]> sourceware.org Git - systemtap.git/blame - tapsets.cxx
Use dwarf_diename instead of a DW_AT_name lookup
[systemtap.git] / tapsets.cxx
CommitLineData
56e12059 1// tapset resolution
12b44fb3 2// Copyright (C) 2005-2009 Red Hat Inc.
aa30ccd3 3// Copyright (C) 2005-2007 Intel Corporation.
0b8f6579 4// Copyright (C) 2008 James.Bottomley@HansenPartnership.com
56e12059
FCE
5//
6// This file is part of systemtap, and is free software. You can
7// redistribute it and/or modify it under the terms of the GNU General
8// Public License (GPL); either version 2, or (at your option) any
9// later version.
10
11#include "config.h"
12#include "staptree.h"
13#include "elaborate.h"
b55bc428 14#include "tapsets.h"
93646f4d 15#include "task_finder.h"
56e12059 16#include "translate.h"
dc38c0ae 17#include "session.h"
72dbc915 18#include "util.h"
0a6f5a3f 19#include "buildrun.h"
86bf665e 20#include "dwarf_wrappers.h"
2e67a43b 21#include "auto_free.h"
b278033a 22#include "hash.h"
440f755a 23#include "dwflpp.h"
bd2b1e68 24
3b579393
FCE
25#include <cstdlib>
26#include <algorithm>
bd2b1e68 27#include <deque>
56e12059 28#include <iostream>
bd2b1e68 29#include <map>
ec4373ff 30#include <set>
56e12059 31#include <sstream>
bd2b1e68 32#include <stdexcept>
b55bc428 33#include <vector>
e36387d7 34#include <cstdarg>
29e64872 35#include <cassert>
1969b5bc 36#include <iomanip>
f781f849 37#include <cerrno>
bd2b1e68
GH
38
39extern "C" {
df8fadee 40#include <fcntl.h>
bd2b1e68 41#include <elfutils/libdwfl.h>
7a053d3b 42#include <elfutils/libdw.h>
77de5e9e
GH
43#include <dwarf.h>
44#include <elf.h>
45#include <obstack.h>
b20febf3 46#include <glob.h>
30a279be 47#include <fnmatch.h>
5f0a03a6 48#include <stdio.h>
349dc70e 49#include <sys/types.h>
4b1ad75e
RM
50
51#define __STDC_FORMAT_MACROS
52#include <inttypes.h>
bd2b1e68 53}
77de5e9e 54
56e12059
FCE
55
56using namespace std;
2171f774 57using namespace __gnu_cxx;
56e12059 58
47dd066d 59
b20febf3
FCE
60
61// ------------------------------------------------------------------------
62void
a58d79d0 63common_probe_entryfn_prologue (translator_output* o, string statestr,
c12d974f 64 string new_pp,
912e8c59 65 bool overload_processing)
b20febf3 66{
72d18b98 67 o->newline() << "struct context* __restrict__ c;";
e0a17418
JS
68 o->newline() << "#if !INTERRUPTIBLE";
69 o->newline() << "unsigned long flags;";
70 o->newline() << "#endif";
b20febf3 71
a58d79d0
DS
72 if (overload_processing)
73 o->newline() << "#if defined(STP_TIMING) || defined(STP_OVERLOAD)";
74 else
75 o->newline() << "#ifdef STP_TIMING";
76 o->newline() << "cycles_t cycles_atstart = get_cycles ();";
b20febf3 77 o->newline() << "#endif";
b20febf3 78
e0a17418
JS
79 o->newline() << "#if INTERRUPTIBLE";
80 o->newline() << "preempt_disable ();";
81 o->newline() << "#else";
82 o->newline() << "local_irq_save (flags);";
83 o->newline() << "#endif";
b20febf3 84
c931ec8a 85 // Check for enough free enough stack space
d05a1d00 86 o->newline() << "if (unlikely ((((unsigned long) (& c)) & (THREAD_SIZE-1))"; // free space
a63401b1 87 o->newline(1) << "< (MINSTACKSPACE + sizeof (struct thread_info)))) {"; // needed space
d05a1d00
FCE
88 // XXX: may need porting to platforms where task_struct is not at bottom of kernel stack
89 // NB: see also CONFIG_DEBUG_STACKOVERFLOW
b3c3ca7c
FCE
90 o->newline() << "atomic_inc (& skipped_count);";
91 o->newline() << "#ifdef STP_TIMING";
92 o->newline() << "atomic_inc (& skipped_count_lowstack);";
93 o->newline() << "#endif";
c931ec8a
FCE
94 o->newline() << "goto probe_epilogue;";
95 o->newline(-1) << "}";
96
b20febf3
FCE
97 o->newline() << "if (atomic_read (&session_state) != " << statestr << ")";
98 o->newline(1) << "goto probe_epilogue;";
99 o->indent(-1);
9a604fac 100
a44a0785 101 o->newline() << "c = per_cpu_ptr (contexts, smp_processor_id());";
b3c3ca7c 102 o->newline() << "if (atomic_inc_return (& c->busy) != 1) {";
9c736061
FCE
103 o->newline(1) << "#if !INTERRUPTIBLE";
104 o->newline() << "atomic_inc (& skipped_count);";
105 o->newline() << "#endif";
b3c3ca7c
FCE
106 o->newline() << "#ifdef STP_TIMING";
107 o->newline() << "atomic_inc (& skipped_count_reentrant);";
c12d974f
FCE
108 o->newline() << "#ifdef DEBUG_REENTRANCY";
109 o->newline() << "_stp_warn (\"Skipped %s due to %s residency on cpu %u\\n\", "
110 << new_pp << ", c->probe_point ?: \"?\", smp_processor_id());";
111 // NB: There is a conceivable race condition here with reading
112 // c->probe_point, knowing that this other probe is sort of running.
113 // However, in reality, it's interrupted. Plus even if it were able
114 // to somehow start again, and stop before we read c->probe_point,
115 // at least we have that ?: "?" bit in there to avoid a NULL deref.
116 o->newline() << "#endif";
b3c3ca7c 117 o->newline() << "#endif";
9a604fac 118 o->newline() << "atomic_dec (& c->busy);";
b20febf3 119 o->newline() << "goto probe_epilogue;";
9a604fac
FCE
120 o->newline(-1) << "}";
121 o->newline();
1e00cfb1 122 o->newline() << "c->last_stmt = 0;";
9a604fac 123 o->newline() << "c->last_error = 0;";
a7ed0d3e 124 o->newline() << "c->nesting = -1;"; // NB: PR10516 packs locals[] tighter
22f8b401 125 o->newline() << "c->regs = 0;";
b916df9c 126 o->newline() << "c->unwaddr = 0;";
c12d974f 127 o->newline() << "c->probe_point = " << new_pp << ";";
b916df9c 128 // reset unwound address cache
fcff848e 129 o->newline() << "c->pi = 0;";
9addf322 130 o->newline() << "c->regparm = 0;";
bc54e71c
MH
131 o->newline() << "c->marker_name = NULL;";
132 o->newline() << "c->marker_format = NULL;";
e0a17418
JS
133
134 o->newline() << "#if INTERRUPTIBLE";
135 o->newline() << "c->actionremaining = MAXACTION_INTERRUPTIBLE;";
136 o->newline() << "#else";
137 o->newline() << "c->actionremaining = MAXACTION;";
138 o->newline() << "#endif";
dbb68664
FCE
139 o->newline() << "#ifdef STP_TIMING";
140 o->newline() << "c->statp = 0;";
141 o->newline() << "#endif";
9915575b
FCE
142 // NB: The following would actually be incorrect.
143 // That's because cycles_sum/cycles_base values are supposed to survive
144 // between consecutive probes. Periodically (STP_OVERLOAD_INTERVAL
145 // cycles), the values will be reset.
146 /*
f0e6dc63
FCE
147 o->newline() << "#ifdef STP_OVERLOAD";
148 o->newline() << "c->cycles_sum = 0;";
149 o->newline() << "c->cycles_base = 0;";
41c262f3 150 o->newline() << "#endif";
9915575b 151 */
b20febf3 152}
9a604fac 153
a44a0785 154
b20febf3 155void
a58d79d0 156common_probe_entryfn_epilogue (translator_output* o,
912e8c59 157 bool overload_processing)
b20febf3 158{
a58d79d0
DS
159 if (overload_processing)
160 o->newline() << "#if defined(STP_TIMING) || defined(STP_OVERLOAD)";
161 else
162 o->newline() << "#ifdef STP_TIMING";
dbb68664 163 o->newline() << "{";
a58d79d0
DS
164 o->newline(1) << "cycles_t cycles_atend = get_cycles ();";
165 // NB: we truncate cycles counts to 32 bits. Perhaps it should be
166 // fewer, if the hardware counter rolls over really quickly. We
167 // handle 32-bit wraparound here.
168 o->newline() << "int32_t cycles_elapsed = ((int32_t)cycles_atend > (int32_t)cycles_atstart)";
169 o->newline(1) << "? ((int32_t)cycles_atend - (int32_t)cycles_atstart)";
170 o->newline() << ": (~(int32_t)0) - (int32_t)cycles_atstart + (int32_t)cycles_atend + 1;";
171 o->indent(-1);
dbb68664 172
a58d79d0 173 o->newline() << "#ifdef STP_TIMING";
dbb68664 174 o->newline() << "if (likely (c->statp)) _stp_stat_add(*c->statp, cycles_elapsed);";
a58d79d0
DS
175 o->newline() << "#endif";
176
177 if (overload_processing)
178 {
179 o->newline() << "#ifdef STP_OVERLOAD";
180 o->newline() << "{";
181 // If the cycle count has wrapped (cycles_atend > cycles_base),
182 // let's go ahead and pretend the interval has been reached.
183 // This should reset cycles_base and cycles_sum.
184 o->newline(1) << "cycles_t interval = (cycles_atend > c->cycles_base)";
185 o->newline(1) << "? (cycles_atend - c->cycles_base)";
186 o->newline() << ": (STP_OVERLOAD_INTERVAL + 1);";
187 o->newline(-1) << "c->cycles_sum += cycles_elapsed;";
188
189 // If we've spent more than STP_OVERLOAD_THRESHOLD cycles in a
190 // probe during the last STP_OVERLOAD_INTERVAL cycles, the probe
191 // has overloaded the system and we need to quit.
192 o->newline() << "if (interval > STP_OVERLOAD_INTERVAL) {";
193 o->newline(1) << "if (c->cycles_sum > STP_OVERLOAD_THRESHOLD) {";
194 o->newline(1) << "_stp_error (\"probe overhead exceeded threshold\");";
195 o->newline() << "atomic_set (&session_state, STAP_SESSION_ERROR);";
551e9f14 196 o->newline() << "atomic_inc (&error_count);";
a58d79d0 197 o->newline(-1) << "}";
e57b735a 198
a58d79d0
DS
199 o->newline() << "c->cycles_base = cycles_atend;";
200 o->newline() << "c->cycles_sum = 0;";
201 o->newline(-1) << "}";
202 o->newline(-1) << "}";
203 o->newline() << "#endif";
204 }
e57b735a 205
440f755a
JS
206 o->newline(-1) << "}";
207 o->newline() << "#endif";
e57b735a 208
440f755a
JS
209 o->newline() << "c->probe_point = 0;"; // vacated
210 o->newline() << "if (unlikely (c->last_error && c->last_error[0])) {";
211 o->newline(1) << "if (c->last_stmt != NULL)";
212 o->newline(1) << "_stp_softerror (\"%s near %s\", c->last_error, c->last_stmt);";
213 o->newline(-1) << "else";
214 o->newline(1) << "_stp_softerror (\"%s\", c->last_error);";
215 o->indent(-1);
216 o->newline() << "atomic_inc (& error_count);";
217 o->newline() << "if (atomic_read (& error_count) > MAXERRORS) {";
218 o->newline(1) << "atomic_set (& session_state, STAP_SESSION_ERROR);";
219 o->newline() << "_stp_exit ();";
220 o->newline(-1) << "}";
221 o->newline(-1) << "}";
222 o->newline() << "atomic_dec (&c->busy);";
e57b735a 223
440f755a
JS
224 o->newline(-1) << "probe_epilogue:"; // context is free
225 o->indent(1);
e57b735a 226
440f755a
JS
227 // Check for excessive skip counts.
228 o->newline() << "if (unlikely (atomic_read (& skipped_count) > MAXSKIPPED)) {";
229 o->newline(1) << "atomic_set (& session_state, STAP_SESSION_ERROR);";
230 o->newline() << "_stp_exit ();";
231 o->newline(-1) << "}";
e57b735a 232
440f755a
JS
233 o->newline() << "#if INTERRUPTIBLE";
234 o->newline() << "preempt_enable_no_resched ();";
235 o->newline() << "#else";
236 o->newline() << "local_irq_restore (flags);";
237 o->newline() << "#endif";
238}
e57b735a 239
e57b735a 240
440f755a 241// ------------------------------------------------------------------------
e57b735a 242
440f755a
JS
243// ------------------------------------------------------------------------
244// Dwarf derived probes. "We apologize for the inconvience."
245// ------------------------------------------------------------------------
e57b735a 246
4627ed58
JS
247static const string TOK_KERNEL("kernel");
248static const string TOK_MODULE("module");
249static const string TOK_FUNCTION("function");
250static const string TOK_INLINE("inline");
251static const string TOK_CALL("call");
252static const string TOK_RETURN("return");
253static const string TOK_MAXACTIVE("maxactive");
254static const string TOK_STATEMENT("statement");
255static const string TOK_ABSOLUTE("absolute");
256static const string TOK_PROCESS("process");
257static const string TOK_MARK("mark");
258static const string TOK_TRACE("trace");
259static const string TOK_LABEL("label");
e57b735a 260
1adf8ef1 261static int query_cu (Dwarf_Die * cudie, void * arg);
e57b735a 262
440f755a
JS
263// Can we handle this query with just symbol-table info?
264enum dbinfo_reqt
265{
266 dbr_unknown,
267 dbr_none, // kernel.statement(NUM).absolute
268 dbr_need_symtab, // can get by with symbol table if there's no dwarf
269 dbr_need_dwarf
270};
e57b735a 271
20e4a32c 272
440f755a
JS
273struct base_query; // forward decls
274struct dwarf_query;
275struct dwflpp;
276struct symbol_table;
20e4a32c 277
a781f401 278
440f755a
JS
279struct
280symbol_table
281{
282 module_info *mod_info; // associated module
283 map<string, func_info*> map_by_name;
1c6b77e5
JS
284 multimap<Dwarf_Addr, func_info*> map_by_addr;
285 typedef multimap<Dwarf_Addr, func_info*>::iterator iterator_t;
440f755a
JS
286 typedef pair<iterator_t, iterator_t> range_t;
287#ifdef __powerpc__
288 GElf_Word opd_section;
289#endif
440f755a
JS
290 void add_symbol(const char *name, bool weak, Dwarf_Addr addr,
291 Dwarf_Addr *high_addr);
440f755a 292 enum info_status read_symbols(FILE *f, const string& path);
83ca3872
MW
293 enum info_status read_from_elf_file(const string& path,
294 const systemtap_session &sess);
295 enum info_status read_from_text_file(const string& path,
296 const systemtap_session &sess);
440f755a
JS
297 enum info_status get_from_elf();
298 void prepare_section_rejection(Dwfl_Module *mod);
299 bool reject_section(GElf_Word section);
440f755a
JS
300 void purge_syscall_stubs();
301 func_info *lookup_symbol(const string& name);
302 Dwarf_Addr lookup_symbol_address(const string& name);
303 func_info *get_func_containing_address(Dwarf_Addr addr);
7a053d3b 304
440f755a
JS
305 symbol_table(module_info *mi) : mod_info(mi) {}
306 ~symbol_table();
307};
77de5e9e 308
440f755a
JS
309static bool null_die(Dwarf_Die *die)
310{
311 static Dwarf_Die null = { 0 };
312 return (!die || !memcmp(die, &null, sizeof(null)));
313}
c4ce66a1
JS
314
315
7a053d3b 316enum
bd2b1e68 317function_spec_type
7a053d3b 318 {
bd2b1e68
GH
319 function_alone,
320 function_and_file,
7a053d3b 321 function_file_and_line
bd2b1e68
GH
322 };
323
ec4373ff 324
bd2b1e68 325struct dwarf_builder;
77de5e9e 326
2930abc7 327
b20febf3
FCE
328// XXX: This class is a candidate for subclassing to separate
329// the relocation vs non-relocation variants. Likewise for
330// kprobe vs kretprobe variants.
331
332struct dwarf_derived_probe: public derived_probe
b55bc428 333{
b20febf3
FCE
334 dwarf_derived_probe (const string& function,
335 const string& filename,
336 int line,
337 const string& module,
338 const string& section,
339 Dwarf_Addr dwfl_addr,
2930abc7 340 Dwarf_Addr addr,
b20febf3
FCE
341 dwarf_query & q,
342 Dwarf_Die* scope_die);
20e4a32c 343
b20febf3
FCE
344 string module;
345 string section;
346 Dwarf_Addr addr;
2930abc7 347 bool has_return;
c9bad430
DS
348 bool has_maxactive;
349 long maxactive_val;
b95e2b79 350 bool access_vars;
2930abc7 351
b8da0ad1 352 void printsig (std::ostream &o) const;
b20febf3 353 void join_group (systemtap_session& s);
9020300d
FCE
354 void emit_probe_local_init(translator_output * o);
355
0a98fd42
JS
356 string args;
357 void saveargs(Dwarf_Die* scope_die);
358 void printargs(std::ostream &o) const;
359
bd2b1e68 360 // Pattern registration helpers.
7a053d3b 361 static void register_statement_variants(match_node * root,
88e8da38 362 dwarf_builder * dw,
bbedb0a6 363 bool unprivileged_ok_p = false);
fd6602a0 364 static void register_function_variants(match_node * root,
88e8da38 365 dwarf_builder * dw,
bbedb0a6 366 bool unprivileged_ok_p = false);
7a053d3b 367 static void register_function_and_statement_variants(match_node * root,
88e8da38 368 dwarf_builder * dw,
bbedb0a6 369 bool unprivileged_ok_p = false);
c4ce66a1 370 static void register_patterns(systemtap_session& s);
20c6c071
GH
371};
372
dc38c0ae 373
6d0f3f0c
FCE
374struct uprobe_derived_probe: public derived_probe
375{
376 bool return_p;
377 string module; // * => unrestricted
378 int pid; // 0 => unrestricted
379 string section; // empty => absolute address
380 Dwarf_Addr address;
381 // bool has_maxactive;
382 // long maxactive_val;
0973d815 383
6d0f3f0c
FCE
384 uprobe_derived_probe (const string& function,
385 const string& filename,
386 int line,
387 const string& module,
388 int pid,
389 const string& section,
390 Dwarf_Addr dwfl_addr,
391 Dwarf_Addr addr,
392 dwarf_query & q,
393 Dwarf_Die* scope_die);
394
0973d815
FCE
395 // alternate constructor for process(PID).statement(ADDR).absolute
396 uprobe_derived_probe (probe *base,
397 probe_point *location,
398 int pid,
399 Dwarf_Addr addr,
400 bool return_p);
401
9ace370f
JS
402 string args;
403 void saveargs(Dwarf_Die* scope_die);
404 void printargs(std::ostream &o) const;
405
6d0f3f0c
FCE
406 void printsig (std::ostream &o) const;
407 void join_group (systemtap_session& s);
408};
409
dc38c0ae
DS
410struct dwarf_derived_probe_group: public derived_probe_group
411{
412private:
b20febf3
FCE
413 multimap<string,dwarf_derived_probe*> probes_by_module;
414 typedef multimap<string,dwarf_derived_probe*>::iterator p_b_m_iterator;
dc38c0ae
DS
415
416public:
b20febf3
FCE
417 void enroll (dwarf_derived_probe* probe);
418 void emit_module_decls (systemtap_session& s);
419 void emit_module_init (systemtap_session& s);
420 void emit_module_exit (systemtap_session& s);
dc38c0ae
DS
421};
422
423
20c6c071 424// Helper struct to thread through the dwfl callbacks.
2c384610 425struct base_query
20c6c071 426{
c4ce66a1
JS
427 base_query(dwflpp & dw, literal_map_t const & params);
428 base_query(dwflpp & dw, const string & module_val);
2c384610 429 virtual ~base_query() {}
bd2b1e68 430
5227f1ea 431 systemtap_session & sess;
2c384610 432 dwflpp & dw;
5227f1ea 433
bd2b1e68 434 // Parameter extractors.
86bf665e 435 static bool has_null_param(literal_map_t const & params,
888af770 436 string const & k);
86bf665e 437 static bool get_string_param(literal_map_t const & params,
bd2b1e68 438 string const & k, string & v);
86bf665e 439 static bool get_number_param(literal_map_t const & params,
bd2b1e68 440 string const & k, long & v);
86bf665e 441 static bool get_number_param(literal_map_t const & params,
c239d28c 442 string const & k, Dwarf_Addr & v);
b55bc428 443
2c384610
DS
444 // Extracted parameters.
445 bool has_kernel;
91af0778
FCE
446 bool has_module;
447 bool has_process;
2c384610
DS
448 string module_val; // has_kernel => module_val = "kernel"
449
450 virtual void handle_query_module() = 0;
451};
452
453
c4ce66a1
JS
454base_query::base_query(dwflpp & dw, literal_map_t const & params):
455 sess(dw.sess), dw(dw)
2c384610 456{
91af0778 457 has_kernel = has_null_param (params, TOK_KERNEL);
2c384610
DS
458 if (has_kernel)
459 module_val = "kernel";
91af0778
FCE
460
461 has_module = get_string_param (params, TOK_MODULE, module_val);
462 if (has_module)
463 has_process = false;
4baf0e53 464 else
d0a7f5a9
FCE
465 {
466 has_process = get_string_param(params, TOK_PROCESS, module_val);
06aca46a 467 if (has_process)
d0a7f5a9
FCE
468 module_val = find_executable (module_val);
469 }
91af0778
FCE
470
471 assert (has_kernel || has_process || has_module);
2c384610
DS
472}
473
c4ce66a1
JS
474base_query::base_query(dwflpp & dw, const string & module_val)
475 : sess(dw.sess), dw(dw), module_val(module_val)
476{
477 // NB: This uses '/' to distinguish between kernel modules and userspace,
478 // which means that userspace modules won't get any PATH searching.
479 if (module_val.find('/') == string::npos)
480 {
481 has_kernel = (module_val == TOK_KERNEL);
482 has_module = !has_kernel;
483 has_process = false;
484 }
485 else
486 {
487 has_kernel = has_module = false;
488 has_process = true;
489 }
490}
491
2c384610 492bool
86bf665e 493base_query::has_null_param(literal_map_t const & params,
2c384610
DS
494 string const & k)
495{
888af770 496 return derived_probe_builder::has_null_param(params, k);
2c384610
DS
497}
498
499
500bool
86bf665e 501base_query::get_string_param(literal_map_t const & params,
2c384610
DS
502 string const & k, string & v)
503{
504 return derived_probe_builder::get_param (params, k, v);
505}
506
507
508bool
86bf665e 509base_query::get_number_param(literal_map_t const & params,
2c384610
DS
510 string const & k, long & v)
511{
512 int64_t value;
513 bool present = derived_probe_builder::get_param (params, k, value);
514 v = (long) value;
515 return present;
516}
517
518
519bool
86bf665e 520base_query::get_number_param(literal_map_t const & params,
2c384610
DS
521 string const & k, Dwarf_Addr & v)
522{
523 int64_t value;
524 bool present = derived_probe_builder::get_param (params, k, value);
525 v = (Dwarf_Addr) value;
526 return present;
527}
528
2c384610
DS
529struct dwarf_query : public base_query
530{
e1278bd4 531 dwarf_query(probe * base_probe,
2c384610
DS
532 probe_point * base_loc,
533 dwflpp & dw,
86bf665e 534 literal_map_t const & params,
2c384610
DS
535 vector<derived_probe *> & results);
536
c4ce66a1
JS
537 vector<derived_probe *> & results;
538 probe * base_probe;
539 probe_point * base_loc;
540
2c384610 541 virtual void handle_query_module();
5f0a03a6
JK
542 void query_module_dwarf();
543 void query_module_symtab();
2c384610 544
2930abc7
FCE
545 void add_probe_point(string const & funcname,
546 char const * filename,
547 int line,
548 Dwarf_Die *scope_die,
549 Dwarf_Addr addr);
36f9dd1d 550
857bdfd1
JS
551 // Track addresses we've already seen in a given module
552 set<Dwarf_Addr> alias_dupes;
553
2930abc7 554 // Extracted parameters.
7a053d3b 555 string function_val;
20c6c071
GH
556
557 bool has_function_str;
558 bool has_statement_str;
559 bool has_function_num;
560 bool has_statement_num;
7a053d3b
RM
561 string statement_str_val;
562 string function_str_val;
c239d28c
GH
563 Dwarf_Addr statement_num_val;
564 Dwarf_Addr function_num_val;
20c6c071 565
b8da0ad1
FCE
566 bool has_call;
567 bool has_inline;
20c6c071
GH
568 bool has_return;
569
c9bad430
DS
570 bool has_maxactive;
571 long maxactive_val;
572
20c6c071
GH
573 bool has_label;
574 string label_val;
575
576 bool has_relative;
577 long relative_val;
578
37ebca01
FCE
579 bool has_absolute;
580
467bea43
SC
581 bool has_mark;
582
5f0a03a6
JK
583 enum dbinfo_reqt dbinfo_reqt;
584 enum dbinfo_reqt assess_dbinfo_reqt();
585
20c6c071
GH
586 function_spec_type parse_function_spec(string & spec);
587 function_spec_type spec_type;
588 string function;
589 string file;
0c8b7d37 590 line_t line_type;
879eb9e9 591 int line[2];
5f0a03a6 592 bool query_done; // Found exact match
20c6c071 593
7e1279ea
FCE
594 set<char const *> filtered_srcfiles;
595
596 // Map official entrypc -> func_info object
86bf665e
TM
597 inline_instance_map_t filtered_inlines;
598 func_info_map_t filtered_functions;
7e1279ea
FCE
599 bool choose_next_line;
600 Dwarf_Addr entrypc_for_next_line;
b55bc428
FCE
601};
602
98afd80e
FCE
603
604struct dwarf_builder: public derived_probe_builder
b55bc428 605{
665e1256 606 map <string,dwflpp*> kern_dw; /* NB: key string could be a wildcard */
7a24d422 607 map <string,dwflpp*> user_dw;
ae2552da 608 dwarf_builder() {}
aa30ccd3 609
ae2552da 610 dwflpp *get_kern_dw(systemtap_session& sess, const string& module)
707bf35e 611 {
ea14cf67
FCE
612 if (kern_dw[module] == 0)
613 kern_dw[module] = new dwflpp(sess, module, true); // might throw
ae2552da 614 return kern_dw[module];
707bf35e
JS
615 }
616
617 dwflpp *get_user_dw(systemtap_session& sess, const string& module)
618 {
ea14cf67
FCE
619 if (user_dw[module] == 0)
620 user_dw[module] = new dwflpp(sess, module, false); // might throw
707bf35e
JS
621 return user_dw[module];
622 }
7a24d422
FCE
623
624 /* NB: not virtual, so can be called from dtor too: */
06aca46a 625 void dwarf_build_no_more (bool verbose)
aa30ccd3 626 {
ae2552da
FCE
627 for (map<string,dwflpp*>::iterator udi = kern_dw.begin();
628 udi != kern_dw.end();
629 udi ++)
aa30ccd3 630 {
7a24d422 631 if (verbose)
ae2552da
FCE
632 clog << "dwarf_builder releasing kernel dwflpp " << udi->first << endl;
633 delete udi->second;
aa30ccd3 634 }
ae2552da 635 kern_dw.erase (kern_dw.begin(), kern_dw.end());
7a24d422
FCE
636
637 for (map<string,dwflpp*>::iterator udi = user_dw.begin();
638 udi != user_dw.end();
639 udi ++)
640 {
641 if (verbose)
642 clog << "dwarf_builder releasing user dwflpp " << udi->first << endl;
643 delete udi->second;
644 }
645 user_dw.erase (user_dw.begin(), user_dw.end());
646 }
647
648 void build_no_more (systemtap_session &s)
649 {
650 dwarf_build_no_more (s.verbose > 3);
aa30ccd3
FCE
651 }
652
e38d6504
RM
653 ~dwarf_builder()
654 {
7a24d422 655 dwarf_build_no_more (false);
c8959a29 656 }
aa30ccd3 657
5227f1ea 658 virtual void build(systemtap_session & sess,
7a053d3b 659 probe * base,
20c6c071 660 probe_point * location,
86bf665e 661 literal_map_t const & parameters,
20c6c071 662 vector<derived_probe *> & finished_results);
b55bc428
FCE
663};
664
5111fc3e 665
e1278bd4 666dwarf_query::dwarf_query(probe * base_probe,
20c6c071
GH
667 probe_point * base_loc,
668 dwflpp & dw,
86bf665e 669 literal_map_t const & params,
20c6c071 670 vector<derived_probe *> & results)
c4ce66a1
JS
671 : base_query(dw, params), results(results),
672 base_probe(base_probe), base_loc(base_loc)
bd2b1e68
GH
673{
674 // Reduce the query to more reasonable semantic values (booleans,
675 // extracted strings, numbers, etc).
bd2b1e68
GH
676 has_function_str = get_string_param(params, TOK_FUNCTION, function_str_val);
677 has_function_num = get_number_param(params, TOK_FUNCTION, function_num_val);
678
679 has_statement_str = get_string_param(params, TOK_STATEMENT, statement_str_val);
680 has_statement_num = get_number_param(params, TOK_STATEMENT, statement_num_val);
681
0f336e95
SC
682 has_label = get_string_param(params, TOK_LABEL, label_val);
683
b8da0ad1
FCE
684 has_call = has_null_param(params, TOK_CALL);
685 has_inline = has_null_param(params, TOK_INLINE);
bd2b1e68 686 has_return = has_null_param(params, TOK_RETURN);
c9bad430 687 has_maxactive = get_number_param(params, TOK_MAXACTIVE, maxactive_val);
37ebca01 688 has_absolute = has_null_param(params, TOK_ABSOLUTE);
467bea43 689 has_mark = false;
37ebca01 690
bd2b1e68
GH
691 if (has_function_str)
692 spec_type = parse_function_spec(function_str_val);
693 else if (has_statement_str)
694 spec_type = parse_function_spec(statement_str_val);
0daad364 695
5f0a03a6
JK
696 dbinfo_reqt = assess_dbinfo_reqt();
697 query_done = false;
0daad364
JS
698}
699
700
440f755a
JS
701func_info_map_t *
702get_filtered_functions(dwarf_query *q)
703{
704 return &q->filtered_functions;
705}
706
707
708inline_instance_map_t *
709get_filtered_inlines(dwarf_query *q)
710{
711 return &q->filtered_inlines;
712}
713
714
715void
716add_label_name(dwarf_query *q, const char *name)
717{
718 // this is a kludge to let the listing mode show labels to the user
719 if (q->sess.listing_mode)
720 q->results.back()->locations[0]->components.push_back
721 (new probe_point::component(TOK_LABEL, new literal_string (name)));
722}
723
724
2c384610 725void
5f0a03a6 726dwarf_query::query_module_dwarf()
2c384610
DS
727{
728 if (has_function_num || has_statement_num)
729 {
730 // If we have module("foo").function(0xbeef) or
731 // module("foo").statement(0xbeef), the address is relative
732 // to the start of the module, so we seek the function
733 // number plus the module's bias.
734
735 Dwarf_Addr addr;
736 if (has_function_num)
737 addr = function_num_val;
738 else
739 addr = statement_num_val;
4baf0e53 740
1f8592d1
MW
741 // Translate to an actual symbol address.
742 addr = dw.literal_addr_to_sym_addr (addr);
743
1adf8ef1
JS
744 Dwarf_Die* cudie = dw.query_cu_containing_address(addr);
745 if (cudie) // address could be wildly out of range
746 query_cu(cudie, this);
2c384610
DS
747 }
748 else
749 {
750 // Otherwise if we have a function("foo") or statement("foo")
751 // specifier, we have to scan over all the CUs looking for
752 // the function(s) in question
753 assert(has_function_str || has_statement_str);
754 dw.iterate_over_cus(&query_cu, this);
755 }
756}
757
5f0a03a6
JK
758static void query_func_info (Dwarf_Addr entrypc, func_info & fi,
759 dwarf_query * q);
760
761void
762dwarf_query::query_module_symtab()
763{
764 // Get the symbol table if it's necessary, sufficient, and not already got.
765 if (dbinfo_reqt == dbr_need_dwarf)
766 return;
767
768 module_info *mi = dw.mod_info;
769 if (dbinfo_reqt == dbr_need_symtab)
770 {
771 if (mi->symtab_status == info_unknown)
772 mi->get_symtab(this);
773 if (mi->symtab_status == info_absent)
774 return;
775 }
776
777 func_info *fi = NULL;
778 symbol_table *sym_table = mi->sym_table;
779
780 if (has_function_str)
781 {
782 // Per dwarf_query::assess_dbinfo_reqt()...
783 assert(spec_type == function_alone);
784 if (dw.name_has_wildcard(function_str_val))
785 {
786 // Until we augment the blacklist sufficently...
787 if (function_str_val.find_first_not_of("*?") == string::npos)
788 {
789 // e.g., kernel.function("*")
790 cerr << "Error: Pattern '"
791 << function_str_val
792 << "' matches every instruction address in the symbol table,"
793 << endl
794 << "some of which aren't even functions."
795 << " Please be more precise."
796 << endl;
797 return;
798 }
2e67a43b 799 symbol_table::iterator_t iter;
1c6b77e5
JS
800 for (iter = sym_table->map_by_addr.begin();
801 iter != sym_table->map_by_addr.end();
2e67a43b 802 ++iter)
5f0a03a6 803 {
1c6b77e5 804 fi = iter->second;
5f0a03a6
JK
805 if (!null_die(&fi->die))
806 continue; // already handled in query_module_dwarf()
807 if (dw.function_name_matches_pattern(fi->name, function_str_val))
808 query_func_info(fi->addr, *fi, this);
809 }
810 }
811 else
812 {
813 fi = sym_table->lookup_symbol(function_str_val);
814 if (fi && null_die(&fi->die))
815 query_func_info(fi->addr, *fi, this);
816 }
817 }
818 else
819 {
820 assert(has_function_num || has_statement_num);
821 // Find the "function" in which the indicated address resides.
822 Dwarf_Addr addr =
823 (has_function_num ? function_num_val : statement_num_val);
824 fi = sym_table->get_func_containing_address(addr);
825 if (!fi)
826 {
83ca3872
MW
827 if (! sess.suppress_warnings)
828 cerr << "Warning: address "
829 << hex << addr << dec
830 << " out of range for module "
831 << dw.module_name;
5f0a03a6
JK
832 return;
833 }
834 if (!null_die(&fi->die))
835 {
836 // addr looks like it's in the compilation unit containing
837 // the indicated function, but query_module_dwarf() didn't
838 // match addr to any compilation unit, so addr must be
839 // above that cu's address range.
