double x, double y) | |
283 | { | |
284 | uint32_t sign_bias = 0; | |
285 | uint64_t ix, iy; | |
286 | uint32_t topx, topy; | |
287 | ||
288 | ix = asuint64 (x); | |
289 | iy = asuint64 (y); | |
290 | topx = top12 (x); | |
291 | topy = top12 (y); | |
292 | if (__glibc_unlikely (topx - 0x001 >= 0x7ff - 0x001 | |
293 | || (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)) | |
294 | { | |
295 | /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0 | |
296 | and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */ | |
297 | /* Special cases: (x < 0x1p-126 or inf or nan) or | |
298 | (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */ | |
299 | if (__glibc_unlikely (zeroinfnan (iy))) | |
300 | { | |
301 | if (2 * iy == 0) | |
302 | return issignaling_inline (x) ? x + y : 1.0; | |
303 | if (ix == asuint64 (1.0)) | |
304 | return issignaling_inline (y) ? x + y : 1.0; | |
305 | if (2 * ix > 2 * asuint64 (INFINITY) | |
306 | || 2 * iy > 2 * asuint64 (INFINITY)) | |
307 | return x + y; | |
308 | if (2 * ix == 2 * asuint64 (1.0)) | |
309 | return 1.0; | |
310 | if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63)) | |
311 | return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */ | |
312 | return y * y; | |
313 | } | |
314 | if (__glibc_unlikely (zeroinfnan (ix))) | |
315 | { | |
316 | double_t x2 = x * x; | |
317 | if (ix >> 63 && checkint (iy) == 1) | |
318 | { | |
319 | x2 = -x2; | |
320 | sign_bias = 1; | |
321 | } | |
322 | if (WANT_ERRNO && 2 * ix == 0 && iy >> 63) | |
323 | return __math_divzero (sign_bias); | |
324 | /* Without the barrier some versions of clang hoist the 1/x2 and | |
325 | thus division by zero exception can be signaled spuriously. */ | |
326 | return iy >> 63 ? math_opt_barrier (1 / x2) : x2; | |
327 | } | |
328 | /* Here x and y are non-zero finite. */ | |
329 | if (ix >> 63) | |
330 | { | |
331 | /* Finite x < 0. */ | |
332 | int yint = checkint (iy); | |
333 | if (yint == 0) | |
334 | return __math_invalid (x); | |
335 | if (yint == 1) | |
336 | sign_bias = SIGN_BIAS; | |
337 | ix &= 0x7fffffffffffffff; | |
338 | topx &= 0x7ff; | |
339 | } | |
340 | if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be) | |
341 | { | |
342 | /* Note: sign_bias == 0 here because y is not odd. */ | |
343 | if (ix == asuint64 (1.0)) | |
344 | return 1.0; | |
345 | if ((topy & 0x7ff) < 0x3be) | |
346 | { | |
347 | /* |y| < 2^-65, x^y ~= 1 + y*log(x). */ | |
348 | if (WANT_ROUNDING) | |
349 | return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y; | |
350 | else | |
351 | return 1.0; | |
352 | } | |
353 | return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0) | |
354 | : __math_uflow (0); | |
355 | } | |
356 | if (topx == 0) | |
357 | { | |
358 | /* Normalize subnormal x so exponent becomes negative. */ | |
359 | ix = asuint64 (x * 0x1p52); | |
360 | ix &= 0x7fffffffffffffff; | |
361 | ix -= 52ULL << 52; | |
362 | } | |
363 | } | |
364 | ||
365 | double_t lo; | |
366 | double_t hi = log_inline (ix, &lo); | |
367 | double_t ehi, elo; | |
368 | #ifdef __FP_FAST_FMA | |
369 | ehi = y * hi; | |
370 | elo = y * lo + __builtin_fma (y, hi, -ehi); | |
371 | #else | |
372 | double_t yhi = asdouble (iy & -1ULL << 27); | |
373 | double_t ylo = y - yhi; | |
374 | double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27); | |
375 | double_t llo = hi - lhi + lo; | |
376 | ehi = yhi * lhi; | |
377 | elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */ | |
378 | #endif | |
379 | return exp_inline (ehi, elo, sign_bias); | |
380 | } | |
381 | #ifndef __pow | |
382 | strong_alias (__pow, __ieee754_pow) | |
383 | libm_alias_finite (__ieee754_pow, __pow) | |
384 | # if LIBM_SVID_COMPAT | |
385 | versioned_symbol (libm, __pow, pow, GLIBC_2_29); | |
386 | libm_alias_double_other (__pow, pow) | |
387 | # else | |
388 | libm_alias_double (__pow, pow) | |
389 | # endif | |
390 | #endif |