83ca3872
MW
840 if (! sess.suppress_warnings)
841 cerr << "Warning: address "
842 << hex << addr << dec
843 << " maps to no known compilation unit in module "
844 << dw.module_name;
5f0a03a6
JK
845 return;
846 }
847 query_func_info(fi->addr, *fi, this);
848 }
849}
850
851void
852dwarf_query::handle_query_module()
853{
1c6b77e5
JS
854 bool report = dbinfo_reqt == dbr_need_dwarf || !sess.consult_symtab;
855 dw.get_module_dwarf(false, report);
856
857 // prebuild the symbol table to resolve aliases
858 dw.mod_info->get_symtab(this);
859
857bdfd1
JS
860 // reset the dupe-checking for each new module
861 alias_dupes.clear();
862
5f0a03a6
JK
863 if (dw.mod_info->dwarf_status == info_present)
864 query_module_dwarf();
1c6b77e5 865
5f0a03a6
JK
866 // Consult the symbol table if we haven't found all we're looking for.
867 // asm functions can show up in the symbol table but not in dwarf.
868 if (sess.consult_symtab && !query_done)
869 query_module_symtab();
870}
871
2c384610 872
bd2b1e68 873function_spec_type
20c6c071 874dwarf_query::parse_function_spec(string & spec)
bd2b1e68
GH
875{
876 string::const_iterator i = spec.begin(), e = spec.end();
7a053d3b 877
bd2b1e68
GH
878 function.clear();
879 file.clear();
879eb9e9
SC
880 line[0] = 0;
881 line[1] = 0;
bd2b1e68
GH
882
883 while (i != e && *i != '@')
884 {
0c8b7d37 885 if (*i == ':' || *i == '+')
bd2b1e68
GH
886 goto bad;
887 function += *i++;
888 }
889
890 if (i == e)
891 {
b0ee93c4 892 if (sess.verbose>2)
7a053d3b
RM
893 clog << "parsed '" << spec
894 << "' -> func '" << function
db22e55f 895 << "'\n";
bd2b1e68
GH
896 return function_alone;
897 }
898
899 if (i++ == e)
900 goto bad;
901
0c8b7d37 902 while (i != e && *i != ':' && *i != '+')
bd2b1e68 903 file += *i++;
41c262f3 904 if (*i == ':')
879eb9e9
SC
905 {
906 if (*(i + 1) == '*')
907 line_type = WILDCARD;
908 else
909 line_type = ABSOLUTE;
910 }
0c8b7d37
SC
911 else if (*i == '+')
912 line_type = RELATIVE;
7a053d3b 913
bd2b1e68
GH
914 if (i == e)
915 {
b0ee93c4 916 if (sess.verbose>2)
7a053d3b
RM
917 clog << "parsed '" << spec
918 << "' -> func '"<< function
919 << "', file '" << file
db22e55f 920 << "'\n";
bd2b1e68
GH
921 return function_and_file;
922 }
923
924 if (i++ == e)
925 goto bad;
926
927 try
928 {
879eb9e9
SC
929 if (line_type != WILDCARD)
930 {
931 string::const_iterator dash = i;
41c262f3 932
879eb9e9
SC
933 while (dash != e && *dash != '-')
934 dash++;
935 if (dash == e)
936 line[0] = line[1] = lex_cast<int>(string(i, e));
937 else
938 {
939 line_type = RANGE;
940 line[0] = lex_cast<int>(string(i, dash));
941 line[1] = lex_cast<int>(string(dash + 1, e));
942 }
943 }
41c262f3 944
b0ee93c4 945 if (sess.verbose>2)
7a053d3b
RM
946 clog << "parsed '" << spec
947 << "' -> func '"<< function
948 << "', file '" << file
db22e55f 949 << "', line " << line << "\n";
bd2b1e68
GH
950 return function_file_and_line;
951 }
952 catch (runtime_error & exn)
953 {
954 goto bad;
955 }
956
957 bad:
7a053d3b 958 throw semantic_error("malformed specification '" + spec + "'",
20c6c071 959 base_probe->tok);
bd2b1e68
GH
960}
961
962
36f9dd1d 963void
b20febf3
FCE
964dwarf_query::add_probe_point(const string& funcname,
965 const char* filename,
36f9dd1d 966 int line,
b20febf3 967 Dwarf_Die* scope_die,
36f9dd1d
FCE
968 Dwarf_Addr addr)
969{
b20febf3 970 string reloc_section; // base section for relocation purposes
27646582 971 Dwarf_Addr reloc_addr; // relocated
b20febf3
FCE
972 string blacklist_section; // linking section for blacklist purposes
973 const string& module = dw.module_name; // "kernel" or other
36f9dd1d 974
37ebca01
FCE
975 assert (! has_absolute); // already handled in dwarf_builder::build()
976
27646582 977 reloc_addr = dw.relocate_address(addr, reloc_section, blacklist_section);
2930abc7 978
7f9f3386
FCE
979 if (sess.verbose > 1)
980 {
b20febf3
FCE
981 clog << "probe " << funcname << "@" << filename << ":" << line;
982 if (string(module) == TOK_KERNEL)
983 clog << " kernel";
91af0778 984 else if (has_module)
b20febf3 985 clog << " module=" << module;
91af0778
FCE
986 else if (has_process)
987 clog << " process=" << module;
b20febf3
FCE
988 if (reloc_section != "") clog << " reloc=" << reloc_section;
989 if (blacklist_section != "") clog << " section=" << blacklist_section;
990 clog << " pc=0x" << hex << addr << dec;
7f9f3386 991 }
4baf0e53 992
27646582
JS
993 bool bad = dw.blacklisted_p (funcname, filename, line, module,
994 blacklist_section, addr, has_return);
b20febf3
FCE
995 if (sess.verbose > 1)
996 clog << endl;
7f9f3386 997
84048984
FCE
998 if (module == TOK_KERNEL)
999 {
1000 // PR 4224: adapt to relocatable kernel by subtracting the _stext address here.
1001 reloc_addr = addr - sess.sym_stext;
37ebca01 1002 reloc_section = "_stext"; // a message to runtime's _stp_module_relocate
84048984
FCE
1003 }
1004
b20febf3
FCE
1005 if (! bad)
1006 {
1a0dbc5a 1007 sess.unwindsym_modules.insert (module);
6d0f3f0c
FCE
1008
1009 if (has_process)
1010 {
1011 results.push_back (new uprobe_derived_probe(funcname, filename, line,
1012 module, 0, reloc_section, addr, reloc_addr,
1013 *this, scope_die));
1014 }
1015 else
1016 {
1017 assert (has_kernel || has_module);
1018 results.push_back (new dwarf_derived_probe(funcname, filename, line,
06aca46a 1019 module, reloc_section, addr, reloc_addr,
6d0f3f0c
FCE
1020 *this, scope_die));
1021 }
b20febf3 1022 }
2930abc7
FCE
1023}
1024
5f0a03a6
JK
1025enum dbinfo_reqt
1026dwarf_query::assess_dbinfo_reqt()
1027{
1028 if (has_absolute)
1029 {
1030 // kernel.statement(NUM).absolute
1031 return dbr_none;
1032 }
1033 if (has_inline)
1034 {
1035 // kernel.function("f").inline or module("m").function("f").inline
1036 return dbr_need_dwarf;
1037 }
1038 if (has_function_str && spec_type == function_alone)
1039 {
1040 // kernel.function("f") or module("m").function("f")
1041 return dbr_need_symtab;
1042 }
1043 if (has_statement_num)
1044 {
1045 // kernel.statement(NUM) or module("m").statement(NUM)
1046 // Technically, all we need is the module offset (or _stext, for
1047 // the kernel). But for that we need either the ELF file or (for
1048 // _stext) the symbol table. In either case, the symbol table
1049 // is available, and that allows us to map the NUM (address)
1050 // to a function, which is goodness.
1051 return dbr_need_symtab;
1052 }
1053 if (has_function_num)
1054 {
1055 // kernel.function(NUM) or module("m").function(NUM)
1056 // Need the symbol table so we can back up from NUM to the
1057 // start of the function.
1058 return dbr_need_symtab;
1059 }
1060 // Symbol table tells us nothing about source files or line numbers.
1061 return dbr_need_dwarf;
1062}
2930abc7
FCE
1063
1064
b8da0ad1
FCE
1065// The critical determining factor when interpreting a pattern
1066// string is, perhaps surprisingly: "presence of a lineno". The
1067// presence of a lineno changes the search strategy completely.
1068//
1069// Compare the two cases:
1070//
1071// 1. {statement,function}(foo@file.c:lineno)
1072// - find the files matching file.c
1073// - in each file, find the functions matching foo
1074// - query the file for line records matching lineno
1075// - iterate over the line records,
1076// - and iterate over the functions,
1077// - if(haspc(function.DIE, line.addr))
1078// - if looking for statements: probe(lineno.addr)
1079// - if looking for functions: probe(function.{entrypc,return,etc.})
1080//
1081// 2. {statement,function}(foo@file.c)
1082// - find the files matching file.c
1083// - in each file, find the functions matching foo
1084// - probe(function.{entrypc,return,etc.})
1085//
1086// Thus the first decision we make is based on the presence of a
1087// lineno, and we enter entirely different sets of callbacks
1088// depending on that decision.
1089//
1090// Note that the first case is a generalization fo the second, in that
1091// we could theoretically search through line records for matching
1092// file names (a "table scan" in rdbms lingo). Luckily, file names
1093// are already cached elsewhere, so we can do an "index scan" as an
1094// optimization.
7e1279ea 1095
bd2b1e68 1096static void
4cd232e4 1097query_statement (string const & func,
20e4a32c 1098 char const * file,
4cd232e4 1099 int line,
bcc12710 1100 Dwarf_Die *scope_die,
20e4a32c 1101 Dwarf_Addr stmt_addr,
4cd232e4 1102 dwarf_query * q)
bd2b1e68 1103{
39bcd429
FCE
1104 try
1105 {
cee35f73 1106 q->add_probe_point(func, file ? file : "",
a9b2f3a5 1107 line, scope_die, stmt_addr);
39bcd429
FCE
1108 }
1109 catch (const semantic_error& e)
1110 {
1111 q->sess.print_error (e);
1112 }
bd2b1e68
GH
1113}
1114
7e1279ea 1115static void
3e961ba6 1116query_inline_instance_info (inline_instance_info & ii,
7e1279ea
FCE
1117 dwarf_query * q)
1118{
b6581717 1119 try
7e1279ea 1120 {
b6581717
GH
1121 if (q->has_return)
1122 {
1123 throw semantic_error ("cannot probe .return of inline function '" + ii.name + "'");
1124 }
1125 else
1126 {
b0ee93c4 1127 if (q->sess.verbose>2)
20e4a32c 1128 clog << "querying entrypc "
3e961ba6 1129 << hex << ii.entrypc << dec
db22e55f 1130 << " of instance of inline '" << ii.name << "'\n";
20e4a32c 1131 query_statement (ii.name, ii.decl_file, ii.decl_line,
3e961ba6 1132 &ii.die, ii.entrypc, q);
b6581717 1133 }
7e1279ea 1134 }
b6581717 1135 catch (semantic_error &e)
7e1279ea 1136 {
b6581717 1137 q->sess.print_error (e);
7e1279ea
FCE
1138 }
1139}
1140
1141static void
1142query_func_info (Dwarf_Addr entrypc,
bcc12710 1143 func_info & fi,
7e1279ea
FCE
1144 dwarf_query * q)
1145{
b6581717 1146 try
7e1279ea 1147 {
b6581717
GH
1148 if (q->has_return)
1149 {
1150 // NB. dwarf_derived_probe::emit_registrations will emit a
1151 // kretprobe based on the entrypc in this case.
20e4a32c 1152 query_statement (fi.name, fi.decl_file, fi.decl_line,
b6581717
GH
1153 &fi.die, entrypc, q);
1154 }
1155 else
1156 {
35dc8b04 1157 if (fi.prologue_end != 0)
44f75386 1158 {
44f75386
FCE
1159 query_statement (fi.name, fi.decl_file, fi.decl_line,
1160 &fi.die, fi.prologue_end, q);
1161 }
1162 else
1163 {
1164 query_statement (fi.name, fi.decl_file, fi.decl_line,
1165 &fi.die, entrypc, q);
1166 }
b6581717 1167 }
7e1279ea 1168 }
b6581717 1169 catch (semantic_error &e)
7e1279ea 1170 {
b6581717 1171 q->sess.print_error (e);
7e1279ea
FCE
1172 }
1173}
1174
1175
bd4b874d
SC
1176static void
1177query_srcfile_label (const dwarf_line_t& line, void * arg)
1178{
1179 dwarf_query * q = static_cast<dwarf_query *>(arg);
1180
1181 Dwarf_Addr addr = line.addr();
1182
1183 for (func_info_map_t::iterator i = q->filtered_functions.begin();
1184 i != q->filtered_functions.end(); ++i)
1185 if (q->dw.die_has_pc (i->die, addr))
440f755a
JS
1186 q->dw.iterate_over_labels (&i->die, q->label_val.c_str(), q->function.c_str(),
1187 q, query_statement);
bd4b874d
SC
1188}
1189
7e1279ea 1190static void
86bf665e 1191query_srcfile_line (const dwarf_line_t& line, void * arg)
7e1279ea
FCE
1192{
1193 dwarf_query * q = static_cast<dwarf_query *>(arg);
1194
86bf665e 1195 Dwarf_Addr addr = line.addr();
4cd232e4 1196
86bf665e 1197 int lineno = line.lineno();
847bf07f 1198
86bf665e 1199 for (func_info_map_t::iterator i = q->filtered_functions.begin();
7e1279ea
FCE
1200 i != q->filtered_functions.end(); ++i)
1201 {
3e961ba6 1202 if (q->dw.die_has_pc (i->die, addr))
7e1279ea 1203 {
b0ee93c4 1204 if (q->sess.verbose>3)
db22e55f 1205 clog << "function DIE lands on srcfile\n";
4cd232e4 1206 if (q->has_statement_str)
3e961ba6 1207 query_statement (i->name, i->decl_file,
847bf07f 1208 lineno, // NB: not q->line !
3e961ba6 1209 &(i->die), addr, q);
4cd232e4 1210 else
3e961ba6 1211 query_func_info (i->entrypc, *i, q);
7e1279ea 1212 }
20e4a32c
RM
1213 }
1214
86bf665e 1215 for (inline_instance_map_t::iterator i
897820ca
GH
1216 = q->filtered_inlines.begin();
1217 i != q->filtered_inlines.end(); ++i)
1218 {
3e961ba6 1219 if (q->dw.die_has_pc (i->die, addr))
7e1279ea 1220 {
b0ee93c4 1221 if (q->sess.verbose>3)
db22e55f 1222 clog << "inline instance DIE lands on srcfile\n";
897820ca 1223 if (q->has_statement_str)
3e961ba6
JB
1224 query_statement (i->name, i->decl_file,
1225 q->line[0], &(i->die), addr, q);
897820ca 1226 else
3e961ba6 1227 query_inline_instance_info (*i, q);
897820ca 1228 }
20e4a32c 1229 }
7e1279ea
FCE
1230}
1231
1232
4fa7b22b 1233static int
7e1279ea 1234query_dwarf_inline_instance (Dwarf_Die * die, void * arg)
4fa7b22b
GH
1235{
1236 dwarf_query * q = static_cast<dwarf_query *>(arg);
7e1279ea 1237 assert (!q->has_statement_num);
bd2b1e68 1238
39bcd429 1239 try
7a053d3b 1240 {
b0ee93c4 1241 if (q->sess.verbose>2)
db22e55f 1242 clog << "examining inline instance of " << q->dw.function_name << "\n";
7e1279ea 1243
4baf0e53 1244 if ((q->has_function_str && ! q->has_call)
b8da0ad1 1245 || q->has_statement_str)
7e1279ea 1246 {
b0ee93c4 1247 if (q->sess.verbose>2)
db22e55f
FCE
1248 clog << "selected inline instance of " << q->dw.function_name
1249 << "\n";
7e1279ea
FCE
1250
1251 Dwarf_Addr entrypc;
1252 if (q->dw.die_entrypc (die, &entrypc))
1253 {
1254 inline_instance_info inl;
1255 inl.die = *die;
1256 inl.name = q->dw.function_name;
3e961ba6 1257 inl.entrypc = entrypc;
4cd232e4
GH
1258 q->dw.function_file (&inl.decl_file);
1259 q->dw.function_line (&inl.decl_line);
3e961ba6 1260 q->filtered_inlines.push_back(inl);
7e1279ea
FCE
1261 }
1262 }
1263 return DWARF_CB_OK;
1264 }
1265 catch (const semantic_error& e)
1266 {
1267 q->sess.print_error (e);
1268 return DWARF_CB_ABORT;
1269 }
1270}
bb788f9f 1271
7e1279ea 1272static int
2da9cedb 1273query_dwarf_func (Dwarf_Die * func, base_query * bq)
7e1279ea 1274{
2da9cedb 1275 dwarf_query * q = static_cast<dwarf_query *>(bq);
bb788f9f 1276
7e1279ea
FCE
1277 try
1278 {
7e1279ea
FCE
1279 q->dw.focus_on_function (func);
1280
857bdfd1
JS
1281 // make sure that this function address hasn't
1282 // already been matched under an aliased name
1283 Dwarf_Addr addr;
1284 if (!q->dw.func_is_inline() &&
1285 dwarf_entrypc(func, &addr) == 0 &&
1286 !q->alias_dupes.insert(addr).second)
1287 return DWARF_CB_OK;
1288
20e4a32c 1289 if (q->dw.func_is_inline ()
b8da0ad1 1290 && (! q->has_call) && (! q->has_return)
1c6b77e5 1291 && (q->has_statement_str || q->has_function_str))
7e1279ea 1292 {
b0ee93c4 1293 if (q->sess.verbose>3)
db22e55f
FCE
1294 clog << "checking instances of inline " << q->dw.function_name
1295 << "\n";
2da9cedb 1296 q->dw.iterate_over_inline_instances (query_dwarf_inline_instance, q);
275f40a6
FCE
1297
1298 if (q->dw.function_name_final_match (q->function))
1299 return DWARF_CB_ABORT;
7e1279ea 1300 }
396afcee 1301 else if (!q->dw.func_is_inline () && (! q->has_inline))
20e4a32c 1302 {
7e1279ea
FCE
1303 bool record_this_function = false;
1304
1c6b77e5 1305 if (q->has_statement_str || q->has_function_str)
7e1279ea
FCE
1306 {
1307 record_this_function = true;
1308 }
e4c58386 1309 else if (q->has_function_num || q->has_statement_num)
7e1279ea 1310 {
e4c58386 1311 Dwarf_Addr query_addr =
9b692b91
SC
1312 (q->has_function_num ? q->function_num_val :
1313 q->has_statement_num ? q->statement_num_val :
1314 (assert(0) , 0));
7e1279ea
FCE
1315 Dwarf_Die d;
1316 q->dw.function_die (&d);
20e4a32c 1317
1f8592d1
MW
1318 // Translate literal address to symbol address, then
1319 // compensate for dw bias.
1320 query_addr = q->dw.literal_addr_to_sym_addr(query_addr);
1321 query_addr -= q->dw.module_bias;
1322
86bf665e 1323 if (q->dw.die_has_pc (d, query_addr))
7e1279ea
FCE
1324 record_this_function = true;
1325 }
1326
1327 if (record_this_function)
1328 {
b0ee93c4 1329 if (q->sess.verbose>2)
db22e55f 1330 clog << "selected function " << q->dw.function_name << "\n";
7e1279ea 1331
e4c58386
FCE
1332 func_info func;
1333 q->dw.function_die (&func.die);
1334 func.name = q->dw.function_name;
1335 q->dw.function_file (&func.decl_file);
1336 q->dw.function_line (&func.decl_line);
1337
1338 if (q->has_function_num || q->has_function_str || q->has_statement_str)
1339 {
1340 Dwarf_Addr entrypc;
1341 if (q->dw.function_entrypc (&entrypc))
3e961ba6
JB
1342 {
1343 func.entrypc = entrypc;
1344 q->filtered_functions.push_back (func);
1345 }
e4c58386 1346 else
552fdd9f
JB
1347 /* this function just be fully inlined, just ignore it */
1348 return DWARF_CB_OK;
e4c58386
FCE
1349 }
1350 else if (q->has_statement_num)
1351 {
3e961ba6 1352 func.entrypc = q->statement_num_val;
1f8592d1
MW
1353
1354 // Translate literal address to symbol address, then
1355 // compensate for dw bias (will be used for query dw funcs).
1356 func.entrypc = q->dw.literal_addr_to_sym_addr(func.entrypc);
1357 func.entrypc -= q->dw.module_bias;
1358
3e961ba6 1359 q->filtered_functions.push_back (func);
275f40a6
FCE
1360 if (q->dw.function_name_final_match (q->function))
1361 return DWARF_CB_ABORT;
e4c58386
FCE
1362 }
1363 else
1364 assert(0);
1365
1366 if (q->dw.function_name_final_match (q->function))
1367 return DWARF_CB_ABORT;
7e1279ea
FCE
1368 }
1369 }
39bcd429 1370 return DWARF_CB_OK;
bd2b1e68 1371 }
39bcd429 1372 catch (const semantic_error& e)
bd2b1e68 1373 {
39bcd429
FCE
1374 q->sess.print_error (e);
1375 return DWARF_CB_ABORT;
bd2b1e68 1376 }
bd2b1e68
GH
1377}
1378
1379static int
1380query_cu (Dwarf_Die * cudie, void * arg)
1381{
20c6c071 1382 dwarf_query * q = static_cast<dwarf_query *>(arg);
49abf162 1383 if (pending_interrupts) return DWARF_CB_ABORT;
7a053d3b 1384
39bcd429 1385 try
bd2b1e68 1386 {
7e1279ea 1387 q->dw.focus_on_cu (cudie);
b5d77020 1388
b0ee93c4 1389 if (false && q->sess.verbose>2)
b5d77020 1390 clog << "focused on CU '" << q->dw.cu_name
db22e55f 1391 << "', in module '" << q->dw.module_name << "'\n";
d9b516ca 1392
e4c58386 1393 if (q->has_statement_str || q->has_statement_num
54efe513 1394 || q->has_function_str || q->has_function_num)
7e1279ea
FCE
1395 {
1396 q->filtered_srcfiles.clear();
1397 q->filtered_functions.clear();
1398 q->filtered_inlines.clear();
1399
1400 // In this path, we find "abstract functions", record
1401 // information about them, and then (depending on lineno
1402 // matching) possibly emit one or more of the function's
1403 // associated addresses. Unfortunately the control of this
1404 // cannot easily be turned inside out.
1405
b8da0ad1 1406 if ((q->has_statement_str || q->has_function_str)
7e1279ea
FCE
1407 && (q->spec_type != function_alone))
1408 {
1409 // If we have a pattern string with a filename, we need
1410 // to elaborate the srcfile mask in question first.
1411 q->dw.collect_srcfiles_matching (q->file, q->filtered_srcfiles);
1412
1413 // If we have a file pattern and *no* srcfile matches, there's
1414 // no need to look further into this CU, so skip.
1415 if (q->filtered_srcfiles.empty())
1416 return DWARF_CB_OK;
1417 }
86bf665e
TM
1418 // Verify that a raw address matches the beginning of a
1419 // statement. This is a somewhat lame check that the address
467bea43
SC
1420 // is at the start of an assembly instruction. Mark probes are in the
1421 // middle of a macro and thus not strictly at a statement beginning.
6a35d102 1422 // Guru mode may override this check.
467bea43 1423 if (q->has_statement_num && ! q->has_mark)
86bf665e
TM
1424 {
1425 Dwarf_Addr queryaddr = q->statement_num_val;
1426 dwarf_line_t address_line(dwarf_getsrc_die(cudie, queryaddr));
1427 Dwarf_Addr lineaddr = 0;
1428 if (address_line)
1429 lineaddr = address_line.addr();
1430 if (!address_line || lineaddr != queryaddr)
1431 {
1432 stringstream msg;
1433 msg << "address 0x" << hex << queryaddr
1b1b4ceb 1434 << " does not match the beginning of a statement";
4116c576
MW
1435 if (address_line)
1436 msg << " (try 0x" << hex << lineaddr << ")";
5c5099fa
MW
1437 else
1438 msg << " (no line info found for '" << q->dw.cu_name
1439 << "', in module '" << q->dw.module_name << "')";
6a35d102
MW
1440 if (! q->sess.guru_mode)
1441 throw semantic_error(msg.str());
1442 else if (! q->sess.suppress_warnings)
1443 q->sess.print_warning(msg.str());
86bf665e
TM
1444 }
1445 }
7e1279ea
FCE
1446 // Pick up [entrypc, name, DIE] tuples for all the functions
1447 // matching the query, and fill in the prologue endings of them
1448 // all in a single pass.
2da9cedb
JS
1449 int rc = q->dw.iterate_over_functions (query_dwarf_func, q,
1450 q->function,
1451 q->has_statement_num);
5f0a03a6
JK
1452 if (rc != DWARF_CB_OK)
1453 q->query_done = true;
44f75386 1454
35dc8b04 1455 if ((q->sess.prologue_searching || q->has_process) // PR 6871
e4c58386 1456 && !q->has_statement_str && !q->has_statement_num) // PR 2608
44f75386
FCE
1457 if (! q->filtered_functions.empty())
1458 q->dw.resolve_prologue_endings (q->filtered_functions);
7e1279ea 1459
bd4b874d
SC
1460 if (q->has_label)
1461 {
1462 if (q->line[0] == 0) // No line number specified
440f755a
JS
1463 q->dw.iterate_over_labels (q->dw.cu, q->label_val.c_str(), q->function.c_str(),
1464 q, query_statement);
bd4b874d
SC
1465 else
1466 for (set<char const *>::const_iterator i = q->filtered_srcfiles.begin();
1467 i != q->filtered_srcfiles.end(); ++i)
1468 q->dw.iterate_over_srcfile_lines (*i, q->line, q->has_statement_str,
9b988eff 1469 q->line_type, query_srcfile_label, q->function, q);
bd4b874d
SC
1470 }
1471 else if ((q->has_statement_str || q->has_function_str)
7e1279ea
FCE
1472 && (q->spec_type == function_file_and_line))
1473 {
1474 // If we have a pattern string with target *line*, we
20e4a32c 1475 // have to look at lines in all the matched srcfiles.
7e1279ea
FCE
1476 for (set<char const *>::const_iterator i = q->filtered_srcfiles.begin();
1477 i != q->filtered_srcfiles.end(); ++i)
897820ca 1478 q->dw.iterate_over_srcfile_lines (*i, q->line, q->has_statement_str,
9b988eff 1479 q->line_type, query_srcfile_line, q->function, q);
7e1279ea
FCE
1480 }
1481 else
1482 {
e4c58386 1483 // Otherwise, simply probe all resolved functions.
86bf665e 1484 for (func_info_map_t::iterator i = q->filtered_functions.begin();
e4c58386 1485 i != q->filtered_functions.end(); ++i)
3e961ba6 1486 query_func_info (i->entrypc, *i, q);
e4c58386
FCE
1487
1488 // And all inline instances (if we're not excluding inlines with ".call")
1489 if (! q->has_call)
86bf665e 1490 for (inline_instance_map_t::iterator i
54efe513 1491 = q->filtered_inlines.begin(); i != q->filtered_inlines.end(); ++i)
3e961ba6 1492 query_inline_instance_info (*i, q);
7e1279ea
FCE
1493 }
1494 }
39bcd429
FCE
1495 else
1496 {
e4c58386
FCE
1497 // Before PR 5787, we used to have this:
1498#if 0
7e1279ea
FCE
1499 // Otherwise we have a statement number, and we can just
1500 // query it directly within this module.
7e1279ea
FCE
1501 assert (q->has_statement_num);
1502 Dwarf_Addr query_addr = q->statement_num_val;
b8da0ad1 1503 query_addr = q->dw.module_address_to_global(query_addr);
7e1279ea 1504
bcc12710 1505 query_statement ("", "", -1, NULL, query_addr, q);
e4c58386
FCE
1506#endif
1507 // But now, we traverse CUs/functions even for
1508 // statement_num's, for blacklist sensitivity and $var
1509 // resolution purposes.
1510
1511 assert (0); // NOTREACHED
39bcd429
FCE
1512 }
1513 return DWARF_CB_OK;
bd2b1e68 1514 }
39bcd429 1515 catch (const semantic_error& e)
bd2b1e68 1516 {
39bcd429
FCE
1517 q->sess.print_error (e);
1518 return DWARF_CB_ABORT;
bd2b1e68 1519 }
bd2b1e68
GH
1520}
1521
0ce64fb8 1522
5f0a03a6
JK
1523static void
1524validate_module_elf (Dwfl_Module *mod, const char *name, base_query *q)
1525{
1526 // Validate the machine code in this elf file against the
1527 // session machine. This is important, in case the wrong kind
1528 // of debuginfo is being automagically processed by elfutils.
1529 // While we can tell i686 apart from x86-64, unfortunately
1530 // we can't help confusing i586 vs i686 (both EM_386).
1531
1532 Dwarf_Addr bias;
1533 // We prefer dwfl_module_getdwarf to dwfl_module_getelf here,
1534 // because dwfl_module_getelf can force costly section relocations
1535 // we don't really need, while either will do for this purpose.
1536 Elf* elf = (dwarf_getelf (dwfl_module_getdwarf (mod, &bias))
1537 ?: dwfl_module_getelf (mod, &bias));
1538
1539 GElf_Ehdr ehdr_mem;
1540 GElf_Ehdr* em = gelf_getehdr (elf, &ehdr_mem);
86bf665e 1541 if (em == 0) { dwfl_assert ("dwfl_getehdr", dwfl_errno()); }
5f0a03a6
JK
1542 int elf_machine = em->e_machine;
1543 const char* debug_filename = "";
1544 const char* main_filename = "";
1545 (void) dwfl_module_info (mod, NULL, NULL,
1546 NULL, NULL, NULL,
1547 & main_filename,
1548 & debug_filename);
1549 const string& sess_machine = q->sess.architecture;
756c9462
FCE
1550
1551 string expect_machine; // to match sess.machine (i.e., kernel machine)
1552 string expect_machine2;
5f0a03a6
JK
1553
1554 switch (elf_machine)
1555 {
756c9462
FCE
1556 // x86 and ppc are bi-architecture; a 64-bit kernel
1557 // can normally run either 32-bit or 64-bit *userspace*.
1558 case EM_386:
1559 expect_machine = "i?86";
1560 if (! q->has_process) break; // 32-bit kernel/module
1561 /* FALLSTHROUGH */
1562 case EM_X86_64:
1563 expect_machine2 = "x86_64";
1564 break;
1565 case EM_PPC:
1566 expect_machine = "ppc";
1567 if (! q->has_process) break; // 32-bit kernel/module
1568 /* FALLSTHROUGH */
1569 case EM_PPC64:
1570 expect_machine2 = "ppc64";
1571 break;
5f0a03a6
JK
1572 case EM_S390: expect_machine = "s390x"; break;
1573 case EM_IA_64: expect_machine = "ia64"; break;
1574 case EM_ARM: expect_machine = "armv*"; break;
1575 // XXX: fill in some more of these
1576 default: expect_machine = "?"; break;
1577 }
1578
1579 if (! debug_filename) debug_filename = main_filename;
1580 if (! debug_filename) debug_filename = name;
1581
756c9462
FCE
1582 if (fnmatch (expect_machine.c_str(), sess_machine.c_str(), 0) != 0 &&
1583 fnmatch (expect_machine2.c_str(), sess_machine.c_str(), 0) != 0)
5f0a03a6
JK
1584 {
1585 stringstream msg;
756c9462
FCE
1586 msg << "ELF machine " << expect_machine << "|" << expect_machine2
1587 << " (code " << elf_machine
5f0a03a6
JK
1588 << ") mismatch with target " << sess_machine
1589 << " in '" << debug_filename << "'";
1590 throw semantic_error(msg.str ());
1591 }
1592
1593 if (q->sess.verbose>2)
1594 clog << "focused on module '" << q->dw.module_name
1595 << " = [0x" << hex << q->dw.module_start
1596 << "-0x" << q->dw.module_end
1597 << ", bias 0x" << q->dw.module_bias << "]" << dec
1598 << " file " << debug_filename
756c9462 1599 << " ELF machine " << expect_machine << "|" << expect_machine2
5f0a03a6
JK
1600 << " (code " << elf_machine << ")"
1601 << "\n";
1602}
1d3a40b6 1603
91af0778
FCE
1604
1605
1606static Dwarf_Addr
1607lookup_symbol_address (Dwfl_Module *m, const char* wanted)
1608{
1609 int syments = dwfl_module_getsymtab(m);
1610 assert(syments);
1611 for (int i = 1; i < syments; ++i)
1612 {
1613 GElf_Sym sym;
1614 const char *name = dwfl_module_getsym(m, i, &sym, NULL);
1615 if (name != NULL && strcmp(name, wanted) == 0)
1616 return sym.st_value;
1617 }
1618
1619 return 0;
1620}
1621
1622
1623
bd2b1e68 1624static int
b8da0ad1 1625query_module (Dwfl_Module *mod,
91af0778 1626 void **,
b8da0ad1 1627 const char *name,
6f4c1275 1628 Dwarf_Addr addr,
b8da0ad1 1629 void *arg)
bd2b1e68 1630{
91af0778 1631 base_query *q = static_cast<base_query *>(arg);
bd2b1e68 1632
39bcd429 1633 try
e38d6504 1634 {
91af0778
FCE
1635 module_info* mi = q->sess.module_cache->cache[name];
1636 if (mi == 0)
1637 {
1638 mi = q->sess.module_cache->cache[name] = new module_info(name);
1639
6f4c1275
FCE
1640 mi->mod = mod;
1641 mi->addr = addr;
91af0778 1642
6f4c1275
FCE
1643 const char* debug_filename = "";
1644 const char* main_filename = "";
1645 (void) dwfl_module_info (mod, NULL, NULL,
1646 NULL, NULL, NULL,
1647 & main_filename,
1648 & debug_filename);
1649
1650 if (q->sess.ignore_vmlinux && name == TOK_KERNEL)
91af0778
FCE
1651 {
1652 // report_kernel() in elfutils found vmlinux, but pretend it didn't.
1653 // Given a non-null path, returning 1 means keep reporting modules.
1654 mi->dwarf_status = info_absent;
1655 }
6f4c1275 1656 else if (debug_filename || main_filename)
91af0778 1657 {
6f4c1275
FCE
1658 mi->elf_path = debug_filename ?: main_filename;
1659 }
1660 else if (name == TOK_KERNEL)
1661 {
1662 mi->dwarf_status = info_absent;
91af0778 1663 }
91af0778
FCE
1664 }
1665 // OK, enough of that module_info caching business.
1666
5f0a03a6 1667 q->dw.focus_on_module(mod, mi);
d9b516ca 1668
39bcd429
FCE
1669 // If we have enough information in the pattern to skip a module and
1670 // the module does not match that information, return early.
b8da0ad1 1671 if (!q->dw.module_name_matches(q->module_val))
0e14e079 1672 return pending_interrupts ? DWARF_CB_ABORT : DWARF_CB_OK;
0cbbf9d1
FCE
1673
1674 // Don't allow module("*kernel*") type expressions to match the
1675 // elfutils module "kernel", which we refer to in the probe
1676 // point syntax exclusively as "kernel.*".
1677 if (q->dw.module_name == TOK_KERNEL && ! q->has_kernel)
0e14e079 1678 return pending_interrupts ? DWARF_CB_ABORT : DWARF_CB_OK;
b5d77020 1679
5f0a03a6
JK
1680 if (mod)
1681 validate_module_elf(mod, name, q);
1682 else
91af0778
FCE
1683 assert(q->has_kernel); // and no vmlinux to examine
1684
1685 if (q->sess.verbose>2)
1686 cerr << "focused on module '" << q->dw.module_name << "'\n";
1687
1688
1689 // Collect a few kernel addresses. XXX: these belong better
1690 // to the sess.module_info["kernel"] struct.
1691 if (q->dw.module_name == TOK_KERNEL)
c931ec8a 1692 {
91af0778
FCE
1693 if (! q->sess.sym_kprobes_text_start)
1694 q->sess.sym_kprobes_text_start = lookup_symbol_address (mod, "__kprobes_text_start");
1695 if (! q->sess.sym_kprobes_text_end)
1696 q->sess.sym_kprobes_text_end = lookup_symbol_address (mod, "__kprobes_text_end");
1697 if (! q->sess.sym_stext)
1698 q->sess.sym_stext = lookup_symbol_address (mod, "_stext");
c931ec8a
FCE
1699 }
1700
91af0778 1701 // Finally, search the module for matches of the probe point.
2c384610 1702 q->handle_query_module();
bb788f9f 1703
91af0778 1704
b8da0ad1 1705 // If we know that there will be no more matches, abort early.
0e14e079 1706 if (q->dw.module_name_final_match(q->module_val) || pending_interrupts)
b8da0ad1
FCE
1707 return DWARF_CB_ABORT;
1708 else
1709 return DWARF_CB_OK;
7a053d3b 1710 }
39bcd429 1711 catch (const semantic_error& e)
bd2b1e68 1712 {
39bcd429
FCE
1713 q->sess.print_error (e);
1714 return DWARF_CB_ABORT;
bd2b1e68 1715 }
bd2b1e68
GH
1716}
1717
35d4ab18 1718
de688825 1719struct dwarf_var_expanding_visitor: public var_expanding_visitor
35d4ab18 1720{
77de5e9e 1721 dwarf_query & q;
bcc12710 1722 Dwarf_Die *scope_die;
77de5e9e 1723 Dwarf_Addr addr;
8c819921 1724 block *add_block;
8fc05e57 1725 probe *add_probe;
cd5b28b2 1726 std::map<std::string, symbol *> return_ts_map;
b95e2b79 1727 bool visited;
77de5e9e 1728
de688825 1729 dwarf_var_expanding_visitor(dwarf_query & q, Dwarf_Die *sd, Dwarf_Addr a):
b95e2b79 1730 q(q), scope_die(sd), addr(a), add_block(NULL), add_probe(NULL), visited(false) {}
a7999c82
JS
1731 void visit_target_symbol_saved_return (target_symbol* e);
1732 void visit_target_symbol_context (target_symbol* e);
d7f3e0c5 1733 void visit_target_symbol (target_symbol* e);
c24447be 1734 void visit_cast_op (cast_op* e);
77de5e9e
GH
1735};
1736
1737
de688825 1738unsigned var_expanding_visitor::tick = 0;
77de5e9e 1739
77de5e9e 1740void
de688825 1741var_expanding_visitor::visit_assignment (assignment* e)
77de5e9e 1742{
e57b735a
GH
1743 // Our job would normally be to require() the left and right sides
1744 // into a new assignment. What we're doing is slightly trickier:
1745 // we're pushing a functioncall** onto a stack, and if our left
1746 // child sets the functioncall* for that value, we're going to
1747 // assume our left child was a target symbol -- transformed into a
1748 // set_target_foo(value) call, and it wants to take our right child
1749 // as the argument "value".
1750 //
1751 // This is why some people claim that languages with
1752 // constructor-decomposing case expressions have a leg up on
1753 // visitors.
1754
1755 functioncall *fcall = NULL;
1756 expression *new_left, *new_right;
d9b516ca 1757
e57b735a 1758 target_symbol_setter_functioncalls.push (&fcall);
4ed05b15 1759 new_left = require (e->left);
e57b735a 1760 target_symbol_setter_functioncalls.pop ();
4ed05b15 1761 new_right = require (e->right);
e57b735a
GH
1762
1763 if (fcall != NULL)
77de5e9e 1764 {
e57b735a
GH
1765 // Our left child is informing us that it was a target variable
1766 // and it has been replaced with a set_target_foo() function
1767 // call; we are going to provide that function call -- with the
1768 // right child spliced in as sole argument -- in place of
de688825 1769 // ourselves, in the var expansion we're in the middle of making.
e57b735a
GH
1770
1771 // FIXME: for the time being, we only support plan $foo = bar,
1772 // not += or any other op= variant. This is fixable, but a bit
1773 // ugly.
1774 if (e->op != "=")
1775 throw semantic_error ("Operator-assign expressions on target "
1776 "variables not implemented", e->tok);
1777
1778 assert (new_left == fcall);
1779 fcall->args.push_back (new_right);
4ed05b15 1780 provide (fcall);
77de5e9e 1781 }
e57b735a
GH
1782 else
1783 {
de688825
JS
1784 e->left = new_left;
1785 e->right = new_right;
1786 provide (e);
e57b735a
GH
1787 }
1788}
d9b516ca 1789
d7f3e0c5 1790
e57b735a 1791void
a7999c82 1792dwarf_var_expanding_visitor::visit_target_symbol_saved_return (target_symbol* e)
e57b735a 1793{
a7999c82
JS
1794 // Get the full name of the target symbol.
1795 stringstream ts_name_stream;
1796 e->print(ts_name_stream);
1797 string ts_name = ts_name_stream.str();
1798
1799 // Check and make sure we haven't already seen this target
1800 // variable in this return probe. If we have, just return our
1801 // last replacement.
1802 map<string, symbol *>::iterator i = return_ts_map.find(ts_name);
1803 if (i != return_ts_map.end())
85ecf79a 1804 {
a7999c82
JS
1805 provide (i->second);
1806 return;
1807 }
85ecf79a 1808
a7999c82
JS
1809 // We've got to do several things here to handle target
1810 // variables in return probes.
85ecf79a 1811
a7999c82
JS
1812 // (1) Synthesize two global arrays. One is the cache of the
1813 // target variable and the other contains a thread specific
1814 // nesting level counter. The arrays will look like
1815 // this:
1816 //
1817 // _dwarf_tvar_{name}_{num}
1818 // _dwarf_tvar_{name}_{num}_ctr
1819
1820 string aname = (string("_dwarf_tvar_")
1821 + e->base_name.substr(1)
1822 + "_" + lex_cast<string>(tick++));
1823 vardecl* vd = new vardecl;
1824 vd->name = aname;
1825 vd->tok = e->tok;
1826 q.sess.globals.push_back (vd);
1827
1828 string ctrname = aname + "_ctr";
1829 vd = new vardecl;
1830 vd->name = ctrname;
1831 vd->tok = e->tok;
1832 q.sess.globals.push_back (vd);
1833
1834 // (2) Create a new code block we're going to insert at the
1835 // beginning of this probe to get the cached value into a
1836 // temporary variable. We'll replace the target variable
1837 // reference with the temporary variable reference. The code
1838 // will look like this:
1839 //
1840 // _dwarf_tvar_tid = tid()
1841 // _dwarf_tvar_{name}_{num}_tmp
1842 // = _dwarf_tvar_{name}_{num}[_dwarf_tvar_tid,
1843 // _dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]]
1844 // delete _dwarf_tvar_{name}_{num}[_dwarf_tvar_tid,
1845 // _dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]--]
1846 // if (! _dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid])
1847 // delete _dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]
1848
1849 // (2a) Synthesize the tid temporary expression, which will look
1850 // like this:
1851 //
1852 // _dwarf_tvar_tid = tid()
1853 symbol* tidsym = new symbol;
1854 tidsym->name = string("_dwarf_tvar_tid");
1855 tidsym->tok = e->tok;
85ecf79a 1856
a7999c82
JS
1857 if (add_block == NULL)
1858 {
1859 add_block = new block;
1860 add_block->tok = e->tok;
8c819921 1861
a7999c82
JS
1862 // Synthesize a functioncall to grab the thread id.
1863 functioncall* fc = new functioncall;
1864 fc->tok = e->tok;
1865 fc->function = string("tid");
8c819921 1866
a7999c82 1867 // Assign the tid to '_dwarf_tvar_tid'.
8c819921
DS
1868 assignment* a = new assignment;
1869 a->tok = e->tok;
1870 a->op = "=";
a7999c82
JS
1871 a->left = tidsym;
1872 a->right = fc;
8c819921
DS
1873
1874 expr_statement* es = new expr_statement;
1875 es->tok = e->tok;
1876 es->value = a;
8c819921 1877 add_block->statements.push_back (es);
a7999c82 1878 }
8c819921 1879
a7999c82
JS
1880 // (2b) Synthesize an array reference and assign it to a
1881 // temporary variable (that we'll use as replacement for the
1882 // target variable reference). It will look like this:
1883 //
1884 // _dwarf_tvar_{name}_{num}_tmp
1885 // = _dwarf_tvar_{name}_{num}[_dwarf_tvar_tid,
1886 // _dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]]
1887
1888 arrayindex* ai_tvar_base = new arrayindex;
1889 ai_tvar_base->tok = e->tok;
1890
1891 symbol* sym = new symbol;
1892 sym->name = aname;
1893 sym->tok = e->tok;
1894 ai_tvar_base->base = sym;
1895
1896 ai_tvar_base->indexes.push_back(tidsym);
1897
1898 // We need to create a copy of the array index in its current
1899 // state so we can have 2 variants of it (the original and one
1900 // that post-decrements the second index).
1901 arrayindex* ai_tvar = new arrayindex;
1902 arrayindex* ai_tvar_postdec = new arrayindex;
1903 *ai_tvar = *ai_tvar_base;
1904 *ai_tvar_postdec = *ai_tvar_base;
1905
1906 // Synthesize the
1907 // "_dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]" used as the
1908 // second index into the array.
1909 arrayindex* ai_ctr = new arrayindex;
1910 ai_ctr->tok = e->tok;
1911
1912 sym = new symbol;
1913 sym->name = ctrname;
1914 sym->tok = e->tok;
1915 ai_ctr->base = sym;
1916 ai_ctr->indexes.push_back(tidsym);
1917 ai_tvar->indexes.push_back(ai_ctr);
1918
1919 symbol* tmpsym = new symbol;
1920 tmpsym->name = aname + "_tmp";
1921 tmpsym->tok = e->tok;
1922
1923 assignment* a = new assignment;
1924 a->tok = e->tok;
1925 a->op = "=";
1926 a->left = tmpsym;
1927 a->right = ai_tvar;
1928
1929 expr_statement* es = new expr_statement;
1930 es->tok = e->tok;
1931 es->value = a;
1932
1933 add_block->statements.push_back (es);
1934
1935 // (2c) Add a post-decrement to the second array index and
1936 // delete the array value. It will look like this:
1937 //
1938 // delete _dwarf_tvar_{name}_{num}[_dwarf_tvar_tid,
1939 // _dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]--]
1940
1941 post_crement* pc = new post_crement;
1942 pc->tok = e->tok;
1943 pc->op = "--";
1944 pc->operand = ai_ctr;
1945 ai_tvar_postdec->indexes.push_back(pc);
1946
1947 delete_statement* ds = new delete_statement;
1948 ds->tok = e->tok;
1949 ds->value = ai_tvar_postdec;
1950
1951 add_block->statements.push_back (ds);
1952
1953 // (2d) Delete the counter value if it is 0. It will look like
1954 // this:
1955 // if (! _dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid])
1956 // delete _dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]
1957
1958 ds = new delete_statement;
1959 ds->tok = e->tok;
1960 ds->value = ai_ctr;
1961
1962 unary_expression *ue = new unary_expression;
1963 ue->tok = e->tok;
1964 ue->op = "!";
1965 ue->operand = ai_ctr;
1966
1967 if_statement *ifs = new if_statement;
1968 ifs->tok = e->tok;
1969 ifs->condition = ue;
1970 ifs->thenblock = ds;
1971 ifs->elseblock = NULL;
1972
1973 add_block->statements.push_back (ifs);
1974
1975 // (3) We need an entry probe that saves the value for us in the
1976 // global array we created. Create the entry probe, which will
1977 // look like this:
1978 //
1979 // probe kernel.function("{function}") {
1980 // _dwarf_tvar_tid = tid()
1981 // _dwarf_tvar_{name}_{num}[_dwarf_tvar_tid,
1982 // ++_dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]]
1983 // = ${param}
1984 // }
1985
1986 if (add_probe == NULL)
1987 {
1988 add_probe = new probe;
1989 add_probe->tok = e->tok;
1990
1991 // We need the name of the current probe point, minus the
1992 // ".return" (or anything after it, such as ".maxactive(N)").
1993 // Create a new probe point, copying all the components,
1994 // stopping when we see the ".return" component.
1995 probe_point* pp = new probe_point;
1996 for (unsigned c = 0; c < q.base_loc->components.size(); c++)
85ecf79a 1997 {
a7999c82
JS
1998 if (q.base_loc->components[c]->functor == "return")
1999 break;
2000 else
2001 pp->components.push_back(q.base_loc->components[c]);
2002 }
2003 pp->tok = e->tok;
2004 pp->optional = q.base_loc->optional;
2005 add_probe->locations.push_back(pp);
8fc05e57 2006
a7999c82
JS
2007 add_probe->body = new block;
2008 add_probe->body->tok = e->tok;
4baf0e53 2009
a7999c82
JS
2010 // Synthesize a functioncall to grab the thread id.
2011 functioncall* fc = new functioncall;
2012 fc->tok = e->tok;
2013 fc->function = string("tid");
4baf0e53 2014
a7999c82
JS
2015 // Assign the tid to '_dwarf_tvar_tid'.
2016 assignment* a = new assignment;
8fc05e57
DS
2017 a->tok = e->tok;
2018 a->op = "=";
a7999c82
JS
2019 a->left = tidsym;
2020 a->right = fc;
8fc05e57 2021
a7999c82 2022 expr_statement* es = new expr_statement;
8fc05e57
DS
2023 es->tok = e->tok;
2024 es->value = a;
ba6f838d 2025 add_probe->body = new block(add_probe->body, es);
85ecf79a 2026
a7999c82
JS
2027 vardecl* vd = new vardecl;
2028 vd->tok = e->tok;
2029 vd->name = tidsym->name;
2030 vd->type = pe_long;
2031 vd->set_arity(0);
2032 add_probe->locals.push_back(vd);
85ecf79a 2033 }
cf2a1f85 2034
a7999c82
JS
2035 // Save the value, like this:
2036 // _dwarf_tvar_{name}_{num}[_dwarf_tvar_tid,
2037 // ++_dwarf_tvar_{name}_{num}_ctr[_dwarf_tvar_tid]]
2038 // = ${param}
2039 arrayindex* ai_tvar_preinc = new arrayindex;
2040 *ai_tvar_preinc = *ai_tvar_base;
2041
2042 pre_crement* preinc = new pre_crement;
2043 preinc->tok = e->tok;
2044 preinc->op = "++";
2045 preinc->operand = ai_ctr;
2046 ai_tvar_preinc->indexes.push_back(preinc);
2047
2048 a = new assignment;
2049 a->tok = e->tok;
2050 a->op = "=";
2051 a->left = ai_tvar_preinc;
2052 a->right = e;
2053
2054 es = new expr_statement;
2055 es->tok = e->tok;
2056 es->value = a;
2057
2058 add_probe->body = new block(add_probe->body, es);
2059
2060 // (4) Provide the '_dwarf_tvar_{name}_{num}_tmp' variable to
2061 // our parent so it can be used as a substitute for the target
2062 // symbol.
2063 provide (tmpsym);
2064
2065 // (5) Remember this replacement since we might be able to reuse
2066 // it later if the same return probe references this target
2067 // symbol again.
2068 return_ts_map[ts_name] = tmpsym;
2069}
a43ba433 2070
2cb3fe26 2071
a7999c82
JS
2072void
2073dwarf_var_expanding_visitor::visit_target_symbol_context (target_symbol* e)
2074{
2075 Dwarf_Die *scopes;
2076 if (dwarf_getscopes_die (scope_die, &scopes) == 0)
2077 return;
0a98fd42 2078 auto_free free_scopes(scopes);
2cb3fe26 2079
a7999c82
JS
2080 target_symbol *tsym = new target_symbol;
2081 print_format* pf = new print_format;
a43ba433 2082
a7999c82
JS
2083 // Convert $$parms to sprintf of a list of parms and active local vars
2084 // which we recursively evaluate
a43ba433 2085
a7999c82
JS
2086 // NB: we synthesize a new token here rather than reusing
2087 // e->tok, because print_format::print likes to use
2088 // its tok->content.
2089 token* pf_tok = new token;
2090 pf_tok->location = e->tok->location;
2091 pf_tok->type = tok_identifier;
2092 pf_tok->content = "sprint";
2cb3fe26 2093
a7999c82
JS
2094 pf->tok = pf_tok;
2095 pf->print_to_stream = false;
2096 pf->print_with_format = true;
2097 pf->print_with_delim = false;
2098 pf->print_with_newline = false;
2099 pf->print_char = false;
2100
2101 if (q.has_return && (e->base_name == "$$return"))
2102 {
2103 tsym->tok = e->tok;
2104 tsym->base_name = "$return";
2105
2106 // Ignore any variable that isn't accessible.
2107 tsym->saved_conversion_error = 0;
2108 expression *texp = tsym;
8b095b45 2109 replace (texp); // NB: throws nothing ...
a7999c82 2110 if (tsym->saved_conversion_error) // ... but this is how we know it happened.
a43ba433 2111 {
2cb3fe26 2112
a43ba433
FCE
2113 }
2114 else
2115 {
a7999c82
JS
2116 pf->raw_components += "return";
2117 pf->raw_components += "=%#x ";
2118 pf->args.push_back(texp);
2119 }
2120 }
2121 else
2122 {
2123 // non-.return probe: support $$parms, $$vars, $$locals
2124 Dwarf_Die result;
2125 if (dwarf_child (&scopes[0], &result) == 0)
2126 do
2127 {
2128 switch (dwarf_tag (&result))
00cf3709 2129 {
a7999c82
JS
2130 case DW_TAG_variable:
2131 if (e->base_name == "$$parms")
2132 continue;
2133 break;
2134 case DW_TAG_formal_parameter:
2135 if (e->base_name == "$$locals")
2136 continue;
2137 break;
2138
2139 default:
2140 continue;
2141 }
41c262f3 2142
a7999c82
JS
2143 const char *diename = dwarf_diename (&result);
2144 if (! diename) continue;
f76427a2 2145
a7999c82
JS
2146 tsym->tok = e->tok;
2147 tsym->base_name = "$";
2148 tsym->base_name += diename;
41c262f3 2149
a7999c82
JS
2150 // Ignore any variable that isn't accessible.
2151 tsym->saved_conversion_error = 0;
2152 expression *texp = tsym;
8b095b45 2153 replace (texp); // NB: throws nothing ...
a7999c82
JS
2154 if (tsym->saved_conversion_error) // ... but this is how we know it happened.
2155 {
2156 if (q.sess.verbose>2)
a43ba433 2157 {
a7999c82
JS
2158 for (semantic_error *c = tsym->saved_conversion_error;
2159 c != 0;
2160 c = c->chain) {
2161 clog << "variable location problem: " << c->what() << endl;
2162 }
a43ba433 2163 }
a7999c82
JS
2164
2165 pf->raw_components += diename;
2166 pf->raw_components += "=? ";
00cf3709 2167 }
a7999c82
JS
2168 else
2169 {
2170 pf->raw_components += diename;
2171 pf->raw_components += "=%#x ";
2172 pf->args.push_back(texp);
2173 }
2174 }
2175 while (dwarf_siblingof (&result, &result) == 0);
2176 }
2cb3fe26 2177
a7999c82
JS
2178 pf->components = print_format::string_to_components(pf->raw_components);
2179 provide (pf);
2180}
2181
2cb3fe26 2182
a7999c82
JS
2183void
2184dwarf_var_expanding_visitor::visit_target_symbol (target_symbol *e)
2185{
2186 assert(e->base_name.size() > 0 && e->base_name[0] == '$');
2187 visited = true;
2188
2189 bool lvalue = is_active_lvalue(e);
2190 if (lvalue && !q.sess.guru_mode)
2191 throw semantic_error("write to target variable not permitted", e->tok);
2192
2193 // See if we need to generate a new probe to save/access function
2194 // parameters from a return probe. PR 1382.
2195 if (q.has_return
2196 && e->base_name != "$return" // not the special return-value variable handled below
2197 && e->base_name != "$$return") // nor the other special variable handled below
2198 {
2199 if (lvalue)
2200 throw semantic_error("write to target variable not permitted in .return probes", e->tok);
2201
2202 visit_target_symbol_saved_return(e);
2203 return;
2204 }
2205
2206 if (e->base_name == "$$vars"
2207 || e->base_name == "$$parms"
2208 || e->base_name == "$$locals"
2209 || (q.has_return && (e->base_name == "$$return")))
2210 {
2211 if (lvalue)
2212 throw semantic_error("cannot write to context variable", e->tok);
2213
2214 if (e->addressof)
2215 throw semantic_error("cannot take address of context variable", e->tok);
2cb3fe26 2216
a7999c82 2217 visit_target_symbol_context(e);
2cb3fe26
SC
2218 return;
2219 }
2220
e57b735a 2221 // Synthesize a function.
d7f3e0c5 2222 functiondecl *fdecl = new functiondecl;
7b99c7d3 2223 fdecl->tok = e->tok;
d7f3e0c5 2224 embeddedcode *ec = new embeddedcode;
5e309481 2225 ec->tok = e->tok;
e8fbc5e8 2226
1b07c728 2227 string fname = (string(lvalue ? "_dwarf_tvar_set" : "_dwarf_tvar_get")
20e4a32c 2228 + "_" + e->base_name.substr(1)
e57b735a
GH
2229 + "_" + lex_cast<string>(tick++));
2230
66d284f4 2231 try
e57b735a 2232 {
a43ba433 2233 if (q.has_return && (e->base_name == "$return"))
e19fda4e
DS
2234 {
2235 ec->code = q.dw.literal_stmt_for_return (scope_die,
2236 addr,
b4c34c26 2237 e,
e19fda4e
DS
2238 lvalue,
2239 fdecl->type);
2240 }
2241 else
2242 {
2243 ec->code = q.dw.literal_stmt_for_local (scope_die,
2244 addr,
2245 e->base_name.substr(1),
b4c34c26 2246 e,
e19fda4e
DS
2247 lvalue,
2248 fdecl->type);
2249 }
2250
1b07c728
FCE
2251 if (! lvalue)
2252 ec->code += "/* pure */";
66d284f4
FCE
2253 }
2254 catch (const semantic_error& er)
2255 {
3bd0d4df
RA
2256 if (!q.sess.skip_badvars)
2257 {
2258 // We suppress this error message, and pass the unresolved
2259 // target_symbol to the next pass. We hope that this value ends
2260 // up not being referenced after all, so it can be optimized out
2261 // quietly.
2262 provide (e);
2263 semantic_error* saveme = new semantic_error (er); // copy it
3bd0d4df
RA
2264 // NB: we can have multiple errors, since a $target variable
2265 // may be expanded in several different contexts:
2266 // function ("*") { $var }
2267 saveme->chain = e->saved_conversion_error;
2268 e->saved_conversion_error = saveme;
2269 }
ad002306 2270 else
3bd0d4df 2271 {
ad002306 2272 // Upon user request for ignoring context, the symbol is replaced
3bd0d4df
RA
2273 // with a literal 0 and a warning message displayed
2274 literal_number* ln_zero = new literal_number (0);
2275 ln_zero->tok = e->tok;
2276 provide (ln_zero);
8c1b9e27
FCE
2277 if (!q.sess.suppress_warnings)
2278 q.sess.print_warning ("Bad $context variable being substituted with literal 0",
2279 e->tok);
3bd0d4df 2280 }
1cde5ba5
JS
2281 delete fdecl;
2282 delete ec;
cbfbbf69 2283 return;
66d284f4 2284 }
e57b735a 2285
d7f3e0c5
GH
2286 fdecl->name = fname;
2287 fdecl->body = ec;
6fda2dff
JS
2288
2289 // Any non-literal indexes need to be passed in too.
2290 for (unsigned i = 0; i < e->components.size(); ++i)
2291 if (e->components[i].type == target_symbol::comp_expression_array_index)
2292 {
2293 vardecl *v = new vardecl;
2294 v->type = pe_long;
2295 v->name = "index" + lex_cast<string>(i);
2296 v->tok = e->tok;
2297 fdecl->formal_args.push_back(v);
2298 }
2299
e57b735a
GH
2300 if (lvalue)
2301 {
2302 // Modify the fdecl so it carries a single pe_long formal
2303 // argument called "value".
2304
2305 // FIXME: For the time being we only support setting target
2306 // variables which have base types; these are 'pe_long' in
2307 // stap's type vocabulary. Strings and pointers might be
2308 // reasonable, some day, but not today.
2309
2310 vardecl *v = new vardecl;
2311 v->type = pe_long;
2312 v->name = "value";
2313 v->tok = e->tok;
2314 fdecl->formal_args.push_back(v);
2315 }
f76427a2 2316 q.sess.functions[fdecl->name]=fdecl;
d9b516ca 2317
e57b735a 2318 // Synthesize a functioncall.
d7f3e0c5
GH
2319 functioncall* n = new functioncall;
2320 n->tok = e->tok;
2321 n->function = fname;
35d4ab18 2322 n->referent = 0; // NB: must not resolve yet, to ensure inclusion in session
e57b735a 2323
6fda2dff
JS
2324 // Any non-literal indexes need to be passed in too.
2325 for (unsigned i = 0; i < e->components.size(); ++i)
2326 if (e->components[i].type == target_symbol::comp_expression_array_index)
2327 n->args.push_back(require(e->components[i].expr_index));
2328
e57b735a
GH
2329 if (lvalue)
2330 {
2331 // Provide the functioncall to our parent, so that it can be
2332 // used to substitute for the assignment node immediately above
2333 // us.
2334 assert(!target_symbol_setter_functioncalls.empty());
2335 *(target_symbol_setter_functioncalls.top()) = n;
2336 }
2337
4ed05b15 2338 provide (n);
77de5e9e
GH
2339}
2340
2341
c24447be
JS
2342void
2343dwarf_var_expanding_visitor::visit_cast_op (cast_op *e)
2344{
2345 // Fill in our current module context if needed
2346 if (e->module.empty())
2347 e->module = q.dw.module_name;
2348
2349 var_expanding_visitor::visit_cast_op(e);
2350}
2351
2352
c4ce66a1
JS
2353struct dwarf_cast_query : public base_query
2354{
946e1a48 2355 cast_op& e;
c4ce66a1 2356 const bool lvalue;
c4ce66a1 2357
abb41d92
JS
2358 exp_type& pe_type;
2359 string& code;
c4ce66a1 2360
946e1a48 2361 dwarf_cast_query(dwflpp& dw, const string& module, cast_op& e,
abb41d92
JS
2362 bool lvalue, exp_type& pe_type, string& code):
2363 base_query(dw, module), e(e), lvalue(lvalue),
2364 pe_type(pe_type), code(code) {}
c4ce66a1
JS
2365
2366 void handle_query_module();
2367 int handle_query_cu(Dwarf_Die * cudie);
2368
2369 static int cast_query_cu (Dwarf_Die * cudie, void * arg);
2370};
2371
2372
c4ce66a1
JS
2373void
2374dwarf_cast_query::handle_query_module()
2375{
abb41d92 2376 if (!code.empty())
c4ce66a1
JS
2377 return;
2378
2379 // look for the type in each CU
2380 dw.iterate_over_cus(cast_query_cu, this);
2381}
2382
2383
2384int
2385dwarf_cast_query::handle_query_cu(Dwarf_Die * cudie)
2386{
abb41d92 2387 if (!code.empty())
c4ce66a1
JS
2388 return DWARF_CB_ABORT;
2389
2390 dw.focus_on_cu (cudie);
2391 Dwarf_Die* type_die = dw.declaration_resolve(e.type.c_str());
2392 if (type_die)
2393 {
2394 try
2395 {
b4c34c26 2396 code = dw.literal_stmt_for_pointer (type_die, &e,
c4ce66a1
JS
2397 lvalue, pe_type);
2398 }
946e1a48 2399 catch (const semantic_error& er)
c4ce66a1 2400 {
946e1a48
JS
2401 // XXX might be better to try again in another CU
2402 // NB: we can have multiple errors, since a @cast
2403 // may be expanded in several different contexts:
2404 // function ("*") { @cast(...) }
2405 semantic_error* new_er = new semantic_error(er);
2406 new_er->chain = e.saved_conversion_error;
2407 e.saved_conversion_error = new_er;
c4ce66a1 2408 }
c4ce66a1
JS
2409 return DWARF_CB_ABORT;
2410 }
2411 return DWARF_CB_OK;
2412}
2413
2414
2415int
2416dwarf_cast_query::cast_query_cu (Dwarf_Die * cudie, void * arg)
2417{
2418 dwarf_cast_query * q = static_cast<dwarf_cast_query *>(arg);
2419 if (pending_interrupts) return DWARF_CB_ABORT;
2420 return q->handle_query_cu(cudie);
2421}
2422
2423
2424struct dwarf_cast_expanding_visitor: public var_expanding_visitor
2425{
2426 systemtap_session& s;
2427 dwarf_builder& db;
2428
2429 dwarf_cast_expanding_visitor(systemtap_session& s, dwarf_builder& db):
2430 s(s), db(db) {}
2431 void visit_cast_op (cast_op* e);
fb0274bc 2432 void filter_special_modules(string& module);
c4ce66a1
JS
2433};
2434
2435
fb0274bc
JS
2436void dwarf_cast_expanding_visitor::filter_special_modules(string& module)
2437{
d90053e7 2438 // look for "<path/to/header>" or "kernel<path/to/header>"
fb0274bc 2439 // for those cases, build a module including that header
d90053e7
JS
2440 if (module[module.size() - 1] == '>' &&
2441 (module[0] == '<' || module.compare(0, 7, "kernel<") == 0))
fb0274bc
JS
2442 {
2443 string cached_module;
2444 if (s.use_cache)
2445 {
2446 // see if the cached module exists
a2639cb7 2447 cached_module = find_typequery_hash(s, module);
fb0274bc
JS
2448 if (!cached_module.empty())
2449 {
2450 int fd = open(cached_module.c_str(), O_RDONLY);
2451 if (fd != -1)
2452 {
2453 if (s.verbose > 2)
2454 clog << "Pass 2: using cached " << cached_module << endl;
2455 module = cached_module;
2456 close(fd);
2457 return;
2458 }
2459 }
2460 }
2461
2462 // no cached module, time to make it
d90053e7 2463 if (make_typequery(s, module) == 0)
fb0274bc 2464 {
fb0274bc
JS
2465 if (s.use_cache)
2466 {
2467 // try to save typequery in the cache
2468 if (s.verbose > 2)
d90053e7 2469 clog << "Copying " << module
fb0274bc 2470 << " to " << cached_module << endl;
d90053e7 2471 if (copy_file(module.c_str(),
fb0274bc 2472 cached_module.c_str()) != 0)
d90053e7 2473 cerr << "Copy failed (\"" << module << "\" to \""
fb0274bc
JS
2474 << cached_module << "\"): " << strerror(errno) << endl;
2475 }
2476 }
2477 }
2478}
2479
2480
c4ce66a1
JS
2481void dwarf_cast_expanding_visitor::visit_cast_op (cast_op* e)
2482{
313db8e6
DB
2483 if (s.unprivileged)
2484 throw semantic_error("typecasting may not be used when --unprivileged is specified", e->tok);
2485
c4ce66a1
JS
2486 bool lvalue = is_active_lvalue(e);
2487 if (lvalue && !s.guru_mode)
2488 throw semantic_error("write to typecast value not permitted", e->tok);
2489
2490 if (e->module.empty())
2491 e->module = "kernel"; // "*" may also be reasonable to search all kernel modules
2492
c4ce66a1
JS
2493 string code;
2494 exp_type type = pe_long;
8b31197b
JS
2495
2496 // split the module string by ':' for alternatives
2497 vector<string> modules;
2498 tokenize(e->module, modules, ":");
2499 for (unsigned i = 0; code.empty() && i < modules.size(); ++i)
c4ce66a1 2500 {
8b31197b 2501 string& module = modules[i];
fb0274bc 2502 filter_special_modules(module);
abb41d92 2503
c4ce66a1
JS
2504 // NB: This uses '/' to distinguish between kernel modules and userspace,
2505 // which means that userspace modules won't get any PATH searching.
2506 dwflpp* dw;
707bf35e
JS
2507 try
2508 {
2509 if (module.find('/') == string::npos)
2510 {
2511 // kernel or kernel module target
ae2552da 2512 dw = db.get_kern_dw(s, module);
707bf35e
JS
2513 }
2514 else
2515 {
2516 module = find_executable (module); // canonicalize it
2517 dw = db.get_user_dw(s, module);
2518 }
2519 }
2520 catch (const semantic_error& er)
2521 {
2522 /* ignore and go to the next module */
2523 continue;
2524 }
c4ce66a1 2525
abb41d92 2526 dwarf_cast_query q (*dw, module, *e, lvalue, type, code);
51178501 2527 dw->iterate_over_modules(&query_module, &q);
c4ce66a1 2528 }
abb41d92
JS
2529
2530 if (code.empty())
c4ce66a1 2531 {
946e1a48
JS
2532 // We pass the unresolved cast_op to the next pass, and hope
2533 // that this value ends up not being referenced after all, so
2534 // it can be optimized out quietly.
c4ce66a1
JS
2535 provide (e);
2536 return;
2537 }
2538
2539 string fname = (string(lvalue ? "_dwarf_tvar_set" : "_dwarf_tvar_get")
2540 + "_" + e->base_name.substr(1)
2541 + "_" + lex_cast<string>(tick++));
2542
2543 // Synthesize a function.
2544 functiondecl *fdecl = new functiondecl;
2545 fdecl->tok = e->tok;
2546 fdecl->type = type;
2547 fdecl->name = fname;
2548
2549 embeddedcode *ec = new embeddedcode;
2550 ec->tok = e->tok;
2551 ec->code = code;
2552 fdecl->body = ec;
2553
2554 // Give the fdecl an argument for the pointer we're trying to cast
2555 vardecl *v1 = new vardecl;
2556 v1->type = pe_long;
2557 v1->name = "pointer";
2558 v1->tok = e->tok;
2559 fdecl->formal_args.push_back(v1);
2560
6fda2dff
JS
2561 // Any non-literal indexes need to be passed in too.
2562 for (unsigned i = 0; i < e->components.size(); ++i)
2563 if (e->components[i].type == target_symbol::comp_expression_array_index)
2564 {
2565 vardecl *v = new vardecl;
2566 v->type = pe_long;
2567 v->name = "index" + lex_cast<string>(i);
2568 v->tok = e->tok;
2569 fdecl->formal_args.push_back(v);
2570 }
2571
c4ce66a1
JS
2572 if (lvalue)
2573 {
2574 // Modify the fdecl so it carries a second pe_long formal
2575 // argument called "value".
2576
2577 // FIXME: For the time being we only support setting target
2578 // variables which have base types; these are 'pe_long' in
2579 // stap's type vocabulary. Strings and pointers might be
2580 // reasonable, some day, but not today.
2581
2582 vardecl *v2 = new vardecl;
2583 v2->type = pe_long;
2584 v2->name = "value";
2585 v2->tok = e->tok;
2586 fdecl->formal_args.push_back(v2);
2587 }
2588 else
2589 ec->code += "/* pure */";
2590
2591 s.functions[fdecl->name] = fdecl;
2592
2593 // Synthesize a functioncall.
2594 functioncall* n = new functioncall;
2595 n->tok = e->tok;
2596 n->function = fname;
2597 n->referent = 0; // NB: must not resolve yet, to ensure inclusion in session
2598 n->args.push_back(e->operand);
2599
6fda2dff
JS
2600 // Any non-literal indexes need to be passed in too.
2601 for (unsigned i = 0; i < e->components.size(); ++i)
2602 if (e->components[i].type == target_symbol::comp_expression_array_index)
2603 n->args.push_back(require(e->components[i].expr_index));
2604
c4ce66a1
JS
2605 if (lvalue)
2606 {
2607 // Provide the functioncall to our parent, so that it can be
2608 // used to substitute for the assignment node immediately above
2609 // us.
2610 assert(!target_symbol_setter_functioncalls.empty());
2611 *(target_symbol_setter_functioncalls.top()) = n;
2612 }
2613
2614 provide (n);
77de5e9e
GH
2615}
2616
2617
b8da0ad1
FCE
2618void
2619dwarf_derived_probe::printsig (ostream& o) const
2620{
2621 // Instead of just printing the plain locations, we add a PC value
2622 // as a comment as a way of telling e.g. apart multiple inlined
2623 // function instances. This is distinct from the verbose/clog
2624 // output, since this part goes into the cache hash calculations.
2625 sole_location()->print (o);
6d0f3f0c 2626 o << " /* pc=" << section << "+0x" << hex << addr << dec << " */";
b8da0ad1
FCE
2627 printsig_nested (o);
2628}
2629
2630
2631
dc38c0ae 2632void
b20febf3
FCE
2633dwarf_derived_probe::join_group (systemtap_session& s)
2634{
2635 if (! s.dwarf_derived_probes)
2636 s.dwarf_derived_probes = new dwarf_derived_probe_group ();
2637 s.dwarf_derived_probes->enroll (this);
2638}
2639
2640
2641dwarf_derived_probe::dwarf_derived_probe(const string& funcname,
2642 const string& filename,
2643 int line,
91af0778 2644 // module & section specify a relocation
b20febf3
FCE
2645 // base for <addr>, unless section==""
2646 // (equivalently module=="kernel")
2647 const string& module,
2648 const string& section,
2649 // NB: dwfl_addr is the virtualized
2650 // address for this symbol.
2651 Dwarf_Addr dwfl_addr,
2652 // addr is the section-offset for
2653 // actual relocation.
2654 Dwarf_Addr addr,
2655 dwarf_query& q,
37ebca01 2656 Dwarf_Die* scope_die /* may be null */)
1939ea32 2657 : derived_probe (q.base_probe, new probe_point(*q.base_loc) /* .components soon rewritten */ ),
b20febf3 2658 module (module), section (section), addr (addr),
c9bad430
DS
2659 has_return (q.has_return),
2660 has_maxactive (q.has_maxactive),
2661 maxactive_val (q.maxactive_val)
bd2b1e68 2662{
b20febf3 2663 // Assert relocation invariants
4baf0e53 2664 if (section == "" && dwfl_addr != addr) // addr should be absolute
84048984
FCE
2665 throw semantic_error ("missing relocation base against", q.base_loc->tok);
2666 if (section != "" && dwfl_addr == addr) // addr should be an offset
b20febf3 2667 throw semantic_error ("inconsistent relocation address", q.base_loc->tok);
df8fadee 2668
b20febf3 2669 this->tok = q.base_probe->tok;
b95e2b79 2670 this->access_vars = false;
2930abc7 2671
21beacc9
FCE
2672 // XXX: hack for strange g++/gcc's
2673#ifndef USHRT_MAX
2674#define USHRT_MAX 32767
2675#endif
2676
606fd9c8
FCE
2677 // Range limit maxactive() value
2678 if (q.has_maxactive && (q.maxactive_val < 0 || q.maxactive_val > USHRT_MAX))
2679 throw semantic_error ("maxactive value out of range [0,"
2680 + lex_cast<string>(USHRT_MAX) + "]",
2681 q.base_loc->tok);
2682
de688825 2683 // Expand target variables in the probe body
5f0a03a6 2684 if (!null_die(scope_die))
8fc05e57 2685 {
de688825 2686 dwarf_var_expanding_visitor v (q, scope_die, dwfl_addr);
8b095b45 2687 v.replace (this->body);
b95e2b79 2688 this->access_vars = v.visited;
37ebca01
FCE
2689
2690 // If during target-variable-expanding the probe, we added a new block
2691 // of code, add it to the start of the probe.
2692 if (v.add_block)
ba6f838d 2693 this->body = new block(v.add_block, this->body);
37ebca01
FCE
2694 // If when target-variable-expanding the probe, we added a new
2695 // probe, add it in a new file to the list of files to be processed.
2696 if (v.add_probe)
2697 {
2698 stapfile *f = new stapfile;
2699 f->probes.push_back(v.add_probe);
2700 q.sess.files.push_back(f);
2701 }
8fc05e57 2702 }
37ebca01 2703 // else - null scope_die - $target variables will produce an error during translate phase
8fc05e57 2704
0a98fd42
JS
2705 // Save the local variables for listing mode
2706 if (q.sess.listing_mode_vars)
2707 saveargs(scope_die);
2708
5d23847d 2709 // Reset the sole element of the "locations" vector as a
b20febf3
FCE
2710 // "reverse-engineered" form of the incoming (q.base_loc) probe
2711 // point. This allows a user to see what function / file / line
2712 // number any particular match of the wildcards.
2930abc7 2713
a229fcd7 2714 vector<probe_point::component*> comps;
91af0778
FCE
2715 if (q.has_kernel)
2716 comps.push_back (new probe_point::component(TOK_KERNEL));
2717 else if(q.has_module)
2718 comps.push_back (new probe_point::component(TOK_MODULE, new literal_string(module)));
2719 else if(q.has_process)
2720 comps.push_back (new probe_point::component(TOK_PROCESS, new literal_string(module)));
2721 else
2722 assert (0);
b5d77020 2723
db520b00
FCE
2724 string fn_or_stmt;
2725 if (q.has_function_str || q.has_function_num)
2726 fn_or_stmt = "function";
2727 else
2728 fn_or_stmt = "statement";
a229fcd7 2729
b8da0ad1 2730 if (q.has_function_str || q.has_statement_str)
db520b00 2731 {
4cd232e4 2732 string retro_name = funcname;
b20febf3 2733 if (filename != "")
cee35f73 2734 {
fb84c077 2735 retro_name += ("@" + string (filename));
cee35f73 2736 if (line > 0)
fb84c077 2737 retro_name += (":" + lex_cast<string> (line));
cee35f73 2738 }
db520b00
FCE
2739 comps.push_back
2740 (new probe_point::component
2741 (fn_or_stmt, new literal_string (retro_name)));
2742 }
b8da0ad1 2743 else if (q.has_function_num || q.has_statement_num)
db520b00
FCE
2744 {
2745 Dwarf_Addr retro_addr;
2746 if (q.has_function_num)
2747 retro_addr = q.function_num_val;
2748 else
2749 retro_addr = q.statement_num_val;
db520b00
FCE
2750 comps.push_back (new probe_point::component
2751 (fn_or_stmt,
2752 new literal_number(retro_addr))); // XXX: should be hex if possible
37ebca01
FCE
2753
2754 if (q.has_absolute)
2755 comps.push_back (new probe_point::component (TOK_ABSOLUTE));
a229fcd7
GH
2756 }
2757
b8da0ad1
FCE
2758 if (q.has_call)
2759 comps.push_back (new probe_point::component(TOK_CALL));
2760 if (q.has_inline)
2761 comps.push_back (new probe_point::component(TOK_INLINE));
db520b00 2762 if (has_return)
b8da0ad1
FCE
2763 comps.push_back (new probe_point::component(TOK_RETURN));
2764 if (has_maxactive)
2765 comps.push_back (new probe_point::component
2766 (TOK_MAXACTIVE, new literal_number(maxactive_val)));
d9b516ca 2767
5d23847d
FCE
2768 // Overwrite it.
2769 this->sole_location()->components = comps;
2930abc7
FCE
2770}
2771
bd2b1e68 2772
0a98fd42
JS
2773void
2774dwarf_derived_probe::saveargs(Dwarf_Die* scope_die)
2775{
2776 Dwarf_Die *scopes;
2777 if (!null_die(scope_die) && dwarf_getscopes_die (scope_die, &scopes) == 0)
2778 return;
2779 auto_free free_scopes(scopes);
2780
2781 stringstream argstream;
2782 string type_name;
2783 Dwarf_Attribute type_attr;
2784 Dwarf_Die type_die;
2785
2786 if (has_return &&
2787 dwarf_attr_integrate (scope_die, DW_AT_type, &type_attr) &&
2788 dwarf_formref_die (&type_attr, &type_die) &&
f1c8f8a5 2789 dwarf_type_name(&type_die, type_name))
0a98fd42
JS
2790 argstream << " $return:" << type_name;
2791
2792 Dwarf_Die arg;
2793 if (dwarf_child (&scopes[0], &arg) == 0)
2794 do
2795 {
2796 switch (dwarf_tag (&arg))
2797 {
2798 case DW_TAG_variable:
2799 case DW_TAG_formal_parameter:
2800 break;
2801
2802 default:
2803 continue;
2804 }
2805
2806 const char *arg_name = dwarf_diename (&arg);
2807 if (!arg_name)
2808 continue;
2809
2810 type_name.clear();
2811 if (!dwarf_attr_integrate (&arg, DW_AT_type, &type_attr) ||
2812 !dwarf_formref_die (&type_attr, &type_die) ||
f1c8f8a5 2813 !dwarf_type_name(&type_die, type_name))
0a98fd42
JS
2814 continue;
2815
2816 argstream << " $" << arg_name << ":" << type_name;
2817 }
2818 while (dwarf_siblingof (&arg, &arg) == 0);
2819
2820 args = argstream.str();
2821}
2822
2823
2824void
2825dwarf_derived_probe::printargs(std::ostream &o) const
2826{
2827 o << args;
2828}
2829
2830
7a053d3b 2831void
20c6c071 2832dwarf_derived_probe::register_statement_variants(match_node * root,
88e8da38 2833 dwarf_builder * dw,
bbedb0a6 2834 bool unprivileged_ok_p)
bd2b1e68 2835{
bbedb0a6 2836 root->allow_unprivileged(unprivileged_ok_p)->bind(dw);
54efe513
GH
2837}
2838
7a053d3b 2839void
fd6602a0 2840dwarf_derived_probe::register_function_variants(match_node * root,
88e8da38 2841 dwarf_builder * dw,
bbedb0a6 2842 bool unprivileged_ok_p)
bd2b1e68 2843{
bbedb0a6
DB
2844 root->allow_unprivileged(unprivileged_ok_p)->bind(dw);
2845 root->bind(TOK_INLINE)->allow_unprivileged(unprivileged_ok_p)->bind(dw);
2846 root->bind(TOK_CALL)->allow_unprivileged(unprivileged_ok_p)->bind(dw);
2847 root->bind(TOK_RETURN)->allow_unprivileged(unprivileged_ok_p)->bind(dw);
2848 root->bind(TOK_RETURN)->bind_num(TOK_MAXACTIVE)->allow_unprivileged(unprivileged_ok_p)->bind(dw);
bd2b1e68
GH
2849}
2850
7a053d3b 2851void
20c6c071 2852dwarf_derived_probe::register_function_and_statement_variants(match_node * root,
88e8da38 2853 dwarf_builder * dw,
bbedb0a6 2854 bool unprivileged_ok_p)
bd2b1e68
GH
2855{
2856 // Here we match 4 forms:
2857 //
2858 // .function("foo")
2859 // .function(0xdeadbeef)
2860 // .statement("foo")
2861 // .statement(0xdeadbeef)
2862
bbedb0a6
DB
2863 register_function_variants(root->bind_str(TOK_FUNCTION), dw, unprivileged_ok_p);
2864 register_function_variants(root->bind_num(TOK_FUNCTION), dw, unprivileged_ok_p);
2865 register_statement_variants(root->bind_str(TOK_STATEMENT), dw, unprivileged_ok_p);
2866 register_statement_variants(root->bind_num(TOK_STATEMENT), dw, unprivileged_ok_p);
bd2b1e68
GH
2867}
2868
2869void
c4ce66a1 2870dwarf_derived_probe::register_patterns(systemtap_session& s)
bd2b1e68 2871{
c4ce66a1 2872 match_node* root = s.pattern_root;
bd2b1e68
GH
2873 dwarf_builder *dw = new dwarf_builder();
2874
c4ce66a1
JS
2875 update_visitor *filter = new dwarf_cast_expanding_visitor(s, *dw);
2876 s.code_filters.push_back(filter);
2877
20c6c071
GH
2878 register_function_and_statement_variants(root->bind(TOK_KERNEL), dw);
2879 register_function_and_statement_variants(root->bind_str(TOK_MODULE), dw);
37ebca01 2880 root->bind(TOK_KERNEL)->bind_num(TOK_STATEMENT)->bind(TOK_ABSOLUTE)->bind(dw);
0f336e95 2881 root->bind(TOK_KERNEL)->bind_str(TOK_FUNCTION)->bind_str(TOK_LABEL)->bind(dw);
bbedb0a6
DB
2882 root->bind_str(TOK_PROCESS)->bind_str(TOK_FUNCTION)->bind_str(TOK_LABEL)->bind(dw);
2883 register_function_and_statement_variants(root->bind_str(TOK_PROCESS), dw, false/*!unprivileged_ok_p*/);
2884 root->bind_str(TOK_PROCESS)->bind_str(TOK_MARK)->bind(dw);
2885 root->bind_str(TOK_PROCESS)->bind_num(TOK_MARK)->bind(dw);
bd2b1e68
GH
2886}
2887
9020300d
FCE
2888void
2889dwarf_derived_probe::emit_probe_local_init(translator_output * o)
2890{
b95e2b79
MH
2891 if (access_vars)
2892 {
2893 // if accessing $variables, emit bsp cache setup for speeding up
2894 o->newline() << "bspcache(c->unwaddr, c->regs);";
2895 }
9020300d 2896}
2930abc7 2897
b20febf3 2898// ------------------------------------------------------------------------
46b84a80
DS
2899
2900void
b20febf3 2901dwarf_derived_probe_group::enroll (dwarf_derived_probe* p)
46b84a80 2902{
b20febf3 2903 probes_by_module.insert (make_pair (p->module, p));
b8da0ad1
FCE
2904
2905 // XXX: probes put at the same address should all share a
2906 // single kprobe/kretprobe, and have their handlers executed
2907 // sequentially.
b55bc428
FCE
2908}
2909
7a053d3b 2910void
775d51e5 2911dwarf_derived_probe_group::emit_module_decls (systemtap_session& s)
ec4373ff 2912{
b20febf3 2913 if (probes_by_module.empty()) return;
2930abc7 2914
775d51e5
DS
2915 s.op->newline() << "/* ---- dwarf probes ---- */";
2916
2917 // Warn of misconfigured kernels
f41595cc
FCE
2918 s.op->newline() << "#if ! defined(CONFIG_KPROBES)";
2919 s.op->newline() << "#error \"Need CONFIG_KPROBES!\"";
2920 s.op->newline() << "#endif";
775d51e5 2921 s.op->newline();
f41595cc 2922
f07c3b68
FCE
2923 s.op->newline() << "#ifndef KRETACTIVE";
2924 s.op->newline() << "#define KRETACTIVE (max(15,6*NR_CPUS))";
2925 s.op->newline() << "#endif";
2926
b20febf3
FCE
2927 // Forward declare the master entry functions
2928 s.op->newline() << "static int enter_kprobe_probe (struct kprobe *inst,";
2929 s.op->line() << " struct pt_regs *regs);";
2930 s.op->newline() << "static int enter_kretprobe_probe (struct kretprobe_instance *inst,";
2931 s.op->line() << " struct pt_regs *regs);";
2932
42cb22bd
MH
2933 // Emit an array of kprobe/kretprobe pointers
2934 s.op->newline() << "#if defined(STAPCONF_UNREGISTER_KPROBES)";
2935 s.op->newline() << "static void * stap_unreg_kprobes[" << probes_by_module.size() << "];";
2936 s.op->newline() << "#endif";
2937
b20febf3 2938 // Emit the actual probe list.
606fd9c8
FCE
2939
2940 // NB: we used to plop a union { struct kprobe; struct kretprobe } into
2941 // struct stap_dwarf_probe, but it being initialized data makes it add
2942 // hundreds of bytes of padding per stap_dwarf_probe. (PR5673)
4c2732a1 2943 s.op->newline() << "static struct stap_dwarf_kprobe {";
b20febf3 2944 s.op->newline(1) << "union { struct kprobe kp; struct kretprobe krp; } u;";
e4cb375f
MH
2945 s.op->newline() << "#ifdef __ia64__";
2946 s.op->newline() << "struct kprobe dummy;";
2947 s.op->newline() << "#endif";
606fd9c8
FCE
2948 s.op->newline(-1) << "} stap_dwarf_kprobes[" << probes_by_module.size() << "];";
2949 // NB: bss!
2950
4c2732a1 2951 s.op->newline() << "static struct stap_dwarf_probe {";
b0986e7a
DS
2952 s.op->newline(1) << "const unsigned return_p:1;";
2953 s.op->newline() << "const unsigned maxactive_p:1;";
b350f56b 2954 s.op->newline() << "const unsigned optional_p:1;";
b20febf3 2955 s.op->newline() << "unsigned registered_p:1;";
b0986e7a 2956 s.op->newline() << "const unsigned short maxactive_val;";
606fd9c8
FCE
2957
2958 // Let's find some stats for the three embedded strings. Maybe they
2959 // are small and uniform enough to justify putting char[MAX]'s into
2960 // the array instead of relocated char*'s.
2961 size_t module_name_max = 0, section_name_max = 0, pp_name_max = 0;
2962 size_t module_name_tot = 0, section_name_tot = 0, pp_name_tot = 0;
2963 size_t all_name_cnt = probes_by_module.size(); // for average
2964 for (p_b_m_iterator it = probes_by_module.begin(); it != probes_by_module.end(); it++)
2965 {
2966 dwarf_derived_probe* p = it->second;
2967#define DOIT(var,expr) do { \
2968 size_t var##_size = (expr) + 1; \
2969 var##_max = max (var##_max, var##_size); \
2970 var##_tot += var##_size; } while (0)
2971 DOIT(module_name, p->module.size());
2972 DOIT(section_name, p->section.size());
2973 DOIT(pp_name, lex_cast_qstring(*p->sole_location()).size());
2974#undef DOIT
2975 }
2976
2977 // Decide whether it's worthwhile to use char[] or char* by comparing
2978 // the amount of average waste (max - avg) to the relocation data size
2979 // (3 native long words).
2980#define CALCIT(var) \
2981 if ((var##_name_max-(var##_name_tot/all_name_cnt)) < (3 * sizeof(void*))) \
2982 { \
2983 s.op->newline() << "const char " << #var << "[" << var##_name_max << "];"; \
2984 if (s.verbose > 2) clog << "stap_dwarf_probe " << #var \
2985 << "[" << var##_name_max << "]" << endl; \
2986 } \
2987 else \
2988 { \
b0986e7a 2989 s.op->newline() << "const char * const " << #var << ";"; \
606fd9c8
FCE
2990 if (s.verbose > 2) clog << "stap_dwarf_probe *" << #var << endl; \
2991 }
2992
2993 CALCIT(module);
2994 CALCIT(section);
2995 CALCIT(pp);
e6fe60e7 2996#undef CALCIT
606fd9c8 2997
b0986e7a
DS
2998 s.op->newline() << "const unsigned long address;";
2999 s.op->newline() << "void (* const ph) (struct context*);";
b20febf3
FCE
3000 s.op->newline(-1) << "} stap_dwarf_probes[] = {";
3001 s.op->indent(1);
3002
3003 for (p_b_m_iterator it = probes_by_module.begin(); it != probes_by_module.end(); it++)
2930abc7 3004 {
b20febf3
FCE
3005 dwarf_derived_probe* p = it->second;
3006 s.op->newline() << "{";
3007 if (p->has_return)
3008 s.op->line() << " .return_p=1,";
c9bad430 3009 if (p->has_maxactive)
606fd9c8
FCE
3010 {
3011 s.op->line() << " .maxactive_p=1,";
3012 assert (p->maxactive_val >= 0 && p->maxactive_val <= USHRT_MAX);
3013 s.op->line() << " .maxactive_val=" << p->maxactive_val << ",";
3014 }
b350f56b
JS
3015 if (p->locations[0]->optional)
3016 s.op->line() << " .optional_p=1,";
dc38c256 3017 s.op->line() << " .address=(unsigned long)0x" << hex << p->addr << dec << "ULL,";
84048984
FCE
3018 s.op->line() << " .module=\"" << p->module << "\",";
3019 s.op->line() << " .section=\"" << p->section << "\",";
b20febf3
FCE
3020 s.op->line() << " .pp=" << lex_cast_qstring (*p->sole_location()) << ",";
3021 s.op->line() << " .ph=&" << p->name;
3022 s.op->line() << " },";
2930abc7 3023 }
2930abc7 3024
b20febf3
FCE
3025 s.op->newline(-1) << "};";
3026
3027 // Emit the kprobes callback function
3028 s.op->newline();
3029 s.op->newline() << "static int enter_kprobe_probe (struct kprobe *inst,";
3030 s.op->line() << " struct pt_regs *regs) {";
606fd9c8
FCE
3031 // NB: as of PR5673, the kprobe|kretprobe union struct is in BSS
3032 s.op->newline(1) << "int kprobe_idx = ((uintptr_t)inst-(uintptr_t)stap_dwarf_kprobes)/sizeof(struct stap_dwarf_kprobe);";
3033 // Check that the index is plausible
3034 s.op->newline() << "struct stap_dwarf_probe *sdp = &stap_dwarf_probes[";
3035 s.op->line() << "((kprobe_idx >= 0 && kprobe_idx < " << probes_by_module.size() << ")?";
3036 s.op->line() << "kprobe_idx:0)"; // NB: at least we avoid memory corruption
3037 // XXX: it would be nice to give a more verbose error though; BUG_ON later?
3038 s.op->line() << "];";
c12d974f 3039 common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING", "sdp->pp");
b20febf3 3040 s.op->newline() << "c->regs = regs;";
6415ddde
MW
3041
3042 // Make it look like the IP is set as it wouldn't have been replaced
3043 // by a breakpoint instruction when calling real probe handler. Reset
3044 // IP regs on return, so we don't confuse kprobes. PR10458
3d988997
MW
3045 // But only for architectures where REG_IP is a proper lvalue. PR10491
3046 s.op->newline() << "#ifdef REG_IP_LVALUE";
6415ddde
MW
3047 s.op->newline() << "{";
3048 s.op->indent(1);
3049 s.op->newline() << "unsigned long kprobes_ip = REG_IP(c->regs);";
3050 s.op->newline() << "REG_IP(regs) = (unsigned long) inst->addr;";
b20febf3 3051 s.op->newline() << "(*sdp->ph) (c);";
6415ddde
MW
3052 s.op->newline() << "REG_IP(regs) = kprobes_ip;";
3053 s.op->newline(-1) << "}";
3d988997
MW
3054 s.op->newline() << "#else";
3055 s.op->newline() << "(*sdp->ph) (c);";
3056 s.op->newline() << "#endif";
6415ddde 3057
b20febf3
FCE
3058 common_probe_entryfn_epilogue (s.op);
3059 s.op->newline() << "return 0;";
3060 s.op->newline(-1) << "}";
3061
3062 // Same for kretprobes
3063 s.op->newline();
3064 s.op->newline() << "static int enter_kretprobe_probe (struct kretprobe_instance *inst,";
3065 s.op->line() << " struct pt_regs *regs) {";
3066 s.op->newline(1) << "struct kretprobe *krp = inst->rp;";
606fd9c8
FCE
3067
3068 // NB: as of PR5673, the kprobe|kretprobe union struct is in BSS
a36378d7 3069 s.op->newline() << "int kprobe_idx = ((uintptr_t)krp-(uintptr_t)stap_dwarf_kprobes)/sizeof(struct stap_dwarf_kprobe);";
606fd9c8
FCE
3070 // Check that the index is plausible
3071 s.op->newline() << "struct stap_dwarf_probe *sdp = &stap_dwarf_probes[";
3072 s.op->line() << "((kprobe_idx >= 0 && kprobe_idx < " << probes_by_module.size() << ")?";
3073 s.op->line() << "kprobe_idx:0)"; // NB: at least we avoid memory corruption
3074 // XXX: it would be nice to give a more verbose error though; BUG_ON later?
3075 s.op->line() << "];";
3076
c12d974f 3077 common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING", "sdp->pp");
b20febf3
FCE
3078 s.op->newline() << "c->regs = regs;";
3079 s.op->newline() << "c->pi = inst;"; // for assisting runtime's backtrace logic
6415ddde
MW
3080
3081 // Make it look like the IP is set as it wouldn't have been replaced
3082 // by a breakpoint instruction when calling real probe handler. Reset
3083 // IP regs on return, so we don't confuse kprobes. PR10458
3d988997
MW
3084 // But only for architectures where REG_IP is a proper lvalue. PR10491
3085 s.op->newline() << "#ifdef REG_IP_LVALUE";
6415ddde
MW
3086 s.op->newline() << "{";
3087 s.op->indent(1);
3088 s.op->newline() << "unsigned long kprobes_ip = REG_IP(c->regs);";
3089 s.op->newline() << "REG_IP(regs) = (unsigned long) inst->rp->kp.addr;";
b20febf3 3090 s.op->newline() << "(*sdp->ph) (c);";
6415ddde
MW
3091 s.op->newline() << "REG_IP(regs) = kprobes_ip;";
3092 s.op->newline(-1) << "}";
3d988997
MW
3093 s.op->newline() << "#else";
3094 s.op->newline() << "(*sdp->ph) (c);";
3095 s.op->newline() << "#endif";
6415ddde 3096
b20febf3
FCE
3097 common_probe_entryfn_epilogue (s.op);
3098 s.op->newline() << "return 0;";
3099 s.op->newline(-1) << "}";
20c6c071 3100}
ec4373ff 3101
20c6c071 3102
dc38c0ae 3103void
b20febf3
FCE
3104dwarf_derived_probe_group::emit_module_init (systemtap_session& s)
3105{
3106 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
3107 s.op->newline(1) << "struct stap_dwarf_probe *sdp = & stap_dwarf_probes[i];";
a36378d7 3108 s.op->newline() << "struct stap_dwarf_kprobe *kp = & stap_dwarf_kprobes[i];";
f1bad60c 3109 s.op->newline() << "unsigned long relocated_addr = _stp_module_relocate (sdp->module, sdp->section, sdp->address);";
b20febf3 3110 s.op->newline() << "if (relocated_addr == 0) continue;"; // quietly; assume module is absent
6d0f3f0c 3111 s.op->newline() << "probe_point = sdp->pp;"; // for error messages
b20febf3 3112 s.op->newline() << "if (sdp->return_p) {";
606fd9c8 3113 s.op->newline(1) << "kp->u.krp.kp.addr = (void *) relocated_addr;";
c9bad430 3114 s.op->newline() << "if (sdp->maxactive_p) {";
606fd9c8 3115 s.op->newline(1) << "kp->u.krp.maxactive = sdp->maxactive_val;";
c9bad430 3116 s.op->newline(-1) << "} else {";
f07c3b68 3117 s.op->newline(1) << "kp->u.krp.maxactive = KRETACTIVE;";
c9bad430 3118 s.op->newline(-1) << "}";
606fd9c8 3119 s.op->newline() << "kp->u.krp.handler = &enter_kretprobe_probe;";
e4cb375f
MH
3120 // to ensure safeness of bspcache, always use aggr_kprobe on ia64
3121 s.op->newline() << "#ifdef __ia64__";
3122 s.op->newline() << "kp->dummy.addr = kp->u.krp.kp.addr;";
3123 s.op->newline() << "kp->dummy.pre_handler = NULL;";
3124 s.op->newline() << "rc = register_kprobe (& kp->dummy);";
3125 s.op->newline() << "if (rc == 0) {";
3126 s.op->newline(1) << "rc = register_kretprobe (& kp->u.krp);";
3127 s.op->newline() << "if (rc != 0)";
3128 s.op->newline(1) << "unregister_kprobe (& kp->dummy);";
3129 s.op->newline(-2) << "}";
3130 s.op->newline() << "#else";
606fd9c8 3131 s.op->newline() << "rc = register_kretprobe (& kp->u.krp);";
e4cb375f 3132 s.op->newline() << "#endif";
b20febf3 3133 s.op->newline(-1) << "} else {";
e4cb375f 3134 // to ensure safeness of bspcache, always use aggr_kprobe on ia64
606fd9c8
FCE
3135 s.op->newline(1) << "kp->u.kp.addr = (void *) relocated_addr;";
3136 s.op->newline() << "kp->u.kp.pre_handler = &enter_kprobe_probe;";
e4cb375f
MH
3137 s.op->newline() << "#ifdef __ia64__";
3138 s.op->newline() << "kp->dummy.addr = kp->u.kp.addr;";
3139 s.op->newline() << "kp->dummy.pre_handler = NULL;";
3140 s.op->newline() << "rc = register_kprobe (& kp->dummy);";
3141 s.op->newline() << "if (rc == 0) {";
3142 s.op->newline(1) << "rc = register_kprobe (& kp->u.kp);";
3143 s.op->newline() << "if (rc != 0)";
3144 s.op->newline(1) << "unregister_kprobe (& kp->dummy);";
3145 s.op->newline(-2) << "}";
3146 s.op->newline() << "#else";
606fd9c8 3147 s.op->newline() << "rc = register_kprobe (& kp->u.kp);";
e4cb375f 3148 s.op->newline() << "#endif";
b20febf3 3149 s.op->newline(-1) << "}";
9063462a
FCE
3150 s.op->newline() << "if (rc) {"; // PR6749: tolerate a failed register_*probe.
3151 s.op->newline(1) << "sdp->registered_p = 0;";
b350f56b 3152 s.op->newline() << "if (!sdp->optional_p)";
4a4edc21 3153 s.op->newline(1) << "_stp_warn (\"probe %s (address 0x%lx) registration error (rc %d)\", probe_point, relocated_addr, rc);";
b350f56b 3154 s.op->newline(-1) << "rc = 0;"; // continue with other probes
9063462a
FCE
3155 // XXX: shall we increment numskipped?
3156 s.op->newline(-1) << "}";
3157
3158#if 0 /* pre PR 6749; XXX consider making an option */
c48cb0cc 3159 s.op->newline(1) << "for (j=i-1; j>=0; j--) {"; // partial rollback
b20febf3 3160 s.op->newline(1) << "struct stap_dwarf_probe *sdp2 = & stap_dwarf_probes[j];";
606fd9c8
FCE
3161 s.op->newline() << "struct stap_dwarf_kprobe *kp2 = & stap_dwarf_kprobes[j];";
3162 s.op->newline() << "if (sdp2->return_p) unregister_kretprobe (&kp2->u.krp);";
3163 s.op->newline() << "else unregister_kprobe (&kp2->u.kp);";
e4cb375f
MH
3164 s.op->newline() << "#ifdef __ia64__";
3165 s.op->newline() << "unregister_kprobe (&kp2->dummy);";
3166 s.op->newline() << "#endif";
c48cb0cc
FCE
3167 // NB: we don't have to clear sdp2->registered_p, since the module_exit code is
3168 // not run for this early-abort case.
3169 s.op->newline(-1) << "}";
3170 s.op->newline() << "break;"; // don't attempt to register any more probes
b20febf3 3171 s.op->newline(-1) << "}";
9063462a
FCE
3172#endif
3173
b20febf3
FCE
3174 s.op->newline() << "else sdp->registered_p = 1;";
3175 s.op->newline(-1) << "}"; // for loop
dc38c0ae
DS
3176}
3177
3178
46b84a80 3179void
b20febf3 3180dwarf_derived_probe_group::emit_module_exit (systemtap_session& s)
46b84a80 3181{
42cb22bd
MH
3182 //Unregister kprobes by batch interfaces.
3183 s.op->newline() << "#if defined(STAPCONF_UNREGISTER_KPROBES)";
3184 s.op->newline() << "j = 0;";
3185 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
3186 s.op->newline(1) << "struct stap_dwarf_probe *sdp = & stap_dwarf_probes[i];";
3187 s.op->newline() << "struct stap_dwarf_kprobe *kp = & stap_dwarf_kprobes[i];";
3188 s.op->newline() << "if (! sdp->registered_p) continue;";
3189 s.op->newline() << "if (!sdp->return_p)";
3190 s.op->newline(1) << "stap_unreg_kprobes[j++] = &kp->u.kp;";
3191 s.op->newline(-2) << "}";
3192 s.op->newline() << "unregister_kprobes((struct kprobe **)stap_unreg_kprobes, j);";
3193 s.op->newline() << "j = 0;";
3194 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
3195 s.op->newline(1) << "struct stap_dwarf_probe *sdp = & stap_dwarf_probes[i];";
3196 s.op->newline() << "struct stap_dwarf_kprobe *kp = & stap_dwarf_kprobes[i];";
3197 s.op->newline() << "if (! sdp->registered_p) continue;";
3198 s.op->newline() << "if (sdp->return_p)";
3199 s.op->newline(1) << "stap_unreg_kprobes[j++] = &kp->u.krp;";
3200 s.op->newline(-2) << "}";
3201 s.op->newline() << "unregister_kretprobes((struct kretprobe **)stap_unreg_kprobes, j);";
e4cb375f
MH
3202 s.op->newline() << "#ifdef __ia64__";
3203 s.op->newline() << "j = 0;";
3204 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
3205 s.op->newline(1) << "struct stap_dwarf_probe *sdp = & stap_dwarf_probes[i];";
3206 s.op->newline() << "struct stap_dwarf_kprobe *kp = & stap_dwarf_kprobes[i];";
3207 s.op->newline() << "if (! sdp->registered_p) continue;";
3208 s.op->newline() << "stap_unreg_kprobes[j++] = &kp->dummy;";
3209 s.op->newline(-1) << "}";
3210 s.op->newline() << "unregister_kprobes((struct kprobe **)stap_unreg_kprobes, j);";
3211 s.op->newline() << "#endif";
42cb22bd
MH
3212 s.op->newline() << "#endif";
3213
b20febf3
FCE
3214 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
3215 s.op->newline(1) << "struct stap_dwarf_probe *sdp = & stap_dwarf_probes[i];";
a36378d7 3216 s.op->newline() << "struct stap_dwarf_kprobe *kp = & stap_dwarf_kprobes[i];";
b20febf3
FCE
3217 s.op->newline() << "if (! sdp->registered_p) continue;";
3218 s.op->newline() << "if (sdp->return_p) {";
42cb22bd 3219 s.op->newline() << "#if !defined(STAPCONF_UNREGISTER_KPROBES)";
606fd9c8 3220 s.op->newline(1) << "unregister_kretprobe (&kp->u.krp);";
42cb22bd 3221 s.op->newline() << "#endif";
606fd9c8 3222 s.op->newline() << "atomic_add (kp->u.krp.nmissed, & skipped_count);";
73209876
FCE
3223 s.op->newline() << "#ifdef STP_TIMING";
3224 s.op->newline() << "if (kp->u.krp.nmissed)";
d01eaa30 3225 s.op->newline(1) << "_stp_warn (\"Skipped due to missed kretprobe/1 on '%s': %d\\n\", sdp->pp, kp->u.krp.nmissed);";
73209876 3226 s.op->newline(-1) << "#endif";
606fd9c8 3227 s.op->newline() << "atomic_add (kp->u.krp.kp.nmissed, & skipped_count);";
73209876
FCE
3228 s.op->newline() << "#ifdef STP_TIMING";
3229 s.op->newline() << "if (kp->u.krp.kp.nmissed)";
d01eaa30 3230 s.op->newline(1) << "_stp_warn (\"Skipped due to missed kretprobe/2 on '%s': %d\\n\", sdp->pp, kp->u.krp.kp.nmissed);";
73209876 3231 s.op->newline(-1) << "#endif";
557fb7a8 3232 s.op->newline(-1) << "} else {";
42cb22bd 3233 s.op->newline() << "#if !defined(STAPCONF_UNREGISTER_KPROBES)";
606fd9c8 3234 s.op->newline(1) << "unregister_kprobe (&kp->u.kp);";
42cb22bd 3235 s.op->newline() << "#endif";
606fd9c8 3236 s.op->newline() << "atomic_add (kp->u.kp.nmissed, & skipped_count);";
73209876
FCE
3237 s.op->newline() << "#ifdef STP_TIMING";
3238 s.op->newline() << "if (kp->u.kp.nmissed)";
d01eaa30 3239 s.op->newline(1) << "_stp_warn (\"Skipped due to missed kprobe on '%s': %d\\n\", sdp->pp, kp->u.kp.nmissed);";
73209876 3240 s.op->newline(-1) << "#endif";
b20febf3 3241 s.op->newline(-1) << "}";
e4cb375f
MH
3242 s.op->newline() << "#if !defined(STAPCONF_UNREGISTER_KPROBES) && defined(__ia64__)";
3243 s.op->newline() << "unregister_kprobe (&kp->dummy);";
3244 s.op->newline() << "#endif";
b20febf3
FCE
3245 s.op->newline() << "sdp->registered_p = 0;";
3246 s.op->newline(-1) << "}";
46b84a80
DS
3247}
3248
7a05f484
SC
3249struct sdt_var_expanding_visitor: public var_expanding_visitor
3250{
9f02b156 3251 sdt_var_expanding_visitor(string & process_name, string & probe_name,
0c3bfb1e 3252 int arg_count, bool have_reg_args, bool utrace_probe):
9f02b156 3253 process_name (process_name), probe_name (probe_name),
0c3bfb1e
SC
3254 have_reg_args (have_reg_args), utrace_probe (utrace_probe),
3255 arg_count (arg_count)
a8ec7719
JS
3256 {
3257 assert(!have_reg_args || (arg_count >= 0 && arg_count <= 10));
3258 }
56e33af5
SC
3259 string & process_name;
3260 string & probe_name;
7a05f484 3261 bool have_reg_args;
0c3bfb1e 3262 bool utrace_probe;
7a05f484
SC
3263 int arg_count;
3264
3265 void visit_target_symbol (target_symbol* e);
3266};
3267
3268void
3269sdt_var_expanding_visitor::visit_target_symbol (target_symbol *e)
3270{
3271 if (e->base_name == "$$name")
3272 {
03c75a4a
JS
3273 if (e->addressof)
3274 throw semantic_error("cannot take address of sdt variable", e->tok);
3275
7a05f484
SC
3276 literal_string *myname = new literal_string (probe_name);
3277 myname->tok = e->tok;
3278 provide(myname);
3279 return;
3280 }
3281 else if (e->base_name.find("$arg") == string::npos || ! have_reg_args)
3282 {
3283 provide(e);
3284 return;
3285 }
a8ec7719
JS
3286
3287 int argno = lex_cast<int>(e->base_name.substr(4));
3288 if (argno < 1 || argno > arg_count)
3289 throw semantic_error ("invalid argument number", e->tok);
3290
7a05f484 3291 bool lvalue = is_active_lvalue(e);
7a05f484
SC
3292 functioncall *fc = new functioncall;
3293
5111fc3e
SC
3294 // First two args are hidden: 1. pointer to probe name 2. task id
3295 if (arg_count < 2)
7a05f484 3296 {
0c3bfb1e 3297 fc->function = utrace_probe ? "_utrace_syscall_arg" : "ulong_arg";
7a05f484
SC
3298 fc->type = pe_long;
3299 fc->tok = e->tok;
0c3bfb1e 3300 literal_number* num = new literal_number(argno + (utrace_probe ? 1 : 2));
7a05f484
SC
3301 num->tok = e->tok;
3302 fc->args.push_back(num);
3303 }
3304 else // args passed as a struct
3305 {
3306 fc->function = "user_long";
3307 fc->tok = e->tok;
3308 binary_expression *be = new binary_expression;
3309 be->tok = e->tok;
3310 functioncall *get_arg1 = new functioncall;
0c3bfb1e 3311 get_arg1->function = utrace_probe ? "_utrace_syscall_arg" : "pointer_arg";
7a05f484 3312 get_arg1->tok = e->tok;
0c3bfb1e 3313 literal_number* num = new literal_number((utrace_probe ? 2 : 3));
7a05f484
SC
3314 num->tok = e->tok;
3315 get_arg1->args.push_back(num);
3316
3317 be->left = get_arg1;
3318 be->op = "+";
3319 literal_number* inc = new literal_number((argno - 1) * 8);
3320 be->right = inc;
3321 fc->args.push_back(be);
3322 }
ad002306 3323
7a05f484
SC
3324 if (lvalue)
3325 *(target_symbol_setter_functioncalls.top()) = fc;
3326
ad002306
SC
3327 if (e->components.empty())
3328 {
03c75a4a
JS
3329 if (e->addressof)
3330 throw semantic_error("cannot take address of sdt variable", e->tok);
3331
ad002306
SC
3332 provide(fc);
3333 return;
3334 }
7a05f484
SC
3335 cast_op *cast = new cast_op;
3336 cast->base_name = "@cast";
3337 cast->tok = e->tok;
3338 cast->operand = fc;
3339 cast->components = e->components;
ad002306 3340 cast->type = probe_name + "_arg" + lex_cast<string>(argno);
56e33af5 3341 cast->module = process_name;
7a05f484 3342
6fda2dff 3343 cast->visit(this);
7a05f484 3344}
46b84a80 3345
edce5b67
JS
3346
3347struct sdt_query : public base_query
3348{
3349 sdt_query(probe * base_probe, probe_point * base_loc,
3350 dwflpp & dw, literal_map_t const & params,
3351 vector<derived_probe *> & results);
3352
3353 void handle_query_module();
3354
3355private:
3356 enum probe_types
3357 {
3358 uprobe_type = 0x31425250, // "PRB1"
3359 kprobe_type = 0x32425250, // "PRB2"
3360 utrace_type = 0x33425250, // "PRB3"
3361 } probe_type;
3362
3363 probe * base_probe;
3364 probe_point * base_loc;
3365 vector<derived_probe *> & results;
3366 string mark_name;
3367
3368 set<string> probes_handled;
3369
3370 Elf_Data *pdata;
3371 size_t probe_scn_offset;
3372 size_t probe_scn_addr;
3373 uint64_t probe_arg;
3374 string probe_name;
3375
3376 bool init_probe_scn();
3377 bool get_next_probe();
3378
3379 void convert_probe(probe *base);
3380 void convert_location(probe *base, probe_point *location);
3381};
3382
3383
3384sdt_query::sdt_query(probe * base_probe, probe_point * base_loc,
3385 dwflpp & dw, literal_map_t const & params,
3386 vector<derived_probe *> & results):
3387 base_query(dw, params), base_probe(base_probe),
3388 base_loc(base_loc), results(results)
3389{
3390 assert(get_string_param(params, TOK_MARK, mark_name));
3391}
3392
3393
3394void
3395sdt_query::handle_query_module()
3396{
3397 if (!init_probe_scn())
3398 return;
3399
3400 if (sess.verbose > 3)
3401 clog << "TOK_MARK: " << mark_name << endl;
3402
3403 while (get_next_probe())
3404 {
696ec154
SC
3405 if (probe_type != uprobe_type
3406 && !probes_handled.insert(probe_name).second)
edce5b67
JS
3407 continue;
3408
3409 probe *new_base = new probe(*base_probe);
3410 probe_point *new_location = new probe_point(*base_loc);
3411 convert_location(new_base, new_location);
3412 new_base->body = deep_copy_visitor::deep_copy(base_probe->body);
3413
3414 bool have_reg_args = false;
3415 if (probe_type == kprobe_type || probe_type == utrace_type)
3416 {
3417 convert_probe(new_base);
3418 have_reg_args = true;
3419 }
3420
3421 // Expand the local variables in the probe body
3422 sdt_var_expanding_visitor svv (module_val, probe_name,
3423 probe_arg, have_reg_args,
3424 probe_type == utrace_type);
8b095b45 3425 svv.replace (new_base->body);
edce5b67
JS
3426
3427 unsigned i = results.size();
3428
3429 if (probe_type == kprobe_type || probe_type == utrace_type)
3430 derive_probes(sess, new_base, results);
3431 else
3432 {
3433 literal_map_t params;
3434 for (unsigned i = 0; i < new_location->components.size(); ++i)
3435 {
3436 probe_point::component *c = new_location->components[i];
3437 params[c->functor] = c->arg;
3438 }
3439
696ec154 3440 dwarf_query q(new_base, new_location, dw, params, results);
edce5b67
JS
3441 q.has_mark = true; // enables mid-statement probing
3442 dw.iterate_over_modules(&query_module, &q);
3443 }
3444
3445 if (sess.listing_mode)
3446 {
3447 // restore the locations to print a nicer probe name
3448 probe_point loc(*base_loc);
3449 loc.components[1] =
3450 new probe_point::component(TOK_MARK, new literal_string (probe_name));
3451 for (; i < results.size(); ++i)
3452 for (unsigned j = 0; j < results[i]->locations.size(); ++j)
3453 *results[i]->locations[j] = loc;
3454 }
3455 }
3456}
3457
3458
3459bool
3460sdt_query::init_probe_scn()
3461{
3462 Elf* elf;
3463 GElf_Shdr shdr_mem;
3464 GElf_Shdr *shdr = NULL;
3465 Dwarf_Addr bias;
3466 size_t shstrndx;
3467
3468 // Explicitly look in the main elf file first.
3469 elf = dwfl_module_getelf (dw.module, &bias);
3470 Elf_Scn *probe_scn = NULL;
3471
3472 dwfl_assert ("getshdrstrndx", elf_getshdrstrndx (elf, &shstrndx));
3473
3474 bool have_probes = false;
3475
3476 // Is there a .probes section?
3477 while ((probe_scn = elf_nextscn (elf, probe_scn)))
3478 {
3479 shdr = gelf_getshdr (probe_scn, &shdr_mem);
3480 assert (shdr != NULL);
3481
3482 if (strcmp (elf_strptr (elf, shstrndx, shdr->sh_name), ".probes") == 0)
3483 {
3484 have_probes = true;
3485 break;
3486 }
3487 }
3488
3489 // Older versions put .probes section in the debuginfo dwarf file,
3490 // so check if it actually exists, if not take a look in the debuginfo file
3491 if (! have_probes || (have_probes && shdr->sh_type == SHT_NOBITS))
3492 {
3493 elf = dwarf_getelf (dwfl_module_getdwarf (dw.module, &bias));
3494 if (! elf)
3495 return false;
3496 dwfl_assert ("getshdrstrndx", elf_getshdrstrndx (elf, &shstrndx));
3497 probe_scn = NULL;
3498 while ((probe_scn = elf_nextscn (elf, probe_scn)))
3499 {
3500 shdr = gelf_getshdr (probe_scn, &shdr_mem);
3501 if (strcmp (elf_strptr (elf, shstrndx, shdr->sh_name),
3502 ".probes") == 0)
3503 have_probes = true;
3504 break;
3505 }
3506 }
3507
3508 if (!have_probes)
3509 return false;
3510
3511 pdata = elf_getdata_rawchunk (elf, shdr->sh_offset, shdr->sh_size, ELF_T_BYTE);
3512 probe_scn_offset = 0;
3513 probe_scn_addr = shdr->sh_addr;
3514 assert (pdata != NULL);
3515 if (sess.verbose > 4)
3516 clog << "got .probes elf scn_addr@0x" << probe_scn_addr << dec
3517 << ", size: " << pdata->d_size << endl;
3518 return true;
3519}
3520
3521bool
3522sdt_query::get_next_probe()
3523{
3524 // Extract probe info from the .probes section
3525
3526 while (probe_scn_offset < pdata->d_size)
3527 {
3528 struct probe_entry
3529 {
3530 __uint64_t name;
3531 __uint64_t arg;
3532 } *pbe;
3533 __uint32_t *type = (__uint32_t*) ((char*)pdata->d_buf + probe_scn_offset);
3534 probe_type = (enum probe_types)*type;
3535 if (probe_type != uprobe_type && probe_type != kprobe_type
3536 && probe_type != utrace_type)
3537 {
3538 // Unless this is a mangled .probes section, this happens
3539 // because the name of the probe comes first, followed by
3540 // the sentinel.
3541 if (sess.verbose > 5)
3542 clog << "got unknown probe_type: 0x" << hex << probe_type
3543 << dec << endl;
3544 probe_scn_offset += sizeof(__uint32_t);
3545 continue;
3546 }
3547 probe_scn_offset += sizeof(__uint32_t);
3548 probe_scn_offset += probe_scn_offset % sizeof(__uint64_t);
3549 pbe = (struct probe_entry*) ((char*)pdata->d_buf + probe_scn_offset);
3550 probe_name = (char*)((char*)pdata->d_buf + pbe->name - (char*)probe_scn_addr);
3551 probe_arg = pbe->arg;
3552 if (sess.verbose > 4)
3553 clog << "saw .probes " << probe_name
3554 << "@0x" << hex << probe_arg << dec << endl;
3555
3556 probe_scn_offset += sizeof (struct probe_entry);
3557 if ((mark_name == probe_name)
3558 || (dw.name_has_wildcard (mark_name)
3559 && dw.function_name_matches_pattern (probe_name, mark_name)))
3560 {
3561 if (sess.verbose > 3)
3562 clog << "found probe_name" << probe_name << " at 0x"
3563 << hex << probe_arg << dec << endl;
3564 return true;
3565 }
3566 else
3567 continue;
3568 }
3569 return false;
3570}
3571
3572
3573void
3574sdt_query::convert_probe (probe *base)
3575{
3576 block *b = new block;
3577 b->tok = base->body->tok;
3578
3579 // XXX: Does this also need to happen for i386 under x86_64 stap?
3580#ifdef __i386__
3581 if (probe_type == kprobe_type)
3582 {
3583 functioncall *rp = new functioncall;
3584 rp->tok = b->tok;
3585 rp->function = "regparm";
3586 rp->tok = b->tok;
3587 literal_number* littid = new literal_number(0);
3588 littid->tok = b->tok;
3589 rp->args.push_back(littid);
3590 expr_statement* es = new expr_statement;
3591 es->tok = b->tok;
3592 es->value = rp;
3593 b->statements.push_back(es);
3594 }
3595#endif
3596
3597 if (probe_type == utrace_type)
3598 {
3599 // Generate: if ($syscall != 0xbead) next;
3600 if_statement *issc = new if_statement;
3601 issc->thenblock = new next_statement;
3602 issc->elseblock = NULL;
3603 issc->tok = b->tok;
3604 comparison *besc = new comparison;
3605 besc->op = "!=";
3606 besc->tok = b->tok;
3607 functioncall* n = new functioncall;
3608 n->tok = b->tok;
3609 n->function = "_utrace_syscall_nr";
3610 n->referent = 0;
3611 besc->left = n;
3612 literal_number* fake_syscall = new literal_number(0xbead);
3613 fake_syscall->tok = b->tok;
3614 besc->right = fake_syscall;
3615 issc->condition = besc;
3616 b->statements.push_back(issc);
3617 }
3618 else if (probe_type == kprobe_type)
3619 {
3620 // Generate: if (arg2 != kprobe_type) next;
3621 if_statement *istid = new if_statement;
3622 istid->thenblock = new next_statement;
3623 istid->elseblock = NULL;
3624 istid->tok = b->tok;
3625 comparison *betid = new comparison;
3626 betid->op = "!=";
3627 betid->tok = b->tok;
3628
3629 functioncall *arg2 = new functioncall;
3630 arg2->function = "ulong_arg";
3631 arg2->tok = b->tok;
3632 literal_number* num = new literal_number(2);
3633 num->tok = b->tok;
3634 arg2->args.push_back(num);
3635
3636 betid->left = arg2;
3637 literal_number* littid = new literal_number(kprobe_type);
3638 littid->tok = b->tok;
3639 betid->right = littid;
3640 istid->condition = betid;
3641 b->statements.push_back(istid);
3642 }
3643
3644 // Generate: if (arg1 != mark("label")) next;
3645 functioncall *fc = new functioncall;
3646 fc->function = (probe_type == utrace_type) ? "_utrace_syscall_arg" : "ulong_arg";
3647 fc->tok = b->tok;
3648 literal_number* num = new literal_number((probe_type == utrace_type) ? 0 : 1);
3649 num->tok = b->tok;
3650 fc->args.push_back(num);
3651
3652 functioncall *fcus = new functioncall;
3653 fcus->function = "user_string";
3654 fcus->type = pe_string;
3655 fcus->tok = b->tok;
3656 fcus->args.push_back(fc);
3657
3658 if_statement *is = new if_statement;
3659 is->thenblock = new next_statement;
3660 is->elseblock = NULL;
3661 is->tok = b->tok;
3662 comparison *be = new comparison;
3663 be->op = "!=";
3664 be->tok = b->tok;
3665 be->left = fcus;
3666 be->right = new literal_string(probe_name);
3667 is->condition = be;
3668 b->statements.push_back(is);
3669
3670 // Now replace the body
3671 b->statements.push_back(base->body);
3672 base->body = b;
3673}
3674
3675
3676void
3677sdt_query::convert_location (probe *base, probe_point *location)
3678{
3679 switch (probe_type)
3680 {
3681 case uprobe_type:
3682 if (sess.verbose > 3)
3683 clog << "probe_type == uprobe_type, use statement addr: 0x"
3684 << hex << probe_arg << dec << endl;
3685 // process("executable").statement(probe_arg)
3686 location->components[1]->functor = TOK_STATEMENT;
3687 location->components[1]->arg = new literal_number(probe_arg);
3688 break;
3689
3690 case kprobe_type:
3691 if (sess.verbose > 3)
3692 clog << "probe_type == kprobe_type" << endl;
3693 // kernel.function("*getegid*")
3694 location->components[0]->functor = TOK_KERNEL;
3695 location->components[0]->arg = NULL;
3696 location->components[1]->functor = TOK_FUNCTION;
3697 location->components[1]->arg = new literal_string("*getegid*");
3698 break;
3699
3700 case utrace_type:
3701 if (sess.verbose > 3)
3702 clog << "probe_type == utrace_type" << endl;
3703 // process("executable").syscall
3704 location->components[1]->functor = "syscall";
3705 location->components[1]->arg = NULL;
3706 break;
3707
3708 default:
3709 if (sess.verbose > 3)
3710 clog << "probe_type == use_uprobe_no_dwarf, use label name: "
3711 << "_stapprobe1_" << mark_name << endl;
3712 // process("executable").function("*").label("_stapprobe1_MARK_NAME")
3713 location->components[1]->functor = TOK_FUNCTION;
3714 location->components[1]->arg = new literal_string("*");
3715 location->components.push_back(new probe_point::component(TOK_LABEL));
3716 location->components[2]->arg = new literal_string("_stapprobe1_" + mark_name);
3717 break;
3718 }
3719
3720 base->locations.clear();
3721 base->locations.push_back(location);
3722}
3723
3724
20c6c071 3725void
5227f1ea 3726dwarf_builder::build(systemtap_session & sess,
7a053d3b 3727 probe * base,
20c6c071 3728 probe_point * location,
86bf665e 3729 literal_map_t const & parameters,
20c6c071
GH
3730 vector<derived_probe *> & finished_results)
3731{
b20febf3
FCE
3732 // NB: the kernel/user dwlfpp objects are long-lived.
3733 // XXX: but they should be per-session, as this builder object
3734 // may be reused if we try to cross-instrument multiple targets.
84048984 3735
7a24d422
FCE
3736 dwflpp* dw = 0;
3737
7a24d422 3738 string module_name;
ae2552da
FCE
3739 if (has_null_param (parameters, TOK_KERNEL))
3740 {
3741 dw = get_kern_dw(sess, "kernel");
3742 }
3743 else if (get_param (parameters, TOK_MODULE, module_name))
b8da0ad1 3744 {
ae2552da 3745 dw = get_kern_dw(sess, module_name);
b8da0ad1 3746 }
7a24d422 3747 else if (get_param (parameters, TOK_PROCESS, module_name))
b8da0ad1 3748 {
d0a7f5a9
FCE
3749 module_name = find_executable (module_name); // canonicalize it
3750
7a24d422
FCE
3751 // user-space target; we use one dwflpp instance per module name
3752 // (= program or shared library)
707bf35e 3753 dw = get_user_dw(sess, module_name);
c8959a29 3754 }
20c6c071 3755
5896cd05
MW
3756 if (sess.verbose > 3)
3757 clog << "dwarf_builder::build for " << module_name << endl;
3758
3e1e31fb
JS
3759 string mark_name;
3760 if (get_param(parameters, TOK_MARK, mark_name))
f28a8c28 3761 {
edce5b67
JS
3762 sdt_query sdtq(base, location, *dw, parameters, finished_results);
3763 dw->iterate_over_modules(&query_module, &sdtq);
3764 return;
7a05f484 3765 }
20c6c071 3766
edce5b67 3767 dwarf_query q(base, location, *dw, parameters, finished_results);
7a24d422
FCE
3768
3769 // XXX: kernel.statement.absolute is a special case that requires no
3770 // dwfl processing. This code should be in a separate builder.
7a24d422 3771 if (q.has_kernel && q.has_absolute)
37ebca01 3772 {
4baf0e53 3773 // assert guru mode for absolute probes
37ebca01
FCE
3774 if (! q.base_probe->privileged)
3775 {
edce5b67
JS
3776 throw semantic_error ("absolute statement probe in unprivileged script",
3777 q.base_probe->tok);
37ebca01
FCE
3778 }
3779
3780 // For kernel.statement(NUM).absolute probe points, we bypass
3781 // all the debuginfo stuff: We just wire up a
3782 // dwarf_derived_probe right here and now.
4baf0e53 3783 dwarf_derived_probe* p =
b8da0ad1
FCE
3784 new dwarf_derived_probe ("", "", 0, "kernel", "",
3785 q.statement_num_val, q.statement_num_val,
3786 q, 0);
37ebca01 3787 finished_results.push_back (p);
1a0dbc5a 3788 sess.unwindsym_modules.insert ("kernel");
37ebca01
FCE
3789 return;
3790 }
3791
51178501 3792 dw->iterate_over_modules(&query_module, &q);
5f0a03a6
JK
3793}
3794
3795symbol_table::~symbol_table()
3796{
1c6b77e5
JS
3797 for (iterator_t i = map_by_addr.begin(); i != map_by_addr.end(); ++i)
3798 delete i->second;
5f0a03a6
JK
3799}
3800
3801void
ab91b232
JK
3802symbol_table::add_symbol(const char *name, bool weak, Dwarf_Addr addr,
3803 Dwarf_Addr *high_addr)
5f0a03a6 3804{
ab91b232
JK
3805#ifdef __powerpc__
3806 // Map ".sys_foo" to "sys_foo".
3807 if (name[0] == '.')
3808 name++;
3809#endif
5f0a03a6
JK
3810 func_info *fi = new func_info();
3811 fi->addr = addr;
3812 fi->name = name;
ab91b232 3813 fi->weak = weak;
5f0a03a6
JK
3814 map_by_name[fi->name] = fi;
3815 // TODO: Use a multimap in case there are multiple static
3816 // functions with the same name?
1c6b77e5 3817 map_by_addr.insert(make_pair(addr, fi));
5f0a03a6
JK
3818}
3819
3820enum info_status
3821symbol_table::read_symbols(FILE *f, const string& path)
3822{
3823 // Based on do_kernel_symbols() in runtime/staprun/symbols.c
3824 int ret;
2e67a43b
TM
3825 char *name = 0;
3826 char *mod = 0;
5f0a03a6
JK
3827 char type;
3828 unsigned long long addr;
3829 Dwarf_Addr high_addr = 0;
3830 int line = 0;
3831
3832 // %as (non-POSIX) mallocs space for the string and stores its address.
3833 while ((ret = fscanf(f, "%llx %c %as [%as", &addr, &type, &name, &mod)) > 0)
3834 {
2e67a43b
TM
3835 auto_free free_name(name);
3836 auto_free free_mod(mod);
5f0a03a6
JK
3837 line++;
3838 if (ret < 3)
3839 {
41c262f3 3840 cerr << "Symbol table error: Line "
5f0a03a6
JK
3841 << line
3842 << " of symbol list from "
3843 << path
3844 << " is not in correct format: address type name [module]";
3845 // Caller should delete symbol_table object.
3846 return info_absent;
3847 }
2e67a43b 3848 else if (ret > 3)
5f0a03a6
JK
3849 {
3850 // Modules are loaded above the kernel, so if we're getting
3851 // modules, we're done.
2e67a43b 3852 break;
5f0a03a6 3853 }
ab91b232
JK
3854 if (type == 'T' || type == 't' || type == 'W')
3855 add_symbol(name, (type == 'W'), (Dwarf_Addr) addr, &high_addr);
5f0a03a6
JK
3856 }
3857
1c6b77e5 3858 if (map_by_addr.size() < 1)
5f0a03a6
JK
3859 {
3860 cerr << "Symbol table error: "
3861 << path << " contains no function symbols." << endl;
3862 return info_absent;
3863 }
3864 return info_present;
3865}
3866
3867// NB: This currently unused. We use get_from_elf() instead because
3868// that gives us raw addresses -- which we need for modules -- whereas
3869// nm provides the address relative to the beginning of the section.
3870enum info_status
83ca3872
MW
3871symbol_table::read_from_elf_file(const string &path,
3872 const systemtap_session &sess)
5f0a03a6
JK
3873{
3874 FILE *f;
3875 string cmd = string("/usr/bin/nm -n --defined-only ") + path;
3876 f = popen(cmd.c_str(), "r");
3877 if (!f)
3878 {
3879 // nm failures are detected by pclose, not popen.
3880 cerr << "Internal error reading symbol table from "
3881 << path << " -- " << strerror (errno);
3882 return info_absent;
3883 }
3884 enum info_status status = read_symbols(f, path);
3885 if (pclose(f) != 0)
3886 {
83ca3872 3887 if (status == info_present && ! sess.suppress_warnings)
5f0a03a6
JK
3888 cerr << "Warning: nm cannot read symbol table from " << path;
3889 return info_absent;
3890 }
3891 return status;
3892}
3893
3894enum info_status
83ca3872
MW
3895symbol_table::read_from_text_file(const string& path,
3896 const systemtap_session &sess)
5f0a03a6
JK
3897{
3898 FILE *f = fopen(path.c_str(), "r");
3899 if (!f)
3900 {
83ca3872
MW
3901 if (! sess.suppress_warnings)
3902 cerr << "Warning: cannot read symbol table from "
3903 << path << " -- " << strerror (errno);
5f0a03a6
JK
3904 return info_absent;
3905 }
3906 enum info_status status = read_symbols(f, path);
3907 (void) fclose(f);
3908 return status;
3909}
3910
46f7b6be
JK
3911void
3912symbol_table::prepare_section_rejection(Dwfl_Module *mod)
3913{
3914#ifdef __powerpc__
3915 /*
3916 * The .opd section contains function descriptors that can look
3917 * just like function entry points. For example, there's a function
3918 * descriptor called "do_exit" that links to the entry point ".do_exit".
3919 * Reject all symbols in .opd.
3920 */
3921 opd_section = SHN_UNDEF;
3922 Dwarf_Addr bias;
3923 Elf* elf = (dwarf_getelf (dwfl_module_getdwarf (mod, &bias))
3924 ?: dwfl_module_getelf (mod, &bias));
3925 Elf_Scn* scn = 0;
3926 size_t shstrndx;
3927
3928 if (!elf)
3929 return;
fcc30d6d 3930 if (elf_getshdrstrndx (elf, &shstrndx) != 0)
46f7b6be
JK
3931 return;
3932 while ((scn = elf_nextscn(elf, scn)) != NULL)
3933 {
3934 GElf_Shdr shdr_mem;
3935 GElf_Shdr *shdr = gelf_getshdr(scn, &shdr_mem);
3936 if (!shdr)
3937 continue;
3938 const char *name = elf_strptr(elf, shstrndx, shdr->sh_name);
3939 if (!strcmp(name, ".opd"))
3940 {
3941 opd_section = elf_ndxscn(scn);
3942 return;
3943 }
3944 }
3945#endif
3946}
3947
3948bool
3949symbol_table::reject_section(GElf_Word section)
3950{
3951 if (section == SHN_UNDEF)
3952 return true;
3953#ifdef __powerpc__
3954 if (section == opd_section)
3955 return true;
3956#endif
3957 return false;
3958}
3959
5f0a03a6
JK
3960enum info_status
3961symbol_table::get_from_elf()
3962{
3963 Dwarf_Addr high_addr = 0;
3964 Dwfl_Module *mod = mod_info->mod;
3965 int syments = dwfl_module_getsymtab(mod);
3966 assert(syments);
46f7b6be 3967 prepare_section_rejection(mod);
5f0a03a6
JK
3968 for (int i = 1; i < syments; ++i)
3969 {
3970 GElf_Sym sym;
ab91b232
JK
3971 GElf_Word section;
3972 const char *name = dwfl_module_getsym(mod, i, &sym, &section);
46f7b6be
JK
3973 if (name && GELF_ST_TYPE(sym.st_info) == STT_FUNC &&
3974 !reject_section(section))
ab91b232
JK
3975 add_symbol(name, (GELF_ST_BIND(sym.st_info) == STB_WEAK),
3976 sym.st_value, &high_addr);
5f0a03a6
JK
3977 }
3978 return info_present;
3979}
3980
5f0a03a6
JK
3981func_info *
3982symbol_table::get_func_containing_address(Dwarf_Addr addr)
3983{
1c6b77e5
JS
3984 iterator_t iter = map_by_addr.upper_bound(addr);
3985 if (iter == map_by_addr.begin())
5f0a03a6 3986 return NULL;
2e67a43b 3987 else
1c6b77e5 3988 return (--iter)->second;
5f0a03a6
JK
3989}
3990
3991func_info *
3992symbol_table::lookup_symbol(const string& name)
3993{
3994 map<string, func_info*>::iterator i = map_by_name.find(name);
3995 if (i == map_by_name.end())
3996 return NULL;
3997 return i->second;
3998}
3999
4000Dwarf_Addr
4001symbol_table::lookup_symbol_address(const string& name)
4002{
4003 func_info *fi = lookup_symbol(name);
4004 if (fi)
4005 return fi->addr;
4006 return 0;
4007}
4008
ab91b232
JK
4009// This is the kernel symbol table. The kernel macro cond_syscall creates
4010// a weak symbol for each system call and maps it to sys_ni_syscall.
4011// For system calls not implemented elsewhere, this weak symbol shows up
4012// in the kernel symbol table. Following the precedent of dwarfful stap,
4013// we refuse to consider such symbols. Here we delete them from our
4014// symbol table.
4015// TODO: Consider generalizing this and/or making it part of blacklist
4016// processing.
4017void
4018symbol_table::purge_syscall_stubs()
4019{
4020 Dwarf_Addr stub_addr = lookup_symbol_address("sys_ni_syscall");
4021 if (stub_addr == 0)
4022 return;
1c6b77e5 4023 range_t purge_range = map_by_addr.equal_range(stub_addr);
2e67a43b
TM
4024 for (iterator_t iter = purge_range.first;
4025 iter != purge_range.second;
1c6b77e5 4026 )
ab91b232 4027 {
1c6b77e5 4028 func_info *fi = iter->second;
2e67a43b 4029 if (fi->weak && fi->name != "sys_ni_syscall")
ab91b232 4030 {
2e67a43b 4031 map_by_name.erase(fi->name);
1c6b77e5 4032 map_by_addr.erase(iter++);
2e67a43b 4033 delete fi;
2e67a43b 4034 }
1c6b77e5
JS
4035 else
4036 iter++;
ab91b232
JK
4037 }
4038}
4039
5f0a03a6
JK
4040void
4041module_info::get_symtab(dwarf_query *q)
4042{
4043 systemtap_session &sess = q->sess;
4044
1c6b77e5
JS
4045 if (symtab_status != info_unknown)
4046 return;
4047
5f0a03a6
JK
4048 sym_table = new symbol_table(this);
4049 if (!elf_path.empty())
4050 {
83ca3872
MW
4051 if (name == TOK_KERNEL && !sess.kernel_symtab_path.empty()
4052 && ! sess.suppress_warnings)
5f0a03a6
JK
4053 cerr << "Warning: reading symbol table from "
4054 << elf_path
4055 << " -- ignoring "
4056 << sess.kernel_symtab_path
83ca3872 4057 << endl;
5f0a03a6
JK
4058 symtab_status = sym_table->get_from_elf();
4059 }
4060 else
4061 {
4062 assert(name == TOK_KERNEL);
4063 if (sess.kernel_symtab_path.empty())
4064 {
4065 symtab_status = info_absent;
4066 cerr << "Error: Cannot find vmlinux."
4067 << " Consider using --kmap instead of --kelf."
4068 << endl;;
4069 }
4070 else
4071 {
4072 symtab_status =
83ca3872 4073 sym_table->read_from_text_file(sess.kernel_symtab_path, sess);
5f0a03a6
JK
4074 if (symtab_status == info_present)
4075 {
4076 sess.sym_kprobes_text_start =
4077 sym_table->lookup_symbol_address("__kprobes_text_start");
4078 sess.sym_kprobes_text_end =
4079 sym_table->lookup_symbol_address("__kprobes_text_end");
4080 sess.sym_stext = sym_table->lookup_symbol_address("_stext");
5f0a03a6
JK
4081 }
4082 }
4083 }
4084 if (symtab_status == info_absent)
4085 {
4086 delete sym_table;
4087 sym_table = NULL;
4088 return;
4089 }
4090
ab91b232
JK
4091 if (name == TOK_KERNEL)
4092 sym_table->purge_syscall_stubs();
5f0a03a6
JK
4093}
4094
1c6b77e5
JS
4095// update_symtab reconciles data between the elf symbol table and the dwarf
4096// function enumeration. It updates the symbol table entries with the dwarf
4097// die that describes the function, which also signals to query_module_symtab
4098// that a statement probe isn't needed. In return, it also adds aliases to the
4099// function table for names that share the same addr/die.
4100void
4101module_info::update_symtab(cu_function_cache_t *funcs)
4102{
4103 if (!sym_table)
4104 return;
4105
4106 cu_function_cache_t new_funcs;
4107
4108 for (cu_function_cache_t::iterator func = funcs->begin();
4109 func != funcs->end(); func++)
4110 {
4111 // optimization: inlines will never be in the symbol table
4112 if (dwarf_func_inline(&func->second) != 0)
4113 continue;
4114
4115 func_info *fi = sym_table->lookup_symbol(func->first);
4116 if (!fi)
4117 continue;
4118
4119 // iterate over all functions at the same address
4120 symbol_table::range_t er = sym_table->map_by_addr.equal_range(fi->addr);
4121 for (symbol_table::iterator_t it = er.first; it != er.second; ++it)
4122 {
4123 // update this function with the dwarf die
4124 it->second->die = func->second;
4125
4126 // if this function is a new alias, then
4127 // save it to merge into the function cache
4128 if (it->second != fi)
4129 new_funcs[it->second->name] = it->second->die;
4130 }
4131 }
4132
4133 // add all discovered aliases back into the function cache
4134 // NB: this won't replace any names that dwarf may have already found
4135 funcs->insert(new_funcs.begin(), new_funcs.end());
4136}
4137
5f0a03a6
JK
4138module_info::~module_info()
4139{
4140 if (sym_table)
4141 delete sym_table;
b55bc428
FCE
4142}
4143
935447c8 4144// ------------------------------------------------------------------------
888af770 4145// user-space probes
935447c8
DS
4146// ------------------------------------------------------------------------
4147
935447c8 4148
888af770 4149struct uprobe_derived_probe_group: public generic_dpg<uprobe_derived_probe>
935447c8
DS
4150{
4151public:
888af770 4152 void emit_module_decls (systemtap_session& s);
935447c8
DS
4153 void emit_module_init (systemtap_session& s);
4154 void emit_module_exit (systemtap_session& s);
4155};
4156
4157
6d0f3f0c
FCE
4158uprobe_derived_probe::uprobe_derived_probe (const string& function,
4159 const string& filename,
4160 int line,
4161 const string& module,
4162 int pid,
4163 const string& section,
4164 Dwarf_Addr dwfl_addr,
4165 Dwarf_Addr addr,
4166 dwarf_query & q,
4167 Dwarf_Die* scope_die /* may be null */):
4168 derived_probe (q.base_probe, new probe_point (*q.base_loc) /* .components soon rewritten */ ),
4169 return_p (q.has_return), module (module), pid (pid), section (section), address (addr)
935447c8 4170{
17c128f2
FCE
4171 // We may receive probes on two types of ELF objects: ET_EXEC or ET_DYN.
4172 // ET_EXEC ones need no further relocation on the addr(==dwfl_addr), whereas
4173 // ET_DYN ones do (addr += run-time mmap base address). We tell these apart
4174 // by the incoming section value (".absolute" vs. ".dynamic").
935447c8 4175
6d0f3f0c 4176 this->tok = q.base_probe->tok;
a96d1db0 4177
de688825 4178 // Expand target variables in the probe body
6d0f3f0c
FCE
4179 if (!null_die(scope_die))
4180 {
de688825 4181 dwarf_var_expanding_visitor v (q, scope_die, dwfl_addr); // XXX: user-space deref's!
8b095b45 4182 v.replace (this->body);
a96d1db0 4183
6d0f3f0c
FCE
4184 // If during target-variable-expanding the probe, we added a new block
4185 // of code, add it to the start of the probe.
4186 if (v.add_block)
4187 this->body = new block(v.add_block, this->body);
0afb7073 4188
6d0f3f0c
FCE
4189 // If when target-variable-expanding the probe, we added a new
4190 // probe, add it in a new file to the list of files to be processed.
4191 if (v.add_probe)
4192 {
4193 stapfile *f = new stapfile;
4194 f->probes.push_back(v.add_probe);
4195 q.sess.files.push_back(f);
4196 }
4197 }
4198 // else - null scope_die - $target variables will produce an error during translate phase
a96d1db0 4199
9ace370f
JS
4200 // Save the local variables for listing mode
4201 if (q.sess.listing_mode_vars)
4202 saveargs(scope_die);
4203
6d0f3f0c
FCE
4204 // Reset the sole element of the "locations" vector as a
4205 // "reverse-engineered" form of the incoming (q.base_loc) probe
4206 // point. This allows a user to see what function / file / line
4207 // number any particular match of the wildcards.
a96d1db0 4208
6d0f3f0c
FCE
4209 vector<probe_point::component*> comps;
4210 if(q.has_process)
4211 comps.push_back (new probe_point::component(TOK_PROCESS, new literal_string(module)));
4212 else
4213 assert (0);
a96d1db0 4214
6d0f3f0c
FCE
4215 string fn_or_stmt;
4216 if (q.has_function_str || q.has_function_num)
4217 fn_or_stmt = "function";
4218 else
4219 fn_or_stmt = "statement";
a96d1db0 4220
6d0f3f0c
FCE
4221 if (q.has_function_str || q.has_statement_str)
4222 {
4223 string retro_name = function;
4224 if (filename != "")
fb84c077
FCE
4225 {
4226 retro_name += ("@" + string (filename));
4227 if (line > 0)
4228 retro_name += (":" + lex_cast<string> (line));
4229 }
6d0f3f0c
FCE
4230 comps.push_back
4231 (new probe_point::component
4232 (fn_or_stmt, new literal_string (retro_name)));
4233 }
4234 else if (q.has_function_num || q.has_statement_num)
4235 {
4236 Dwarf_Addr retro_addr;
4237 if (q.has_function_num)
4238 retro_addr = q.function_num_val;
4239 else
4240 retro_addr = q.statement_num_val;
4241 comps.push_back (new probe_point::component
4242 (fn_or_stmt,
4243 new literal_number(retro_addr))); // XXX: should be hex if possible
a96d1db0 4244
6d0f3f0c
FCE
4245 if (q.has_absolute)
4246 comps.push_back (new probe_point::component (TOK_ABSOLUTE));
4247 }
a96d1db0 4248
6d0f3f0c
FCE
4249 if (q.has_call)
4250 comps.push_back (new probe_point::component(TOK_CALL));
4251 if (q.has_inline)
4252 comps.push_back (new probe_point::component(TOK_INLINE));
4253 if (return_p)
4254 comps.push_back (new probe_point::component(TOK_RETURN));
4255 /*
4256 if (has_maxactive)
4257 comps.push_back (new probe_point::component
4258 (TOK_MAXACTIVE, new literal_number(maxactive_val)));
4259 */
4260
4261 // Overwrite it.
4262 this->sole_location()->components = comps;
4263}
a96d1db0
DN
4264
4265
0973d815
FCE
4266uprobe_derived_probe::uprobe_derived_probe (probe *base,
4267 probe_point *location,
4268 int pid,
4269 Dwarf_Addr addr,
4270 bool has_return):
4271 derived_probe (base, location), // location is not rewritten here
4272 return_p (has_return), pid (pid), address (addr)
a96d1db0
DN
4273{
4274}
4275
4276
9ace370f
JS
4277void
4278uprobe_derived_probe::saveargs(Dwarf_Die* scope_die)
4279{
4280 // same as dwarf_derived_probe::saveargs
4281
4282 Dwarf_Die *scopes;
4283 if (!null_die(scope_die) && dwarf_getscopes_die (scope_die, &scopes) == 0)
4284 return;
4285 auto_free free_scopes(scopes);
4286
4287 stringstream argstream;
4288 string type_name;
4289 Dwarf_Attribute type_attr;
4290 Dwarf_Die type_die;
4291
4292 if (return_p &&
4293 dwarf_attr_integrate (scope_die, DW_AT_type, &type_attr) &&
4294 dwarf_formref_die (&type_attr, &type_die) &&
f1c8f8a5 4295 dwarf_type_name(&type_die, type_name))
9ace370f
JS
4296 argstream << " $return:" << type_name;
4297
4298 Dwarf_Die arg;
4299 if (dwarf_child (&scopes[0], &arg) == 0)
4300 do
4301 {
4302 switch (dwarf_tag (&arg))
4303 {
4304 case DW_TAG_variable:
4305 case DW_TAG_formal_parameter:
4306 break;
4307
4308 default:
4309 continue;
4310 }
4311
4312 const char *arg_name = dwarf_diename (&arg);
4313 if (!arg_name)
4314 continue;
4315
4316 type_name.clear();
4317 if (!dwarf_attr_integrate (&arg, DW_AT_type, &type_attr) ||
4318 !dwarf_formref_die (&type_attr, &type_die) ||
f1c8f8a5 4319 !dwarf_type_name(&type_die, type_name))
9ace370f
JS
4320 continue;
4321
4322 argstream << " $" << arg_name << ":" << type_name;
4323 }
4324 while (dwarf_siblingof (&arg, &arg) == 0);
4325
4326 args = argstream.str();
4327}
4328
4329
4330void
4331uprobe_derived_probe::printargs(std::ostream &o) const
4332{
4333 // same as dwarf_derived_probe::printargs
4334 o << args;
4335}
4336
4337
a96d1db0 4338void
6d0f3f0c 4339uprobe_derived_probe::printsig (ostream& o) const
a96d1db0 4340{
6d0f3f0c
FCE
4341 // Same as dwarf_derived_probe.
4342 sole_location()->print (o);
4343 o << " /* pc=" << section << "+0x" << hex << address << dec << " */";
4344 printsig_nested (o);
888af770
FCE
4345}
4346
a96d1db0 4347
888af770
FCE
4348void
4349uprobe_derived_probe::join_group (systemtap_session& s)
4350{
4351 if (! s.uprobe_derived_probes)
4352 s.uprobe_derived_probes = new uprobe_derived_probe_group ();
4353 s.uprobe_derived_probes->enroll (this);
93646f4d 4354 enable_task_finder(s);
a96d1db0 4355
8a03658e
JS
4356 // Ask buildrun.cxx to build extra module if needed, and
4357 // signal staprun to load that module
4358 s.need_uprobes = true;
a96d1db0
DN
4359}
4360
888af770
FCE
4361
4362struct uprobe_builder: public derived_probe_builder
a96d1db0 4363{
888af770 4364 uprobe_builder() {}
a96d1db0
DN
4365 virtual void build(systemtap_session & sess,
4366 probe * base,
4367 probe_point * location,
86bf665e 4368 literal_map_t const & parameters,
a96d1db0
DN
4369 vector<derived_probe *> & finished_results)
4370 {
888af770 4371 int64_t process, address;
a96d1db0 4372
888af770 4373 bool b1 = get_param (parameters, TOK_PROCESS, process);
ced347a9 4374 (void) b1;
888af770 4375 bool b2 = get_param (parameters, TOK_STATEMENT, address);
ced347a9 4376 (void) b2;
888af770
FCE
4377 bool rr = has_null_param (parameters, TOK_RETURN);
4378 assert (b1 && b2); // by pattern_root construction
a96d1db0 4379
0973d815 4380 finished_results.push_back(new uprobe_derived_probe(base, location, process, address, rr));
a96d1db0
DN
4381 }
4382};
4383
4384
4385void
775d51e5 4386uprobe_derived_probe_group::emit_module_decls (systemtap_session& s)
a96d1db0 4387{
888af770 4388 if (probes.empty()) return;
775d51e5 4389 s.op->newline() << "/* ---- user probes ---- */";
a96d1db0 4390
c480bf3d 4391 // If uprobes isn't in the kernel, pull it in from the runtime.
6274464e 4392 s.op->newline() << "#if defined(CONFIG_UPROBES) || defined(CONFIG_UPROBES_MODULE)";
888af770 4393 s.op->newline() << "#include <linux/uprobes.h>";
c480bf3d 4394 s.op->newline() << "#else";
6274464e 4395 s.op->newline() << "#include \"uprobes/uprobes.h\"";
c480bf3d 4396 s.op->newline() << "#endif";
9d451878
JK
4397 s.op->newline() << "#ifndef UPROBES_API_VERSION";
4398 s.op->newline() << "#define UPROBES_API_VERSION 1";
4399 s.op->newline() << "#endif";
a96d1db0 4400
43241c44
FCE
4401 // We'll probably need at least this many:
4402 unsigned minuprobes = probes.size();
4403 // .. but we don't want so many that .bss is inflated (PR10507):
4404 unsigned uprobesize = 64;
4405 unsigned maxuprobesmem = 10*1024*1024; // 10 MB
4406 unsigned maxuprobes = maxuprobesmem / uprobesize;
4407
4408 // Let's choose a value on the middle, but clamped on the minimum size
4409 unsigned default_maxuprobes =
4410 (minuprobes < maxuprobes) ? ((minuprobes + maxuprobes) / 2) : minuprobes;
4411
6d0f3f0c 4412 s.op->newline() << "#ifndef MAXUPROBES";
43241c44 4413 s.op->newline() << "#define MAXUPROBES " << default_maxuprobes;
6d0f3f0c 4414 s.op->newline() << "#endif";
a96d1db0 4415
5e112f92
FCE
4416 // In .bss, the shared pool of uprobe/uretprobe structs. These are
4417 // too big to embed in the initialized .data stap_uprobe_spec array.
4c2732a1 4418 s.op->newline() << "static struct stap_uprobe {";
888af770 4419 s.op->newline(1) << "union { struct uprobe up; struct uretprobe urp; };";
6d0f3f0c 4420 s.op->newline() << "int spec_index;"; // index into stap_uprobe_specs; <0 == free && unregistered
01b05e2e 4421 s.op->newline(-1) << "} stap_uprobes [MAXUPROBES];";
5e112f92 4422 s.op->newline() << "DEFINE_MUTEX(stap_uprobes_lock);"; // protects against concurrent registration/unregistration
a96d1db0 4423
4c2732a1 4424 s.op->newline() << "static struct stap_uprobe_spec {";
5e112f92 4425 s.op->newline(1) << "struct stap_task_finder_target finder;";
888af770 4426 s.op->newline() << "unsigned long address;";
17c128f2 4427 s.op->newline() << "const char *pathname;";
a96d1db0
DN
4428 s.op->newline() << "const char *pp;";
4429 s.op->newline() << "void (*ph) (struct context*);";
6d0f3f0c
FCE
4430 s.op->newline() << "unsigned return_p:1;";
4431 s.op->newline(-1) << "} stap_uprobe_specs [] = {";
a96d1db0 4432 s.op->indent(1);
888af770
FCE
4433 for (unsigned i =0; i<probes.size(); i++)
4434 {
4435 uprobe_derived_probe* p = probes[i];
4436 s.op->newline() << "{";
0973d815
FCE
4437 s.op->line() << " .finder = {";
4438 if (p->pid != 0)
17c128f2
FCE
4439 s.op->line() << " .pid=" << p->pid;
4440 else if (p->section == ".absolute")
0973d815 4441 s.op->line() << " .pathname=" << lex_cast_qstring(p->module) << ", ";
06aca46a 4442 // else ".dynamic" gets pathname=0, pid=0, activating task_finder "global tracing"
0973d815 4443 s.op->line() << "},";
17c128f2
FCE
4444 if (p->section != ".absolute")
4445 s.op->line() << " .pathname=" << lex_cast_qstring(p->module) << ", ";
dc38c256 4446 s.op->line() << " .address=(unsigned long)0x" << hex << p->address << dec << "ULL,";
888af770
FCE
4447 s.op->line() << " .pp=" << lex_cast_qstring (*p->sole_location()) << ",";
4448 s.op->line() << " .ph=&" << p->name << ",";
4449 if (p->return_p) s.op->line() << " .return_p=1,";
4450 s.op->line() << " },";
4451 }
4452 s.op->newline(-1) << "};";
a96d1db0 4453
48e685da 4454 s.op->newline() << "static void enter_uprobe_probe (struct uprobe *inst, struct pt_regs *regs) {";
888af770 4455 s.op->newline(1) << "struct stap_uprobe *sup = container_of(inst, struct stap_uprobe, up);";
6d0f3f0c 4456 s.op->newline() << "struct stap_uprobe_spec *sups = &stap_uprobe_specs [sup->spec_index];";
c12d974f 4457 common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING", "sups->pp");
6d0f3f0c
FCE
4458 s.op->newline() << "if (sup->spec_index < 0 ||"
4459 << "sup->spec_index >= " << probes.size() << ") return;"; // XXX: should not happen
a96d1db0 4460 s.op->newline() << "c->regs = regs;";
6415ddde
MW
4461
4462 // Make it look like the IP is set as it would in the actual user
4463 // task when calling real probe handler. Reset IP regs on return, so
4464 // we don't confuse uprobes. PR10458
3d988997
MW
4465 // But only for architectures where REG_IP is a proper lvalue. PR10491
4466 s.op->newline() << "#ifdef REG_IP_LVALUE";
6415ddde
MW
4467 s.op->newline() << "{";
4468 s.op->indent(1);
4469 s.op->newline() << "unsigned long uprobes_ip = REG_IP(c->regs);";
4470 s.op->newline() << "REG_IP(regs) = inst->vaddr;";
6d0f3f0c 4471 s.op->newline() << "(*sups->ph) (c);";
6415ddde
MW
4472 s.op->newline() << "REG_IP(regs) = uprobes_ip;";
4473 s.op->newline(-1) << "}";
3d988997
MW
4474 s.op->newline() << "#else";
4475 s.op->newline() << "(*sdp->ph) (c);";
4476 s.op->newline() << "#endif";
6415ddde 4477
a96d1db0 4478 common_probe_entryfn_epilogue (s.op);
888af770 4479 s.op->newline(-1) << "}";
a96d1db0 4480
48e685da 4481 s.op->newline() << "static void enter_uretprobe_probe (struct uretprobe_instance *inst, struct pt_regs *regs) {";
888af770 4482 s.op->newline(1) << "struct stap_uprobe *sup = container_of(inst->rp, struct stap_uprobe, urp);";
6d0f3f0c 4483 s.op->newline() << "struct stap_uprobe_spec *sups = &stap_uprobe_specs [sup->spec_index];";
c12d974f 4484 common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING", "sups->pp");
6d0f3f0c
FCE
4485 s.op->newline() << "if (sup->spec_index < 0 ||"
4486 << "sup->spec_index >= " << probes.size() << ") return;"; // XXX: should not happen
888af770
FCE
4487 // XXX: kretprobes saves "c->pi = inst;" too
4488 s.op->newline() << "c->regs = regs;";
6415ddde
MW
4489
4490 // Make it look like the IP is set as it would in the actual user
4491 // task when calling real probe handler. Reset IP regs on return, so
4492 // we don't confuse uprobes. PR10458
3d988997
MW
4493 // But only for architectures where REG_IP is a proper lvalue. PR10491
4494 s.op->newline() << "#ifdef REG_IP_LVALUE";
6415ddde
MW
4495 s.op->newline() << "{";
4496 s.op->indent(1);
4497 s.op->newline() << "unsigned long uprobes_ip = REG_IP(c->regs);";
4498 s.op->newline() << "REG_IP(regs) = inst->rp->u.vaddr;";
6d0f3f0c 4499 s.op->newline() << "(*sups->ph) (c);";
6415ddde
MW
4500 s.op->newline() << "REG_IP(regs) = uprobes_ip;";
4501 s.op->newline(-1) << "}";
3d988997
MW
4502 s.op->newline() << "#else";
4503 s.op->newline() << "(*sdp->ph) (c);";
4504 s.op->newline() << "#endif";
6415ddde 4505
888af770 4506 common_probe_entryfn_epilogue (s.op);
a96d1db0
DN
4507 s.op->newline(-1) << "}";
4508
a96d1db0 4509
a96d1db0 4510
6d0f3f0c
FCE
4511 // NB: Because these utrace callbacks only occur before / after
4512 // userspace instructions run, there is no concurrency control issue
4513 // between active uprobe callbacks and these registration /
06aca46a 4514 // unregistration pieces.
a96d1db0 4515
6d0f3f0c 4516 // We protect the stap_uprobe->spec_index (which also serves as a
d41d451c
FCE
4517 // free/busy flag) value with the outer protective stap_probes_lock
4518 // spinlock, to protect it against concurrent registration /
4519 // unregistration.
8813a27c 4520
6d0f3f0c 4521 s.op->newline();
17c128f2
FCE
4522 s.op->newline() << "static int stap_uprobe_change (struct task_struct *tsk, int register_p, unsigned long relocation, struct stap_uprobe_spec *sups) {";
4523 s.op->newline(1) << "int spec_index = (sups - stap_uprobe_specs);";
6d0f3f0c 4524 s.op->newline() << "int handled_p = 0;";
d41d451c 4525 s.op->newline() << "int slotted_p = 0;";
6d0f3f0c
FCE
4526 s.op->newline() << "int rc = 0;";
4527 s.op->newline() << "int i;";
a96d1db0 4528
d41d451c 4529 s.op->newline() << "mutex_lock (& stap_uprobes_lock);";
01b05e2e 4530 s.op->newline() << "for (i=0; i<MAXUPROBES; i++) {"; // XXX: slow linear search
5e112f92 4531 s.op->newline(1) << "struct stap_uprobe *sup = & stap_uprobes[i];";
a96d1db0 4532
6d0f3f0c
FCE
4533 // register new uprobe
4534 s.op->newline() << "if (register_p && sup->spec_index < 0) {";
9d451878
JK
4535 s.op->newline(1) << "#if (UPROBES_API_VERSION < 2)";
4536 // See PR6829 comment.
4537 s.op->newline() << "if (sup->spec_index == -1 && sup->up.kdata != NULL) continue;";
80b4ad8b 4538 s.op->newline() << "else if (sup->spec_index == -2 && sup->urp.u.kdata != NULL) continue;";
9d451878 4539 s.op->newline() << "#endif";
80b4ad8b 4540 s.op->newline() << "sup->spec_index = spec_index;";
d41d451c
FCE
4541 s.op->newline() << "slotted_p = 1;";
4542 s.op->newline() << "break;";
4543 s.op->newline(-1) << "} else if (!register_p && "
4544 << "sup->spec_index == spec_index && " // a u[ret]probe set up for this probe point
4545 << "((sups->return_p && sup->urp.u.pid == tsk->tgid && sup->urp.u.vaddr == relocation + sups->address) ||" // dying uretprobe
4546 << "(!sups->return_p && sup->up.pid == tsk->tgid && sup->up.vaddr == relocation + sups->address))) {"; // dying uprobe
4547 s.op->newline(1) << "slotted_p = 1;";
4548 s.op->newline() << "break;"; // exit to-free slot search
4549 s.op->newline(-1) << "}";
a96d1db0 4550
d41d451c
FCE
4551 s.op->newline(-1) << "}";
4552 s.op->newline() << "mutex_unlock (& stap_uprobes_lock);";
a96d1db0 4553
d41d451c
FCE
4554 s.op->newline() << "#ifdef DEBUG_UPROBES";
4555 s.op->newline() << "printk (KERN_INFO \"%cuprobe spec %d idx %d process %s[%d] reloc %p pp '%s'\\n\", ";
4556 s.op->line() << "(register_p ? '+' : '-'), spec_index, (slotted_p ? i : -1), tsk->comm, tsk->tgid, (void*) relocation, sups->pp);";
4557 s.op->newline() << "#endif";
a96d1db0 4558
d41d451c
FCE
4559 // Here, slotted_p implies that `i' points to the single
4560 // stap_uprobes[] element that has been slotted in for registration
4561 // or unregistration processing. !slotted_p implies that the table
4562 // was full (registration; MAXUPROBES) or that no matching entry was
4563 // found (unregistration; should not happen).
4564
4565 s.op->newline() << "if (register_p && slotted_p) {";
4566 s.op->newline(1) << "struct stap_uprobe *sup = & stap_uprobes[i];";
6d0f3f0c
FCE
4567 s.op->newline() << "if (sups->return_p) {";
4568 s.op->newline(1) << "sup->urp.u.pid = tsk->tgid;";
17c128f2 4569 s.op->newline() << "sup->urp.u.vaddr = relocation + sups->address;";
6d0f3f0c
FCE
4570 s.op->newline() << "sup->urp.handler = &enter_uretprobe_probe;";
4571 s.op->newline() << "rc = register_uretprobe (& sup->urp);";
4572 s.op->newline(-1) << "} else {";
4573 s.op->newline(1) << "sup->up.pid = tsk->tgid;";
17c128f2 4574 s.op->newline() << "sup->up.vaddr = relocation + sups->address;";
6d0f3f0c
FCE
4575 s.op->newline() << "sup->up.handler = &enter_uprobe_probe;";
4576 s.op->newline() << "rc = register_uprobe (& sup->up);";
4577 s.op->newline(-1) << "}";
6d0f3f0c 4578 s.op->newline() << "if (rc) {"; // failed to register
d41d451c
FCE
4579 s.op->newline(1) << "printk (KERN_WARNING \"uprobe failed %s[%d] '%s' addr %p rc %d\\n\", tsk->comm, tsk->tgid, sups->pp, (void*)(relocation + sups->address), rc);";
4580 // NB: we need to release this slot, so we need to borrow the mutex temporarily.
4581 s.op->newline() << "mutex_lock (& stap_uprobes_lock);";
3568f1dd 4582 s.op->newline() << "sup->spec_index = -1;";
d41d451c 4583 s.op->newline() << "mutex_unlock (& stap_uprobes_lock);";
6d0f3f0c
FCE
4584 s.op->newline(-1) << "} else {";
4585 s.op->newline(1) << "handled_p = 1;"; // success
8813a27c
MW
4586 s.op->newline(-1) << "}";
4587
d41d451c
FCE
4588 s.op->newline(-1) << "} else if (!register_p && slotted_p) {";
4589 s.op->newline(1) << "struct stap_uprobe *sup = & stap_uprobes[i];";
9d451878
JK
4590 s.op->newline() << "int unregistered_flag;";
4591 // PR6829, PR9940:
4592 // Here we're unregistering for one of two reasons:
4593 // 1. the process image is going away (or gone) due to exit or exec; or
4594 // 2. the vma containing the probepoint has been unmapped.
4595 // In case 1, it's sort of a nop, because uprobes will notice the event
4596 // and dispose of the probes eventually, if it hasn't already. But by
4597 // calling unmap_u[ret]probe() ourselves, we free up sup right away.
4598 //
4599 // In both cases, we must use unmap_u[ret]probe instead of
4600 // unregister_u[ret]probe, so uprobes knows not to try to restore the
4601 // original opcode.
4602 s.op->newline() << "#if (UPROBES_API_VERSION >= 2)";
4603 s.op->newline() << "if (sups->return_p)";
4604 s.op->newline(1) << "unmap_uretprobe (& sup->urp);";
4605 s.op->newline(-1) << "else";
4606 s.op->newline(1) << "unmap_uprobe (& sup->up);";
4607 s.op->newline(-1) << "unregistered_flag = -1;";
4608 s.op->newline() << "#else";
4609 // Uprobes lacks unmap_u[ret]probe. Before reusing sup, we must wait
4610 // until uprobes turns loose of the u[ret]probe on its own, as indicated
4611 // by uprobe.kdata = NULL.
4612 s.op->newline() << "unregistered_flag = (sups->return_p ? -2 : -1);";
4613 s.op->newline() << "#endif";
d41d451c 4614 s.op->newline() << "mutex_lock (& stap_uprobes_lock);";
9d451878 4615 s.op->newline() << "sup->spec_index = unregistered_flag;";
5e112f92 4616 s.op->newline() << "mutex_unlock (& stap_uprobes_lock);";
d41d451c
FCE
4617 s.op->newline() << "handled_p = 1;";
4618 s.op->newline(-1) << "}"; // if slotted_p
a96d1db0 4619
d41d451c 4620 // NB: handled_p implies slotted_p
3598cf01 4621
6d0f3f0c 4622 s.op->newline() << "if (! handled_p) {";
73209876
FCE
4623 s.op->newline(1) << "#ifdef STP_TIMING";
4624 s.op->newline() << "atomic_inc (register_p ? & skipped_count_uprobe_reg : & skipped_count_uprobe_unreg);";
4625 s.op->newline() << "#endif";
4626 // NB: duplicates common_entryfn_epilogue, but then this is not a probe entry fn epilogue.
4627 s.op->newline() << "if (unlikely (atomic_inc_return (& skipped_count) > MAXSKIPPED)) {";
6d0f3f0c
FCE
4628 s.op->newline(1) << "atomic_set (& session_state, STAP_SESSION_ERROR);";
4629 s.op->newline() << "_stp_exit ();";
3598cf01 4630 s.op->newline(-1) << "}";
3598cf01
MJ
4631 s.op->newline(-1) << "}";
4632
6d0f3f0c 4633 s.op->newline() << "return 0;"; // XXX: or rc?
a96d1db0 4634 s.op->newline(-1) << "}";
6d0f3f0c 4635 s.op->assert_0_indent();
a96d1db0
DN
4636
4637
17c128f2 4638 // The task_finder_callback we use for ET_EXEC targets.
a96d1db0 4639 s.op->newline();
17c128f2 4640 s.op->newline() << "static int stap_uprobe_process_found (struct stap_task_finder_target *tgt, struct task_struct *tsk, int register_p, int process_p) {";
935447c8 4641
17c128f2
FCE
4642 s.op->newline(1) << "struct stap_uprobe_spec *sups = container_of(tgt, struct stap_uprobe_spec, finder);";
4643 s.op->newline() << "if (! process_p) return 0;";
4644 s.op->newline(0) << "return stap_uprobe_change (tsk, register_p, 0, sups);";
4645 s.op->newline(-1) << "}";
935447c8 4646
782040b3 4647 // The task_finder_mmap_callback we use for ET_DYN targets.
17c128f2 4648 s.op->newline();
782040b3 4649 s.op->newline() << "static int stap_uprobe_mmap_found (struct stap_task_finder_target *tgt, struct task_struct *tsk, char *path, unsigned long addr, unsigned long length, unsigned long offset, unsigned long vm_flags) {";
17c128f2
FCE
4650 s.op->newline(1) << "struct stap_uprobe_spec *sups = container_of(tgt, struct stap_uprobe_spec, finder);";
4651 // 1 - shared libraries' executable segments load from offset 0 - ld.so convention
782040b3 4652 s.op->newline() << "if (offset != 0) return 0;";
17c128f2 4653 // 2 - the shared library we're interested in
782040b3 4654 s.op->newline() << "if (path == NULL || strcmp (path, sups->pathname)) return 0;";
17c128f2 4655 // 3 - probe address within the mapping limits; test should not fail
782040b3
DS
4656 s.op->newline() << "if (sups->address >= addr && sups->address < (addr + length)) return 0;";
4657 // 4 - mapping should be executable
4658 s.op->newline() << "if (!(vm_flags & VM_EXEC)) return 0;";
935447c8 4659
c16d425a 4660 s.op->newline() << "#ifdef DEBUG_TASK_FINDER_VMA";
782040b3 4661 s.op->newline() << "printk (KERN_INFO \"vmchange pid %d path %s addr %p length %lu offset %p\\n\", tsk->tgid, path, (void *) addr, length, (void*) offset);";
c16d425a
FCE
4662 s.op->newline() << "printk (KERN_INFO \"sups %p pp %s path %s address %p\\n\", sups, sups->pp, sups->pathname ?: \"\", (void*) sups->address);";
4663 s.op->newline() << "#endif";
935447c8 4664
782040b3 4665 s.op->newline(0) << "return stap_uprobe_change (tsk, 1, addr, sups);";
17c128f2
FCE
4666 s.op->newline(-1) << "}";
4667 s.op->assert_0_indent();
935447c8 4668
935447c8 4669
6d0f3f0c 4670 s.op->newline();
888af770 4671}
935447c8
DS
4672
4673
888af770
FCE
4674void
4675uprobe_derived_probe_group::emit_module_init (systemtap_session& s)
935447c8 4676{
888af770 4677 if (probes.empty()) return;
935447c8 4678
5e112f92 4679 s.op->newline() << "/* ---- user probes ---- */";
935447c8 4680
01b05e2e 4681 s.op->newline() << "for (j=0; j<MAXUPROBES; j++) {";
5e112f92
FCE
4682 s.op->newline(1) << "struct stap_uprobe *sup = & stap_uprobes[j];";
4683 s.op->newline() << "sup->spec_index = -1;"; // free slot
80b4ad8b
FCE
4684 // NB: we assume the rest of the struct (specificaly, sup->up) is
4685 // initialized to zero. This is so that we can use
4686 // sup->up->kdata = NULL for "really free!" PR 6829.
5e112f92
FCE
4687 s.op->newline(-1) << "}";
4688 s.op->newline() << "mutex_init (& stap_uprobes_lock);";
935447c8 4689
888af770 4690 s.op->newline() << "for (i=0; i<" << probes.size() << "; i++) {";
6d0f3f0c
FCE
4691 s.op->newline(1) << "struct stap_uprobe_spec *sups = & stap_uprobe_specs[i];";
4692 s.op->newline() << "probe_point = sups->pp;"; // for error messages
17c128f2 4693 s.op->newline() << "if (sups->finder.pathname) sups->finder.callback = & stap_uprobe_process_found;";
782040b3 4694 s.op->newline() << "else if (sups->pathname) sups->finder.mmap_callback = & stap_uprobe_mmap_found;";
6d0f3f0c 4695 s.op->newline() << "rc = stap_register_task_finder_target (& sups->finder);";
935447c8 4696
5e112f92
FCE
4697 // NB: if (rc), there is no need (XXX: nor any way) to clean up any
4698 // finders already registered, since mere registration does not
4699 // cause any utrace or memory allocation actions. That happens only
4700 // later, once the task finder engine starts running. So, for a
4701 // partial initialization requiring unwind, we need do nothing.
4702 s.op->newline() << "if (rc) break;";
a7a68293 4703
888af770
FCE
4704 s.op->newline(-1) << "}";
4705}
d0ea46ce 4706
d0a7f5a9 4707
888af770
FCE
4708void
4709uprobe_derived_probe_group::emit_module_exit (systemtap_session& s)
4710{
4711 if (probes.empty()) return;
4712 s.op->newline() << "/* ---- user probes ---- */";
e56e51c9 4713
6d0f3f0c
FCE
4714 // NB: there is no stap_unregister_task_finder_target call;
4715 // important stuff like utrace cleanups are done by
d41d451c
FCE
4716 // __stp_task_finder_cleanup() via stap_stop_task_finder().
4717 //
4718 // This function blocks until all callbacks are completed, so there
4719 // is supposed to be no possibility of any registration-related code starting
4720 // to run in parallel with our shutdown here. So we don't need to protect the
4721 // stap_uprobes[] array with the mutex.
d0a7f5a9 4722
01b05e2e 4723 s.op->newline() << "for (j=0; j<MAXUPROBES; j++) {";
5e112f92
FCE
4724 s.op->newline(1) << "struct stap_uprobe *sup = & stap_uprobes[j];";
4725 s.op->newline() << "struct stap_uprobe_spec *sups = &stap_uprobe_specs [sup->spec_index];";
6d0f3f0c 4726 s.op->newline() << "if (sup->spec_index < 0) continue;"; // free slot
3568f1dd
FCE
4727
4728 s.op->newline() << "if (sups->return_p) {";
4729 s.op->newline(1) << "#ifdef DEBUG_UPROBES";
d41d451c 4730 s.op->newline() << "printk (KERN_INFO \"-uretprobe spec %d index %d pid %d addr %p\\n\", sup->spec_index, j, sup->up.pid, (void*) sup->up.vaddr);";
3568f1dd 4731 s.op->newline() << "#endif";
80b4ad8b
FCE
4732 // NB: PR6829 does not change that we still need to unregister at
4733 // *this* time -- when the script as a whole exits.
3568f1dd
FCE
4734 s.op->newline() << "unregister_uretprobe (& sup->urp);";
4735 s.op->newline(-1) << "} else {";
4736 s.op->newline(1) << "#ifdef DEBUG_UPROBES";
d41d451c 4737 s.op->newline() << "printk (KERN_INFO \"-uprobe spec %d index %d pid %d addr %p\\n\", sup->spec_index, j, sup->urp.u.pid, (void*) sup->urp.u.vaddr);";
3568f1dd
FCE
4738 s.op->newline() << "#endif";
4739 s.op->newline() << "unregister_uprobe (& sup->up);";
4740 s.op->newline(-1) << "}";
935447c8 4741
6d0f3f0c 4742 s.op->newline() << "sup->spec_index = -1;";
935447c8 4743
3568f1dd
FCE
4744 // XXX: uprobe missed counts?
4745
6d0f3f0c 4746 s.op->newline(-1) << "}";
935447c8 4747
5e112f92 4748 s.op->newline() << "mutex_destroy (& stap_uprobes_lock);";
935447c8
DS
4749}
4750
e6fe60e7
AM
4751// ------------------------------------------------------------------------
4752// Kprobe derived probes
4753// ------------------------------------------------------------------------
4754
4627ed58 4755static const string TOK_KPROBE("kprobe");
935447c8 4756
bae55db9 4757struct kprobe_derived_probe: public derived_probe
d0ea46ce 4758{
bae55db9
JS
4759 kprobe_derived_probe (probe *base,
4760 probe_point *location,
4761 const string& name,
4762 int64_t stmt_addr,
4763 bool has_return,
4764 bool has_statement,
4765 bool has_maxactive,
4766 long maxactive_val
4767 );
4768 string symbol_name;
4769 Dwarf_Addr addr;
4770 bool has_return;
4771 bool has_statement;
4772 bool has_maxactive;
4773 long maxactive_val;
4774 bool access_var;
4775 void printsig (std::ostream &o) const;
4776 void join_group (systemtap_session& s);
4777};
d0ea46ce 4778
bae55db9
JS
4779struct kprobe_derived_probe_group: public derived_probe_group
4780{
4781private:
4782 multimap<string,kprobe_derived_probe*> probes_by_module;
4783 typedef multimap<string,kprobe_derived_probe*>::iterator p_b_m_iterator;
d0ea46ce 4784
bae55db9
JS
4785public:
4786 void enroll (kprobe_derived_probe* probe);
4787 void emit_module_decls (systemtap_session& s);
4788 void emit_module_init (systemtap_session& s);
4789 void emit_module_exit (systemtap_session& s);
4790};
d0ea46ce 4791
e6fe60e7
AM
4792kprobe_derived_probe::kprobe_derived_probe (probe *base,
4793 probe_point *location,
b6371390 4794 const string& name,
e6fe60e7 4795 int64_t stmt_addr,
b6371390
JS
4796 bool has_return,
4797 bool has_statement,
4798 bool has_maxactive,
4799 long maxactive_val
4800 ):
e6fe60e7
AM
4801 derived_probe (base, location),
4802 symbol_name (name), addr (stmt_addr),
b6371390
JS
4803 has_return (has_return), has_statement (has_statement),
4804 has_maxactive (has_maxactive), maxactive_val (maxactive_val)
e6fe60e7
AM
4805{
4806 this->tok = base->tok;
4807 this->access_var = false;
d0ea46ce 4808
e6fe60e7
AM
4809#ifndef USHRT_MAX
4810#define USHRT_MAX 32767
4811#endif
d0ea46ce 4812
46856d8d
JS
4813 // Expansion of $target variables in the probe body produces an error during
4814 // translate phase, since we're not using debuginfo
d0ea46ce 4815
e6fe60e7 4816 vector<probe_point::component*> comps;
46856d8d 4817 comps.push_back (new probe_point::component(TOK_KPROBE));
e6fe60e7 4818
46856d8d
JS
4819 if (has_statement)
4820 {
4821 comps.push_back (new probe_point::component(TOK_STATEMENT, new literal_number(addr)));
4822 comps.push_back (new probe_point::component(TOK_ABSOLUTE));
4823 }
4824 else
4825 {
4826 size_t pos = name.find(':');
4827 if (pos != string::npos)
d0ea46ce 4828 {
46856d8d
JS
4829 string module = name.substr(0, pos);
4830 string function = name.substr(pos + 1);
4831 comps.push_back (new probe_point::component(TOK_MODULE, new literal_string(module)));
4832 comps.push_back (new probe_point::component(TOK_FUNCTION, new literal_string(function)));
4833 }
4834 else
4835 comps.push_back (new probe_point::component(TOK_FUNCTION, new literal_string(name)));
46856d8d 4836 }
d0ea46ce 4837
b6371390
JS
4838 if (has_return)
4839 comps.push_back (new probe_point::component(TOK_RETURN));
4840 if (has_maxactive)
4841 comps.push_back (new probe_point::component(TOK_MAXACTIVE, new literal_number(maxactive_val)));
d0ea46ce 4842
e6fe60e7
AM
4843 this->sole_location()->components = comps;
4844}
d0ea46ce 4845
e6fe60e7
AM
4846void kprobe_derived_probe::printsig (ostream& o) const
4847{
4848 sole_location()->print (o);
4849 o << " /* " << " name = " << symbol_name << "*/";
4850 printsig_nested (o);
4851}
d0ea46ce 4852
e6fe60e7
AM
4853void kprobe_derived_probe::join_group (systemtap_session& s)
4854{
d0ea46ce 4855
e6fe60e7
AM
4856 if (! s.kprobe_derived_probes)
4857 s.kprobe_derived_probes = new kprobe_derived_probe_group ();
4858 s.kprobe_derived_probes->enroll (this);
d0ea46ce 4859
e6fe60e7 4860}
d0ea46ce 4861
e6fe60e7
AM
4862void kprobe_derived_probe_group::enroll (kprobe_derived_probe* p)
4863{
4864 probes_by_module.insert (make_pair (p->symbol_name, p));
4865 // probes of same symbol should share single kprobe/kretprobe
4866}
d0ea46ce 4867
e6fe60e7
AM
4868void
4869kprobe_derived_probe_group::emit_module_decls (systemtap_session& s)
4870{
4871 if (probes_by_module.empty()) return;
d0ea46ce 4872
e6fe60e7 4873 s.op->newline() << "/* ---- kprobe-based probes ---- */";
d0ea46ce 4874
e6fe60e7
AM
4875 // Warn of misconfigured kernels
4876 s.op->newline() << "#if ! defined(CONFIG_KPROBES)";
4877 s.op->newline() << "#error \"Need CONFIG_KPROBES!\"";
4878 s.op->newline() << "#endif";
4879 s.op->newline();
d0ea46ce 4880
f07c3b68
FCE
4881 s.op->newline() << "#ifndef KRETACTIVE";
4882 s.op->newline() << "#define KRETACTIVE (max(15,6*NR_CPUS))";
4883 s.op->newline() << "#endif";
4884
e6fe60e7 4885 // Forward declare the master entry functions
88747011 4886 s.op->newline() << "static int enter_kprobe2_probe (struct kprobe *inst,";
e6fe60e7 4887 s.op->line() << " struct pt_regs *regs);";
88747011 4888 s.op->newline() << "static int enter_kretprobe2_probe (struct kretprobe_instance *inst,";
e6fe60e7 4889 s.op->line() << " struct pt_regs *regs);";
d0ea46ce 4890
e6fe60e7
AM
4891 // Emit an array of kprobe/kretprobe pointers
4892 s.op->newline() << "#if defined(STAPCONF_UNREGISTER_KPROBES)";
c9116e99 4893 s.op->newline() << "static void * stap_unreg_kprobes2[" << probes_by_module.size() << "];";
e6fe60e7 4894 s.op->newline() << "#endif";
d0ea46ce 4895
e6fe60e7 4896 // Emit the actual probe list.
d0ea46ce 4897
e6fe60e7
AM
4898 s.op->newline() << "static struct stap_dwarfless_kprobe {";
4899 s.op->newline(1) << "union { struct kprobe kp; struct kretprobe krp; } u;";
4900 s.op->newline() << "#ifdef __ia64__";
4901 s.op->newline() << "struct kprobe dummy;";
4902 s.op->newline() << "#endif";
4903 s.op->newline(-1) << "} stap_dwarfless_kprobes[" << probes_by_module.size() << "];";
4904 // NB: bss!
d0ea46ce 4905
e6fe60e7
AM
4906 s.op->newline() << "static struct stap_dwarfless_probe {";
4907 s.op->newline(1) << "const unsigned return_p:1;";
4908 s.op->newline() << "const unsigned maxactive_p:1;";
b350f56b 4909 s.op->newline() << "const unsigned optional_p:1;";
e6fe60e7
AM
4910 s.op->newline() << "unsigned registered_p:1;";
4911 s.op->newline() << "const unsigned short maxactive_val;";
935447c8 4912
e6fe60e7
AM
4913 // Function Names are mostly small and uniform enough to justify putting
4914 // char[MAX]'s into the array instead of relocated char*'s.
935447c8 4915
e6fe60e7
AM
4916 size_t pp_name_max = 0, symbol_string_name_max = 0;
4917 size_t pp_name_tot = 0, symbol_string_name_tot = 0;
4918 for (p_b_m_iterator it = probes_by_module.begin(); it != probes_by_module.end(); it++)
6270adc1 4919 {
e6fe60e7
AM
4920 kprobe_derived_probe* p = it->second;
4921#define DOIT(var,expr) do { \
4922 size_t var##_size = (expr) + 1; \
4923 var##_max = max (var##_max, var##_size); \
4924 var##_tot += var##_size; } while (0)
4925 DOIT(pp_name, lex_cast_qstring(*p->sole_location()).size());
4926 DOIT(symbol_string_name, p->symbol_name.size());
4927#undef DOIT
6270adc1
MH
4928 }
4929
e6fe60e7
AM
4930#define CALCIT(var) \
4931 s.op->newline() << "const char " << #var << "[" << var##_name_max << "] ;";
935447c8 4932
e6fe60e7
AM
4933 CALCIT(pp);
4934 CALCIT(symbol_string);
4935#undef CALCIT
6270adc1 4936
e6fe60e7
AM
4937 s.op->newline() << "const unsigned long address;";
4938 s.op->newline() << "void (* const ph) (struct context*);";
4939 s.op->newline(-1) << "} stap_dwarfless_probes[] = {";
4940 s.op->indent(1);
6270adc1 4941
e6fe60e7
AM
4942 for (p_b_m_iterator it = probes_by_module.begin(); it != probes_by_module.end(); it++)
4943 {
4944 kprobe_derived_probe* p = it->second;
4945 s.op->newline() << "{";
4946 if (p->has_return)
4947 s.op->line() << " .return_p=1,";
6270adc1 4948
e6fe60e7
AM
4949 if (p->has_maxactive)
4950 {
4951 s.op->line() << " .maxactive_p=1,";
4952 assert (p->maxactive_val >= 0 && p->maxactive_val <= USHRT_MAX);
4953 s.op->line() << " .maxactive_val=" << p->maxactive_val << ",";
4954 }
6270adc1 4955
b350f56b
JS
4956 if (p->locations[0]->optional)
4957 s.op->line() << " .optional_p=1,";
4958
e6fe60e7 4959 if (p->has_statement)
c8d9d15e 4960 s.op->line() << " .address=(unsigned long)0x" << hex << p->addr << dec << "ULL,";
e6fe60e7 4961 else
c8d9d15e 4962 s.op->line() << " .symbol_string=\"" << p->symbol_name << "\",";
5d67b47c 4963
e6fe60e7
AM
4964 s.op->line() << " .pp=" << lex_cast_qstring (*p->sole_location()) << ",";
4965 s.op->line() << " .ph=&" << p->name;
4966 s.op->line() << " },";
935447c8
DS
4967 }
4968
e6fe60e7 4969 s.op->newline(-1) << "};";
5d67b47c 4970
e6fe60e7
AM
4971 // Emit the kprobes callback function
4972 s.op->newline();
88747011 4973 s.op->newline() << "static int enter_kprobe2_probe (struct kprobe *inst,";
e6fe60e7
AM
4974 s.op->line() << " struct pt_regs *regs) {";
4975 // NB: as of PR5673, the kprobe|kretprobe union struct is in BSS
4976 s.op->newline(1) << "int kprobe_idx = ((uintptr_t)inst-(uintptr_t)stap_dwarfless_kprobes)/sizeof(struct stap_dwarfless_kprobe);";
4977 // Check that the index is plausible
4978 s.op->newline() << "struct stap_dwarfless_probe *sdp = &stap_dwarfless_probes[";
4979 s.op->line() << "((kprobe_idx >= 0 && kprobe_idx < " << probes_by_module.size() << ")?";
4980 s.op->line() << "kprobe_idx:0)"; // NB: at least we avoid memory corruption
4981 // XXX: it would be nice to give a more verbose error though; BUG_ON later?
4982 s.op->line() << "];";
4983 common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING", "sdp->pp");
4984 s.op->newline() << "c->regs = regs;";
6415ddde
MW
4985
4986 // Make it look like the IP is set as it wouldn't have been replaced
4987 // by a breakpoint instruction when calling real probe handler. Reset
4988 // IP regs on return, so we don't confuse kprobes. PR10458
3d988997
MW
4989 // But only for architectures where REG_IP is a proper lvalue. PR10491
4990 s.op->newline() << "#ifdef REG_IP_LVALUE";
6415ddde
MW
4991 s.op->newline() << "{";
4992 s.op->indent(1);
4993 s.op->newline() << "unsigned long kprobes_ip = REG_IP(c->regs);";
4994 s.op->newline() << "REG_IP(regs) = (unsigned long) inst->addr;";
e6fe60e7 4995 s.op->newline() << "(*sdp->ph) (c);";
6415ddde
MW
4996 s.op->newline() << "REG_IP(regs) = kprobes_ip;";
4997 s.op->newline(-1) << "}";
3d988997
MW
4998 s.op->newline() << "#else";
4999 s.op->newline() << "(*sdp->ph) (c);";
5000 s.op->newline() << "#endif";
6415ddde 5001
e6fe60e7
AM
5002 common_probe_entryfn_epilogue (s.op);
5003 s.op->newline() << "return 0;";
5004 s.op->newline(-1) << "}";
935447c8 5005
e6fe60e7
AM
5006 // Same for kretprobes
5007 s.op->newline();
88747011 5008 s.op->newline() << "static int enter_kretprobe2_probe (struct kretprobe_instance *inst,";
e6fe60e7
AM
5009 s.op->line() << " struct pt_regs *regs) {";
5010 s.op->newline(1) << "struct kretprobe *krp = inst->rp;";
935447c8 5011
e6fe60e7
AM
5012 // NB: as of PR5673, the kprobe|kretprobe union struct is in BSS
5013 s.op->newline() << "int kprobe_idx = ((uintptr_t)krp-(uintptr_t)stap_dwarfless_kprobes)/sizeof(struct stap_dwarfless_kprobe);";
5014 // Check that the index is plausible
5015 s.op->newline() << "struct stap_dwarfless_probe *sdp = &stap_dwarfless_probes[";
5016 s.op->line() << "((kprobe_idx >= 0 && kprobe_idx < " << probes_by_module.size() << ")?";
5017 s.op->line() << "kprobe_idx:0)"; // NB: at least we avoid memory corruption
5018 // XXX: it would be nice to give a more verbose error though; BUG_ON later?
5019 s.op->line() << "];";
935447c8 5020
e6fe60e7
AM
5021 common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING", "sdp->pp");
5022 s.op->newline() << "c->regs = regs;";
5023 s.op->newline() << "c->pi = inst;"; // for assisting runtime's backtrace logic
6415ddde
MW
5024
5025 // Make it look like the IP is set as it wouldn't have been replaced
5026 // by a breakpoint instruction when calling real probe handler. Reset
5027 // IP regs on return, so we don't confuse kprobes. PR10458
3d988997
MW
5028 // But only for architectures where REG_IP is a proper lvalue. PR10491
5029 s.op->newline() << "#ifdef REG_IP_LVALUE";
6415ddde
MW
5030 s.op->newline() << "{";
5031 s.op->indent(1);
5032 s.op->newline() << "unsigned long kprobes_ip = REG_IP(c->regs);";
5033 s.op->newline() << "REG_IP(regs) = (unsigned long) inst->rp->kp.addr;";
e6fe60e7 5034 s.op->newline() << "(*sdp->ph) (c);";
6415ddde
MW
5035 s.op->newline() << "REG_IP(regs) = kprobes_ip;";
5036 s.op->newline(-1) << "}";
3d988997
MW
5037 s.op->newline() << "#else";
5038 s.op->newline() << "(*sdp->ph) (c);";
5039 s.op->newline() << "#endif";
6415ddde 5040
e6fe60e7
AM
5041 common_probe_entryfn_epilogue (s.op);
5042 s.op->newline() << "return 0;";
5043 s.op->newline(-1) << "}";
935447c8
DS
5044}
5045
e6fe60e7 5046
6270adc1 5047void
e6fe60e7 5048kprobe_derived_probe_group::emit_module_init (systemtap_session& s)
6270adc1 5049{
e6fe60e7 5050 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
c8d9d15e 5051 s.op->newline(1) << "struct stap_dwarfless_probe *sdp = & stap_dwarfless_probes[i];";
e6fe60e7 5052 s.op->newline() << "struct stap_dwarfless_kprobe *kp = & stap_dwarfless_kprobes[i];";
c8d9d15e
JS
5053 s.op->newline() << "void *addr = (void *) sdp->address;";
5054 s.op->newline() << "const char *symbol_name = addr ? NULL : sdp->symbol_string;";
e6fe60e7
AM
5055 s.op->newline() << "probe_point = sdp->pp;"; // for error messages
5056 s.op->newline() << "if (sdp->return_p) {";
c8d9d15e 5057 s.op->newline(1) << "kp->u.krp.kp.addr = addr;";
9f38e653 5058 s.op->newline() << "kp->u.krp.kp.symbol_name = (char *) symbol_name;";
e6fe60e7
AM
5059 s.op->newline() << "if (sdp->maxactive_p) {";
5060 s.op->newline(1) << "kp->u.krp.maxactive = sdp->maxactive_val;";
5061 s.op->newline(-1) << "} else {";
f07c3b68 5062 s.op->newline(1) << "kp->u.krp.maxactive = KRETACTIVE;";
e6fe60e7 5063 s.op->newline(-1) << "}";
88747011 5064 s.op->newline() << "kp->u.krp.handler = &enter_kretprobe2_probe;";
e6fe60e7
AM
5065 // to ensure safeness of bspcache, always use aggr_kprobe on ia64
5066 s.op->newline() << "#ifdef __ia64__";
e6fe60e7 5067 s.op->newline() << "kp->dummy.addr = kp->u.krp.kp.addr;";
c8d9d15e
JS
5068 s.op->newline() << "kp->dummy.symbol_name = kp->u.krp.kp.symbol_name;";
5069 s.op->newline() << "kp->dummy.pre_handler = NULL;";
e6fe60e7
AM
5070 s.op->newline() << "rc = register_kprobe (& kp->dummy);";
5071 s.op->newline() << "if (rc == 0) {";
5072 s.op->newline(1) << "rc = register_kretprobe (& kp->u.krp);";
5073 s.op->newline() << "if (rc != 0)";
5074 s.op->newline(1) << "unregister_kprobe (& kp->dummy);";
5075 s.op->newline(-2) << "}";
5076 s.op->newline() << "#else";
5077 s.op->newline() << "rc = register_kretprobe (& kp->u.krp);";
5078 s.op->newline() << "#endif";
5079 s.op->newline(-1) << "} else {";
5080 // to ensure safeness of bspcache, always use aggr_kprobe on ia64
c8d9d15e 5081 s.op->newline(1) << "kp->u.kp.addr = addr;";
9f38e653 5082 s.op->newline() << "kp->u.kp.symbol_name = (char *) symbol_name;";
88747011 5083 s.op->newline() << "kp->u.kp.pre_handler = &enter_kprobe2_probe;";
e6fe60e7 5084 s.op->newline() << "#ifdef __ia64__";
e6fe60e7 5085 s.op->newline() << "kp->dummy.pre_handler = NULL;";
c8d9d15e
JS
5086 s.op->newline() << "kp->dummy.addr = kp->u.kp.addr;";
5087 s.op->newline() << "kp->dummy.symbol_name = kp->u.kp.symbol_name;";
e6fe60e7
AM
5088 s.op->newline() << "rc = register_kprobe (& kp->dummy);";
5089 s.op->newline() << "if (rc == 0) {";
5090 s.op->newline(1) << "rc = register_kprobe (& kp->u.kp);";
5091 s.op->newline() << "if (rc != 0)";
5092 s.op->newline(1) << "unregister_kprobe (& kp->dummy);";
5093 s.op->newline(-2) << "}";
5094 s.op->newline() << "#else";
5095 s.op->newline() << "rc = register_kprobe (& kp->u.kp);";
5096 s.op->newline() << "#endif";
5097 s.op->newline(-1) << "}";
5098 s.op->newline() << "if (rc) {"; // PR6749: tolerate a failed register_*probe.
5099 s.op->newline(1) << "sdp->registered_p = 0;";
b350f56b 5100 s.op->newline() << "if (!sdp->optional_p)";
4a4edc21 5101 s.op->newline(1) << "_stp_warn (\"probe %s (address 0x%lx) registration error (rc %d)\", probe_point, addr, rc);";
b350f56b 5102 s.op->newline(-1) << "rc = 0;"; // continue with other probes
e6fe60e7
AM
5103 // XXX: shall we increment numskipped?
5104 s.op->newline(-1) << "}";
6270adc1 5105
e6fe60e7
AM
5106 s.op->newline() << "else sdp->registered_p = 1;";
5107 s.op->newline(-1) << "}"; // for loop
6270adc1
MH
5108}
5109
e6fe60e7
AM
5110void
5111kprobe_derived_probe_group::emit_module_exit (systemtap_session& s)
935447c8 5112{
e6fe60e7
AM
5113 //Unregister kprobes by batch interfaces.
5114 s.op->newline() << "#if defined(STAPCONF_UNREGISTER_KPROBES)";
5115 s.op->newline() << "j = 0;";
5116 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
5117 s.op->newline(1) << "struct stap_dwarfless_probe *sdp = & stap_dwarfless_probes[i];";
5118 s.op->newline() << "struct stap_dwarfless_kprobe *kp = & stap_dwarfless_kprobes[i];";
5119 s.op->newline() << "if (! sdp->registered_p) continue;";
5120 s.op->newline() << "if (!sdp->return_p)";
c9116e99 5121 s.op->newline(1) << "stap_unreg_kprobes2[j++] = &kp->u.kp;";
e6fe60e7 5122 s.op->newline(-2) << "}";
c9116e99 5123 s.op->newline() << "unregister_kprobes((struct kprobe **)stap_unreg_kprobes2, j);";
e6fe60e7
AM
5124 s.op->newline() << "j = 0;";
5125 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
5126 s.op->newline(1) << "struct stap_dwarfless_probe *sdp = & stap_dwarfless_probes[i];";
5127 s.op->newline() << "struct stap_dwarfless_kprobe *kp = & stap_dwarfless_kprobes[i];";
5128 s.op->newline() << "if (! sdp->registered_p) continue;";
5129 s.op->newline() << "if (sdp->return_p)";
c9116e99 5130 s.op->newline(1) << "stap_unreg_kprobes2[j++] = &kp->u.krp;";
e6fe60e7 5131 s.op->newline(-2) << "}";
c9116e99 5132 s.op->newline() << "unregister_kretprobes((struct kretprobe **)stap_unreg_kprobes2, j);";
e6fe60e7
AM
5133 s.op->newline() << "#ifdef __ia64__";
5134 s.op->newline() << "j = 0;";
5135 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
5136 s.op->newline(1) << "struct stap_dwarfless_probe *sdp = & stap_dwarfless_probes[i];";
5137 s.op->newline() << "struct stap_dwarfless_kprobe *kp = & stap_dwarfless_kprobes[i];";
5138 s.op->newline() << "if (! sdp->registered_p) continue;";
c9116e99 5139 s.op->newline() << "stap_unreg_kprobes2[j++] = &kp->dummy;";
e6fe60e7 5140 s.op->newline(-1) << "}";
c9116e99 5141 s.op->newline() << "unregister_kprobes((struct kprobe **)stap_unreg_kprobes2, j);";
e6fe60e7
AM
5142 s.op->newline() << "#endif";
5143 s.op->newline() << "#endif";
3e3bd7b6 5144
e6fe60e7
AM
5145 s.op->newline() << "for (i=0; i<" << probes_by_module.size() << "; i++) {";
5146 s.op->newline(1) << "struct stap_dwarfless_probe *sdp = & stap_dwarfless_probes[i];";
5147 s.op->newline() << "struct stap_dwarfless_kprobe *kp = & stap_dwarfless_kprobes[i];";
5148 s.op->newline() << "if (! sdp->registered_p) continue;";
5149 s.op->newline() << "if (sdp->return_p) {";
5150 s.op->newline() << "#if !defined(STAPCONF_UNREGISTER_KPROBES)";
5151 s.op->newline(1) << "unregister_kretprobe (&kp->u.krp);";
5152 s.op->newline() << "#endif";
5153 s.op->newline() << "atomic_add (kp->u.krp.nmissed, & skipped_count);";
5154 s.op->newline() << "#ifdef STP_TIMING";
5155 s.op->newline() << "if (kp->u.krp.nmissed)";
5156 s.op->newline(1) << "_stp_warn (\"Skipped due to missed kretprobe/1 on '%s': %d\\n\", sdp->pp, kp->u.krp.nmissed);";
5157 s.op->newline(-1) << "#endif";
5158 s.op->newline() << "atomic_add (kp->u.krp.kp.nmissed, & skipped_count);";
5159 s.op->newline() << "#ifdef STP_TIMING";
5160 s.op->newline() << "if (kp->u.krp.kp.nmissed)";
5161 s.op->newline(1) << "_stp_warn (\"Skipped due to missed kretprobe/2 on '%s': %d\\n\", sdp->pp, kp->u.krp.kp.nmissed);";
5162 s.op->newline(-1) << "#endif";
5163 s.op->newline(-1) << "} else {";
5164 s.op->newline() << "#if !defined(STAPCONF_UNREGISTER_KPROBES)";
5165 s.op->newline(1) << "unregister_kprobe (&kp->u.kp);";
5166 s.op->newline() << "#endif";
5167 s.op->newline() << "atomic_add (kp->u.kp.nmissed, & skipped_count);";
5168 s.op->newline() << "#ifdef STP_TIMING";
5169 s.op->newline() << "if (kp->u.kp.nmissed)";
5170 s.op->newline(1) << "_stp_warn (\"Skipped due to missed kprobe on '%s': %d\\n\", sdp->pp, kp->u.kp.nmissed);";
5171 s.op->newline(-1) << "#endif";
5172 s.op->newline(-1) << "}";
5173 s.op->newline() << "#if !defined(STAPCONF_UNREGISTER_KPROBES) && defined(__ia64__)";
5174 s.op->newline() << "unregister_kprobe (&kp->dummy);";
5175 s.op->newline() << "#endif";
5176 s.op->newline() << "sdp->registered_p = 0;";
5177 s.op->newline(-1) << "}";
f8a968bc
JS
5178}
5179
e6fe60e7 5180struct kprobe_builder: public derived_probe_builder
3c1b3d06 5181{
e6fe60e7
AM
5182 kprobe_builder() {}
5183 virtual void build(systemtap_session & sess,
5184 probe * base,
5185 probe_point * location,
5186 literal_map_t const & parameters,
5187 vector<derived_probe *> & finished_results);
5188};
3c1b3d06
FCE
5189
5190
79189b84 5191void
e6fe60e7
AM
5192kprobe_builder::build(systemtap_session & sess,
5193 probe * base,
5194 probe_point * location,
5195 literal_map_t const & parameters,
5196 vector<derived_probe *> & finished_results)
79189b84 5197{
e6fe60e7 5198 string function_string_val, module_string_val;
b6371390
JS
5199 int64_t statement_num_val = 0, maxactive_val = 0;
5200 bool has_function_str, has_module_str, has_statement_num;
5201 bool has_absolute, has_return, has_maxactive;
79189b84 5202
b6371390
JS
5203 has_function_str = get_param(parameters, TOK_FUNCTION, function_string_val);
5204 has_module_str = get_param(parameters, TOK_MODULE, module_string_val);
5205 has_return = has_null_param (parameters, TOK_RETURN);
5206 has_maxactive = get_param(parameters, TOK_MAXACTIVE, maxactive_val);
5207 has_statement_num = get_param(parameters, TOK_STATEMENT, statement_num_val);
5208 has_absolute = has_null_param (parameters, TOK_ABSOLUTE);
3c1b3d06 5209
b6371390 5210 if (has_function_str)
6fb70fb7 5211 {
b6371390
JS
5212 if (has_module_str)
5213 function_string_val = module_string_val + ":" + function_string_val;
86758d5f 5214
b6371390
JS
5215 finished_results.push_back (new kprobe_derived_probe (base,
5216 location, function_string_val,
5217 0, has_return,
5218 has_statement_num,
5219 has_maxactive,
5220 maxactive_val));
6fb70fb7 5221 }
e6fe60e7 5222 else
b6371390
JS
5223 {
5224 // assert guru mode for absolute probes
5225 if ( has_statement_num && has_absolute && !base->privileged )
5226 throw semantic_error ("absolute statement probe in unprivileged script", base->tok);
5227
5228 finished_results.push_back (new kprobe_derived_probe (base,
5229 location, "",
5230 statement_num_val,
5231 has_return,
5232 has_statement_num,
5233 has_maxactive,
5234 maxactive_val));
96b030fe 5235 }
79189b84
JS
5236}
5237
5238
342d3f96 5239
0a6f5a3f
JS
5240// ------------------------------------------------------------------------
5241// statically inserted kernel-tracepoint derived probes
5242// ------------------------------------------------------------------------
5243
6fb70fb7 5244struct tracepoint_arg
79189b84 5245{
ad370dcc 5246 string name, c_type, typecast;
dcaa1a65 5247 bool usable, used, isptr;
f8a968bc 5248 Dwarf_Die type_die;
dcaa1a65 5249 tracepoint_arg(): usable(false), used(false), isptr(false) {}
6fb70fb7 5250};
79189b84 5251
0a6f5a3f
JS
5252struct tracepoint_derived_probe: public derived_probe
5253{
79189b84
JS
5254 tracepoint_derived_probe (systemtap_session& s,
5255 dwflpp& dw, Dwarf_Die& func_die,
5256 const string& tracepoint_name,
5257 probe* base_probe, probe_point* location);
bc9a523d 5258
79189b84 5259 systemtap_session& sess;
6fb70fb7
JS
5260 string tracepoint_name, header;
5261 vector <struct tracepoint_arg> args;
bc9a523d 5262
6fb70fb7 5263 void build_args(dwflpp& dw, Dwarf_Die& func_die);
e2086848 5264 void printargs (std::ostream &o) const;
79189b84 5265 void join_group (systemtap_session& s);
3e3bd7b6 5266 void print_dupe_stamp(ostream& o);
f8a968bc 5267 void emit_probe_context_vars (translator_output* o);
0a6f5a3f 5268};
79189b84
JS
5269
5270
0a6f5a3f 5271struct tracepoint_derived_probe_group: public generic_dpg<tracepoint_derived_probe>
79189b84 5272{
79189b84
JS
5273 void emit_module_decls (systemtap_session& s);
5274 void emit_module_init (systemtap_session& s);
5275 void emit_module_exit (systemtap_session& s);
0a6f5a3f 5276};
79189b84 5277
bc9a523d 5278
f8a968bc
JS
5279struct tracepoint_var_expanding_visitor: public var_expanding_visitor
5280{
5281 tracepoint_var_expanding_visitor(dwflpp& dw, const string& probe_name,
5282 vector <struct tracepoint_arg>& args):
5283 dw (dw), probe_name (probe_name), args (args) {}
5284 dwflpp& dw;
5285 const string& probe_name;
5286 vector <struct tracepoint_arg>& args;
bc9a523d 5287
f8a968bc
JS
5288 void visit_target_symbol (target_symbol* e);
5289 void visit_target_symbol_arg (target_symbol* e);
5290 void visit_target_symbol_context (target_symbol* e);
5291};
79189b84
JS
5292
5293
f8a968bc
JS
5294void
5295tracepoint_var_expanding_visitor::visit_target_symbol_arg (target_symbol* e)
75ead1f7 5296{
f8a968bc 5297 string argname = e->base_name.substr(1);
75ead1f7 5298
f8a968bc
JS
5299 // search for a tracepoint parameter matching this name
5300 tracepoint_arg *arg = NULL;
5301 for (unsigned i = 0; i < args.size(); ++i)
dcaa1a65 5302 if (args[i].usable && args[i].name == argname)
f8a968bc
JS
5303 {
5304 arg = &args[i];
5305 arg->used = true;
5306 break;
5307 }
75ead1f7 5308
f8a968bc
JS
5309 if (arg == NULL)
5310 {
5311 stringstream alternatives;
5312 for (unsigned i = 0; i < args.size(); ++i)
5313 alternatives << " $" << args[i].name;
046e7190 5314 alternatives << " $$name $$parms $$vars";
75ead1f7 5315
f8a968bc
JS
5316 // We hope that this value ends up not being referenced after all, so it
5317 // can be optimized out quietly.
5318 semantic_error* saveme =
5319 new semantic_error("unable to find tracepoint variable '" + e->base_name
5320 + "' (alternatives:" + alternatives.str () + ")", e->tok);
5321 // NB: we can have multiple errors, since a target variable
5322 // may be expanded in several different contexts:
5323 // trace ("*") { $foo->bar }
5324 saveme->chain = e->saved_conversion_error;
5325 e->saved_conversion_error = saveme;
5326 provide (e);
5327 return;
5328 }
75ead1f7 5329
f8a968bc 5330 // make sure we're not dereferencing base types
dc5a09fc
JS
5331 if (!arg->isptr)
5332 e->assert_no_components("tracepoint");
75ead1f7 5333
f8a968bc
JS
5334 // we can only write to dereferenced fields, and only if guru mode is on
5335 bool lvalue = is_active_lvalue(e);
5336 if (lvalue && (!dw.sess.guru_mode || e->components.empty()))
5337 throw semantic_error("write to tracepoint variable '" + e->base_name
5338 + "' not permitted", e->tok);
ad370dcc
JS
5339 // XXX: if a struct/union arg is passed by value, then writing to its fields
5340 // is also meaningless until you dereference past a pointer member. It's
5341 // harder to detect and prevent that though...
75ead1f7 5342
f8a968bc
JS
5343 if (e->components.empty())
5344 {
03c75a4a
JS
5345 if (e->addressof)
5346 throw semantic_error("cannot take address of tracepoint variable", e->tok);
5347
3e3bd7b6
JS
5348 // Just grab the value from the probe locals
5349 e->probe_context_var = "__tracepoint_arg_" + arg->name;
5350 e->type = pe_long;
5351 provide (e);
f8a968bc
JS
5352 }
5353 else
5354 {
5355 // Synthesize a function to dereference the dwarf fields,
5356 // with a pointer parameter that is the base tracepoint variable
5357 functiondecl *fdecl = new functiondecl;
5358 fdecl->tok = e->tok;
5359 embeddedcode *ec = new embeddedcode;
5360 ec->tok = e->tok;
75ead1f7 5361
f8a968bc
JS
5362 string fname = (string(lvalue ? "_tracepoint_tvar_set" : "_tracepoint_tvar_get")
5363 + "_" + e->base_name.substr(1)
5364 + "_" + lex_cast<string>(tick++));
75ead1f7 5365
f8a968bc
JS
5366 fdecl->name = fname;
5367 fdecl->body = ec;
75ead1f7 5368
f8a968bc
JS
5369 try
5370 {
b4c34c26 5371 ec->code = dw.literal_stmt_for_pointer (&arg->type_die, e,
f8a968bc
JS
5372 lvalue, fdecl->type);
5373 }
5374 catch (const semantic_error& er)
5375 {
5376 // We suppress this error message, and pass the unresolved
5377 // variable to the next pass. We hope that this value ends
5378 // up not being referenced after all, so it can be optimized out
5379 // quietly.
5380 semantic_error* saveme = new semantic_error (er); // copy it
f8a968bc
JS
5381 // NB: we can have multiple errors, since a target variable
5382 // may be expanded in several different contexts:
5383 // trace ("*") { $foo->bar }
5384 saveme->chain = e->saved_conversion_error;
5385 e->saved_conversion_error = saveme;
5386 provide (e);
5387 return;
5388 }
75ead1f7 5389
f8a968bc
JS
5390 // Give the fdecl an argument for the raw tracepoint value
5391 vardecl *v1 = new vardecl;
5392 v1->type = pe_long;
5393 v1->name = "pointer";
5394 v1->tok = e->tok;
5395 fdecl->formal_args.push_back(v1);
75ead1f7 5396
6fda2dff
JS
5397 // Any non-literal indexes need to be passed in too.
5398 for (unsigned i = 0; i < e->components.size(); ++i)
5399 if (e->components[i].type == target_symbol::comp_expression_array_index)
5400 {
5401 vardecl *v = new vardecl;
5402 v->type = pe_long;
5403 v->name = "index" + lex_cast<string>(i);
5404 v->tok = e->tok;
5405 fdecl->formal_args.push_back(v);
5406 }
5407
f8a968bc
JS
5408 if (lvalue)
5409 {
5410 // Modify the fdecl so it carries a pe_long formal
5411 // argument called "value".
75ead1f7 5412
f8a968bc
JS
5413 // FIXME: For the time being we only support setting target
5414 // variables which have base types; these are 'pe_long' in
5415 // stap's type vocabulary. Strings and pointers might be
5416 // reasonable, some day, but not today.
5417
5418 vardecl *v2 = new vardecl;
5419 v2->type = pe_long;
5420 v2->name = "value";
5421 v2->tok = e->tok;
5422 fdecl->formal_args.push_back(v2);
5423 }
5424 else
5425 ec->code += "/* pure */";
5426
5427 dw.sess.functions[fdecl->name] = fdecl;
75ead1f7 5428
f8a968bc
JS
5429 // Synthesize a functioncall.
5430 functioncall* n = new functioncall;
5431 n->tok = e->tok;
5432 n->function = fname;
5433 n->referent = 0; // NB: must not resolve yet, to ensure inclusion in session
75ead1f7 5434
6fda2dff
JS
5435 // make a copy of the original as a bare target symbol for the tracepoint
5436 // value, which will be passed into the dwarf dereferencing code
5437 target_symbol* e2 = deep_copy_visitor::deep_copy(e);
5438 e2->components.clear();
5439 n->args.push_back(require(e2));
5440
5441 // Any non-literal indexes need to be passed in too.
5442 for (unsigned i = 0; i < e->components.size(); ++i)
5443 if (e->components[i].type == target_symbol::comp_expression_array_index)
5444 n->args.push_back(require(e->components[i].expr_index));
75ead1f7 5445
f8a968bc
JS
5446 if (lvalue)
5447 {
5448 // Provide the functioncall to our parent, so that it can be
5449 // used to substitute for the assignment node immediately above
5450 // us.
5451 assert(!target_symbol_setter_functioncalls.empty());
5452 *(target_symbol_setter_functioncalls.top()) = n;
5453 }
75ead1f7 5454
f8a968bc
JS
5455 provide (n);
5456 }
75ead1f7
JS
5457}
5458
5459
f8a968bc
JS
5460void
5461tracepoint_var_expanding_visitor::visit_target_symbol_context (target_symbol* e)
0a6f5a3f 5462{
03c75a4a
JS
5463 if (e->addressof)
5464 throw semantic_error("cannot take address of context variable", e->tok);
5465
f8a968bc
JS
5466 if (is_active_lvalue (e))
5467 throw semantic_error("write to tracepoint '" + e->base_name + "' not permitted", e->tok);
0a6f5a3f 5468
dc5a09fc 5469 e->assert_no_components("tracepoint");
0a6f5a3f 5470
f8a968bc
JS
5471 if (e->base_name == "$$name")
5472 {
5473 // Synthesize a functioncall.
5474 functioncall* n = new functioncall;
5475 n->tok = e->tok;
5476 n->function = "_mark_name_get";
5477 n->referent = 0; // NB: must not resolve yet, to ensure inclusion in session
5478 provide (n);
5479 }
046e7190 5480 else if (e->base_name == "$$vars" || e->base_name == "$$parms")
f8a968bc 5481 {
f8a968bc 5482 print_format* pf = new print_format;
0a6f5a3f 5483
f8a968bc
JS
5484 // Convert $$vars to sprintf of a list of vars which we recursively evaluate
5485 // NB: we synthesize a new token here rather than reusing
5486 // e->tok, because print_format::print likes to use
5487 // its tok->content.
5488 token* pf_tok = new token(*e->tok);
5489 pf_tok->content = "sprintf";
0a6f5a3f 5490
f8a968bc
JS
5491 pf->tok = pf_tok;
5492 pf->print_to_stream = false;
5493 pf->print_with_format = true;
5494 pf->print_with_delim = false;
5495 pf->print_with_newline = false;
5496 pf->print_char = false;
0a6f5a3f 5497
f8a968bc 5498 for (unsigned i = 0; i < args.size(); ++i)
b278033a 5499 {
dcaa1a65
JS
5500 if (!args[i].usable)
5501 continue;
f8a968bc
JS
5502 if (i > 0)
5503 pf->raw_components += " ";
5504 pf->raw_components += args[i].name;
3e3bd7b6 5505 target_symbol *tsym = new target_symbol;
f8a968bc
JS
5506 tsym->tok = e->tok;
5507 tsym->base_name = "$" + args[i].name;
b278033a 5508
f8a968bc
JS
5509 // every variable should always be accessible!
5510 tsym->saved_conversion_error = 0;
5511 expression *texp = require (tsym); // NB: throws nothing ...
5512 assert (!tsym->saved_conversion_error); // ... but this is how we know it happened.
b278033a 5513
d0ad1746 5514 pf->raw_components += args[i].isptr ? "=%p" : "=%#x";
f8a968bc
JS
5515 pf->args.push_back(texp);
5516 }
0a6f5a3f 5517
f8a968bc
JS
5518 pf->components = print_format::string_to_components(pf->raw_components);
5519 provide (pf);
b278033a 5520 }
f8a968bc
JS
5521 else
5522 assert(0); // shouldn't get here
0a6f5a3f
JS
5523}
5524
0a6f5a3f 5525void
f8a968bc 5526tracepoint_var_expanding_visitor::visit_target_symbol (target_symbol* e)
0a6f5a3f 5527{
f8a968bc 5528 assert(e->base_name.size() > 0 && e->base_name[0] == '$');
75ead1f7 5529
046e7190
JS
5530 if (e->base_name == "$$name" ||
5531 e->base_name == "$$parms" ||
5532 e->base_name == "$$vars")
f8a968bc
JS
5533 visit_target_symbol_context (e);
5534 else
5535 visit_target_symbol_arg (e);
0a6f5a3f
JS
5536}
5537
5538
5539
79189b84
JS
5540tracepoint_derived_probe::tracepoint_derived_probe (systemtap_session& s,
5541 dwflpp& dw, Dwarf_Die& func_die,
5542 const string& tracepoint_name,
5543 probe* base, probe_point* loc):
5544 derived_probe (base, new probe_point(*loc) /* .components soon rewritten */),
5545 sess (s), tracepoint_name (tracepoint_name)
56894e91 5546{
79189b84
JS
5547 // create synthetic probe point name; preserve condition
5548 vector<probe_point::component*> comps;
5549 comps.push_back (new probe_point::component (TOK_KERNEL));
5550 comps.push_back (new probe_point::component (TOK_TRACE, new literal_string (tracepoint_name)));
5551 this->sole_location()->components = comps;
5552
6fb70fb7
JS
5553 // fill out the available arguments in this tracepoint
5554 build_args(dw, func_die);
56894e91 5555
6fb70fb7
JS
5556 // determine which header defined this tracepoint
5557 string decl_file = dwarf_decl_file(&func_die);
5558 size_t header_pos = decl_file.rfind("trace/");
5559 if (header_pos == string::npos)
5560 throw semantic_error ("cannot parse header location for tracepoint '"
5561 + tracepoint_name + "' in '"
5562 + decl_file + "'");
5563 header = decl_file.substr(header_pos);
56894e91 5564
6fb70fb7
JS
5565 // tracepoints from FOO_event_types.h should really be included from FOO.h
5566 // XXX can dwarf tell us the include hierarchy? it would be better to
5567 // ... walk up to see which one was directly included by tracequery.c
3c1b3d06 5568 // XXX: see also PR9993.
6fb70fb7
JS
5569 header_pos = header.find("_event_types");
5570 if (header_pos != string::npos)
5571 header.erase(header_pos, 12);
56894e91 5572
f8a968bc
JS
5573 // Now expand the local variables in the probe body
5574 tracepoint_var_expanding_visitor v (dw, name, args);
8b095b45 5575 v.replace (this->body);
56894e91 5576
79189b84
JS
5577 if (sess.verbose > 2)
5578 clog << "tracepoint-based " << name << " tracepoint='" << tracepoint_name
5579 << "'" << endl;
5580}
dc38c0ae 5581
56894e91 5582
f8a968bc 5583static bool
dcaa1a65 5584resolve_tracepoint_arg_type(tracepoint_arg& arg)
46b84a80 5585{
f8a968bc 5586 Dwarf_Attribute type_attr;
dcaa1a65 5587 switch (dwarf_tag(&arg.type_die))
b20febf3 5588 {
f8a968bc
JS
5589 case DW_TAG_typedef:
5590 case DW_TAG_const_type:
5591 case DW_TAG_volatile_type:
5592 // iterate on the referent type
dcaa1a65
JS
5593 return (dwarf_attr_integrate(&arg.type_die, DW_AT_type, &type_attr)
5594 && dwarf_formref_die(&type_attr, &arg.type_die)
5595 && resolve_tracepoint_arg_type(arg));
f8a968bc
JS
5596 case DW_TAG_base_type:
5597 // base types will simply be treated as script longs
dcaa1a65 5598 arg.isptr = false;
f8a968bc
JS
5599 return true;
5600 case DW_TAG_pointer_type:
dcaa1a65
JS
5601 // pointers can be treated as script longs,
5602 // and if we know their type, they can also be dereferenced
5603 if (dwarf_attr_integrate(&arg.type_die, DW_AT_type, &type_attr)
5604 && dwarf_formref_die(&type_attr, &arg.type_die))
5605 arg.isptr = true;
ad370dcc
JS
5606 arg.typecast = "(intptr_t)";
5607 return true;
5608 case DW_TAG_structure_type:
5609 case DW_TAG_union_type:
5610 // for structs/unions which are passed by value, we turn it into
5611 // a pointer that can be dereferenced.
5612 arg.isptr = true;
5613 arg.typecast = "(intptr_t)&";
dcaa1a65 5614 return true;
f8a968bc
JS
5615 default:
5616 // should we consider other types too?
5617 return false;
b20febf3 5618 }
56894e91
JS
5619}
5620
5621
5622void
6fb70fb7 5623tracepoint_derived_probe::build_args(dwflpp& dw, Dwarf_Die& func_die)
56894e91 5624{
6fb70fb7
JS
5625 Dwarf_Die arg;
5626 if (dwarf_child(&func_die, &arg) == 0)
5627 do
5628 if (dwarf_tag(&arg) == DW_TAG_formal_parameter)
5629 {
5630 // build a tracepoint_arg for this parameter
5631 tracepoint_arg tparg;
23d106b9 5632 tparg.name = dwarf_diename(&arg);
56894e91 5633
6fb70fb7
JS
5634 // read the type of this parameter
5635 Dwarf_Attribute type_attr;
6fb70fb7 5636 if (!dwarf_attr_integrate (&arg, DW_AT_type, &type_attr)
f8a968bc 5637 || !dwarf_formref_die (&type_attr, &tparg.type_die)
f1c8f8a5 5638 || !dwarf_type_name(&tparg.type_die, tparg.c_type))
6fb70fb7
JS
5639 throw semantic_error ("cannot get type of tracepoint '"
5640 + tracepoint_name + "' parameter '"
5641 + tparg.name + "'");
a68f81a2 5642
dcaa1a65 5643 tparg.usable = resolve_tracepoint_arg_type(tparg);
6fb70fb7
JS
5644 args.push_back(tparg);
5645 if (sess.verbose > 4)
5646 clog << "found parameter for tracepoint '" << tracepoint_name
5647 << "': type:'" << tparg.c_type
5648 << "' name:'" << tparg.name << "'" << endl;
5649 }
5650 while (dwarf_siblingof(&arg, &arg) == 0);
56894e91
JS
5651}
5652
dc38c0ae 5653void
e2086848 5654tracepoint_derived_probe::printargs(std::ostream &o) const
dc38c0ae 5655{
dcaa1a65
JS
5656 for (unsigned i = 0; i < args.size(); ++i)
5657 if (args[i].usable)
5658 o << " $" << args[i].name << ":" << args[i].c_type;
dc38c0ae
DS
5659}
5660
79189b84
JS
5661void
5662tracepoint_derived_probe::join_group (systemtap_session& s)
197a4d62 5663{
79189b84
JS
5664 if (! s.tracepoint_derived_probes)
5665 s.tracepoint_derived_probes = new tracepoint_derived_probe_group ();
5666 s.tracepoint_derived_probes->enroll (this);
5667}
e38d6504 5668
56894e91 5669
197a4d62 5670void
3e3bd7b6 5671tracepoint_derived_probe::print_dupe_stamp(ostream& o)
56894e91 5672{
3e3bd7b6
JS
5673 for (unsigned i = 0; i < args.size(); i++)
5674 if (args[i].used)
5675 o << "__tracepoint_arg_" << args[i].name << endl;
197a4d62 5676}
56894e91 5677
3e3bd7b6 5678
197a4d62 5679void
f8a968bc 5680tracepoint_derived_probe::emit_probe_context_vars (translator_output* o)
197a4d62 5681{
f8a968bc
JS
5682 for (unsigned i = 0; i < args.size(); i++)
5683 if (args[i].used)
5684 o->newline() << "int64_t __tracepoint_arg_" << args[i].name << ";";
56894e91
JS
5685}
5686
5687
3c1b3d06 5688static vector<string> tracepoint_extra_headers ()
47dd066d 5689{
3c1b3d06
FCE
5690 vector<string> they_live;
5691 // PR 9993
5692 // XXX: may need this to be configurable
5693 they_live.push_back ("linux/skbuff.h");
5694 return they_live;
5695}
47dd066d
WC
5696
5697
5698void
79189b84 5699tracepoint_derived_probe_group::emit_module_decls (systemtap_session& s)
47dd066d 5700{
79189b84
JS
5701 if (probes.empty())
5702 return;
47dd066d 5703
96b030fe
JS
5704 s.op->newline() << "/* ---- tracepoint probes ---- */";
5705 s.op->newline();
79189b84 5706
3c1b3d06
FCE
5707 // PR9993: Add extra headers to work around undeclared types in individual
5708 // include/trace/foo.h files
5709 const vector<string>& extra_headers = tracepoint_extra_headers ();
5710 for (unsigned z=0; z<extra_headers.size(); z++)
5711 s.op->newline() << "#include <" << extra_headers[z] << ">\n";
47dd066d 5712
6fb70fb7
JS
5713 for (unsigned i = 0; i < probes.size(); ++i)
5714 {
5715 tracepoint_derived_probe *p = probes[i];
47dd066d 5716
96b030fe
JS
5717 // emit a separate entry function for each probe, since tracepoints
5718 // don't provide any sort of context pointer.
6fb70fb7
JS
5719 s.op->newline() << "#include <" << p->header << ">";
5720 s.op->newline() << "static void enter_tracepoint_probe_" << i << "(";
8df306c4
JS
5721 if (p->args.size() == 0)
5722 s.op->line() << "void";
6fb70fb7
JS
5723 for (unsigned j = 0; j < p->args.size(); ++j)
5724 {
5725 if (j > 0)
5726 s.op->line() << ", ";
5727 s.op->line() << p->args[j].c_type << " __tracepoint_arg_" << p->args[j].name;
5728 }
5729 s.op->line() << ") {";
5730 s.op->indent(1);
ad002306 5731 common_probe_entryfn_prologue (s.op, "STAP_SESSION_RUNNING",
c12d974f 5732 lex_cast_qstring (*p->sole_location()));
f8a968bc 5733 s.op->newline() << "c->marker_name = "
c12d974f
FCE
5734 << lex_cast_qstring (p->tracepoint_name)
5735 << ";";
f8a968bc
JS
5736 for (unsigned j = 0; j < p->args.size(); ++j)
5737 if (p->args[j].used)
5738 {
66671fd8 5739 s.op->newline() << "c->probe_locals." << p->name << ".__tracepoint_arg_"
f8a968bc 5740 << p->args[j].name << " = (int64_t)";
ad370dcc 5741 s.op->line() << p->args[j].typecast;
f8a968bc
JS
5742 s.op->line() << "__tracepoint_arg_" << p->args[j].name << ";";
5743 }
6fb70fb7
JS
5744 s.op->newline() << p->name << " (c);";
5745 common_probe_entryfn_epilogue (s.op);
5746 s.op->newline(-1) << "}";
47dd066d 5747
96b030fe
JS
5748 // emit normalized registration functions
5749 s.op->newline() << "static int register_tracepoint_probe_" << i << "(void) {";
5750 s.op->newline(1) << "return register_trace_" << p->tracepoint_name
5751 << "(enter_tracepoint_probe_" << i << ");";
5752 s.op->newline(-1) << "}";
47dd066d 5753
86758d5f
JS
5754 // NB: we're not prepared to deal with unreg failures. However, failures
5755 // can only occur if the tracepoint doesn't exist (yet?), or if we
5756 // weren't even registered. The former should be OKed by the initial
5757 // registration call, and the latter is safe to ignore.
5758 s.op->newline() << "static void unregister_tracepoint_probe_" << i << "(void) {";
5759 s.op->newline(1) << "(void) unregister_trace_" << p->tracepoint_name
96b030fe
JS
5760 << "(enter_tracepoint_probe_" << i << ");";
5761 s.op->newline(-1) << "}";
6fb70fb7 5762 s.op->newline();
af304783
DS
5763 }
5764
96b030fe
JS
5765 // emit an array of registration functions for easy init/shutdown
5766 s.op->newline() << "static struct stap_tracepoint_probe {";
5767 s.op->newline(1) << "int (*reg)(void);";
86758d5f 5768 s.op->newline(0) << "void (*unreg)(void);";
96b030fe
JS
5769 s.op->newline(-1) << "} stap_tracepoint_probes[] = {";
5770 s.op->indent(1);
5771 for (unsigned i = 0; i < probes.size(); ++i)
5772 {
5773 s.op->newline () << "{";
5774 s.op->line() << " .reg=&register_tracepoint_probe_" << i << ",";
5775 s.op->line() << " .unreg=&unregister_tracepoint_probe_" << i;
5776 s.op->line() << " },";
5777 }
5778 s.op->newline(-1) << "};";
5779 s.op->newline();
47dd066d
WC
5780}
5781
5782
79189b84
JS
5783void
5784tracepoint_derived_probe_group::emit_module_init (systemtap_session &s)
47dd066d 5785{
79189b84
JS
5786 if (probes.size () == 0)
5787 return;
47dd066d 5788
79189b84 5789 s.op->newline() << "/* init tracepoint probes */";
96b030fe
JS
5790 s.op->newline() << "for (i=0; i<" << probes.size() << "; i++) {";
5791 s.op->newline(1) << "rc = stap_tracepoint_probes[i].reg();";
5792 s.op->newline() << "if (rc) {";
5793 s.op->newline(1) << "for (j=i-1; j>=0; j--)"; // partial rollback
5794 s.op->newline(1) << "stap_tracepoint_probes[j].unreg();";
5795 s.op->newline(-1) << "break;"; // don't attempt to register any more probes
5796 s.op->newline(-1) << "}";
5797 s.op->newline(-1) << "}";
47dd066d 5798
bc9a523d
FCE
5799 // This would be technically proper (on those autoconf-detectable
5800 // kernels that include this function in tracepoint.h), however we
5801 // already make several calls to synchronze_sched() during our
5802 // shutdown processes.
47dd066d 5803
bc9a523d
FCE
5804 // s.op->newline() << "if (rc)";
5805 // s.op->newline(1) << "tracepoint_synchronize_unregister();";
5806 // s.op->indent(-1);
79189b84 5807}
47dd066d
WC
5808
5809
79189b84
JS
5810void
5811tracepoint_derived_probe_group::emit_module_exit (systemtap_session& s)
47dd066d 5812{
79189b84
JS
5813 if (probes.empty())
5814 return;
47dd066d 5815
96b030fe
JS
5816 s.op->newline() << "/* deregister tracepoint probes */";
5817 s.op->newline() << "for (i=0; i<" << probes.size() << "; i++)";
5818 s.op->newline(1) << "stap_tracepoint_probes[i].unreg();";
5819 s.op->indent(-1);
47dd066d 5820
bc9a523d 5821 // Not necessary: see above.
47dd066d 5822
bc9a523d 5823 // s.op->newline() << "tracepoint_synchronize_unregister();";
79189b84 5824}
b20febf3 5825
47dd066d 5826
75ead1f7 5827struct tracepoint_query : public base_query
47dd066d 5828{
75ead1f7
JS
5829 tracepoint_query(dwflpp & dw, const string & tracepoint,
5830 probe * base_probe, probe_point * base_loc,
5831 vector<derived_probe *> & results):
5832 base_query(dw, "*"), tracepoint(tracepoint),
5833 base_probe(base_probe), base_loc(base_loc),
5834 results(results) {}
47dd066d 5835
75ead1f7 5836 const string& tracepoint;
47dd066d 5837
75ead1f7
JS
5838 probe * base_probe;
5839 probe_point * base_loc;
5840 vector<derived_probe *> & results;
f982c59b 5841 set<string> probed_names;
47dd066d 5842
75ead1f7
JS
5843 void handle_query_module();
5844 int handle_query_cu(Dwarf_Die * cudie);
5845 int handle_query_func(Dwarf_Die * func);
b20febf3 5846
75ead1f7
JS
5847 static int tracepoint_query_cu (Dwarf_Die * cudie, void * arg);
5848 static int tracepoint_query_func (Dwarf_Die * func, base_query * query);
5849};
47dd066d
WC
5850
5851
5852void
75ead1f7 5853tracepoint_query::handle_query_module()
47dd066d 5854{
75ead1f7
JS
5855 // look for the tracepoints in each CU
5856 dw.iterate_over_cus(tracepoint_query_cu, this);
47dd066d
WC
5857}
5858
5859
75ead1f7
JS
5860int
5861tracepoint_query::handle_query_cu(Dwarf_Die * cudie)
47dd066d 5862{
75ead1f7 5863 dw.focus_on_cu (cudie);
47dd066d 5864
75ead1f7
JS
5865 // look at each function to see if it's a tracepoint
5866 string function = "stapprobe_" + tracepoint;
5867 return dw.iterate_over_functions (tracepoint_query_func, this, function);
47dd066d
WC
5868}
5869
5870
75ead1f7
JS
5871int
5872tracepoint_query::handle_query_func(Dwarf_Die * func)
47dd066d 5873{
75ead1f7 5874 dw.focus_on_function (func);
47dd066d 5875
75ead1f7
JS
5876 assert(dw.function_name.compare(0, 10, "stapprobe_") == 0);
5877 string tracepoint_instance = dw.function_name.substr(10);
f982c59b
JS
5878
5879 // check for duplicates -- sometimes tracepoint headers may be indirectly
5880 // included in more than one of our tracequery modules.
5881 if (!probed_names.insert(tracepoint_instance).second)
5882 return DWARF_CB_OK;
5883
79189b84
JS
5884 derived_probe *dp = new tracepoint_derived_probe (dw.sess, dw, *func,
5885 tracepoint_instance,
5886 base_probe, base_loc);
5887 results.push_back (dp);
75ead1f7 5888 return DWARF_CB_OK;
47dd066d
WC
5889}
5890
5891
75ead1f7
JS
5892int
5893tracepoint_query::tracepoint_query_cu (Dwarf_Die * cudie, void * arg)
47dd066d 5894{
75ead1f7
JS
5895 tracepoint_query * q = static_cast<tracepoint_query *>(arg);
5896 if (pending_interrupts) return DWARF_CB_ABORT;
5897 return q->handle_query_cu(cudie);
47dd066d
WC
5898}
5899
5900
75ead1f7
JS
5901int
5902tracepoint_query::tracepoint_query_func (Dwarf_Die * func, base_query * query)
47dd066d 5903{
75ead1f7
JS
5904 tracepoint_query * q = static_cast<tracepoint_query *>(query);
5905 if (pending_interrupts) return DWARF_CB_ABORT;
5906 return q->handle_query_func(func);
47dd066d
WC
5907}
5908
5909
0a6f5a3f 5910struct tracepoint_builder: public derived_probe_builder
47dd066d 5911{
0a6f5a3f
JS
5912private:
5913 dwflpp *dw;
5914 bool init_dw(systemtap_session& s);
f982c59b 5915 string get_tracequery_module(systemtap_session& s, const string& header);
47dd066d 5916
0a6f5a3f 5917public:
47dd066d 5918
0a6f5a3f
JS
5919 tracepoint_builder(): dw(0) {}
5920 ~tracepoint_builder() { delete dw; }
47dd066d 5921
0a6f5a3f
JS
5922 void build_no_more (systemtap_session& s)
5923 {
5924 if (dw && s.verbose > 3)
5925 clog << "tracepoint_builder releasing dwflpp" << endl;
5926 delete dw;
5927 dw = NULL;
5928 }
47dd066d 5929
0a6f5a3f
JS
5930 void build(systemtap_session& s,
5931 probe *base, probe_point *location,
5932 literal_map_t const& parameters,
5933 vector<derived_probe*>& finished_results);
5934};
47dd066d 5935
47dd066d 5936
f982c59b
JS
5937string
5938tracepoint_builder::get_tracequery_module(systemtap_session& s,
5939 const string& header)
0a6f5a3f 5940{
c95eddf7
JS
5941 if (s.verbose > 2)
5942 clog << "Pass 2: getting a tracequery for " << header << endl;
5943
a2639cb7 5944 string tracequery_path;
b278033a
JS
5945 if (s.use_cache)
5946 {
5947 // see if the cached module exists
f982c59b 5948 tracequery_path = find_tracequery_hash(s, header);
a2639cb7 5949 if (!tracequery_path.empty())
b278033a 5950 {
a2639cb7 5951 int fd = open(tracequery_path.c_str(), O_RDONLY);
b278033a
JS
5952 if (fd != -1)
5953 {
5954 if (s.verbose > 2)
a2639cb7 5955 clog << "Pass 2: using cached " << tracequery_path << endl;
b278033a 5956 close(fd);
f982c59b 5957 return tracequery_path;
b278033a
JS
5958 }
5959 }
5960 }
47dd066d 5961
b278033a 5962 // no cached module, time to make it
f982c59b
JS
5963
5964 size_t root_pos = header.rfind("/include/");
5965 string short_header = (root_pos != string::npos) ?
5966 header.substr(root_pos + 9) : header;
5967
0a6f5a3f 5968 string tracequery_ko;
f982c59b
JS
5969 int rc = make_tracequery(s, tracequery_ko, short_header,
5970 tracepoint_extra_headers());
0a6f5a3f 5971 if (rc != 0)
c95eddf7 5972 tracequery_ko = "/dev/null";
47dd066d 5973
b278033a 5974 if (s.use_cache)
47dd066d 5975 {
b278033a
JS
5976 // try to save tracequery in the cache
5977 if (s.verbose > 2)
5978 clog << "Copying " << tracequery_ko
a2639cb7 5979 << " to " << tracequery_path << endl;
b278033a 5980 if (copy_file(tracequery_ko.c_str(),
a2639cb7 5981 tracequery_path.c_str()) != 0)
b278033a 5982 cerr << "Copy failed (\"" << tracequery_ko << "\" to \""
a2639cb7 5983 << tracequery_path << "\"): " << strerror(errno) << endl;
47dd066d 5984 }
f982c59b
JS
5985 return tracequery_ko;
5986}
5987
5988
5989bool
5990tracepoint_builder::init_dw(systemtap_session& s)
5991{
5992 if (dw != NULL)
5993 return true;
5994
5995 vector<string> tracequery_modules;
5996
5997 glob_t trace_glob;
5998 string globs[] = {
5999 "/include/trace/*.h",
6000 "/include/trace/events/*.h",
6001 "/source/include/trace/*.h",
6002 "/source/include/trace/events/*.h",
6003 };
6004 for (unsigned z = 0; z < sizeof(globs) / sizeof(globs[0]); z++)
6005 {
6006 string glob_str(s.kernel_build_tree + globs[z]);
6007 glob(glob_str.c_str(), 0, NULL, &trace_glob);
6008 for (unsigned i = 0; i < trace_glob.gl_pathc; ++i)
6009 {
6010 string header(trace_glob.gl_pathv[i]);
6011
6012 // filter out a few known "internal-only" headers
6013 if (header.find("/ftrace.h") != string::npos)
6014 continue;
6015 if (header.find("/trace_events.h") != string::npos)
6016 continue;
6017 if (header.find("_event_types.h") != string::npos)
6018 continue;
6019
6020 string tracequery_path = get_tracequery_module(s, header);
c95eddf7
JS
6021
6022 /* NB: An empty tracequery means that the
6023 * header didn't even compile correctly. */
6024 if (get_file_size(tracequery_path))
f982c59b
JS
6025 tracequery_modules.push_back(tracequery_path);
6026 }
6027 globfree(&trace_glob);
6028 }
6029
6030 // TODO: consider other sources of tracepoint headers too, like from
6031 // a command-line parameter or some environment or .systemtaprc
47dd066d 6032
f982c59b 6033 dw = new dwflpp(s, tracequery_modules);
0a6f5a3f
JS
6034 return true;
6035}
47dd066d 6036
47dd066d 6037
0a6f5a3f
JS
6038void
6039tracepoint_builder::build(systemtap_session& s,
6040 probe *base, probe_point *location,
6041 literal_map_t const& parameters,
6042 vector<derived_probe*>& finished_results)
6043{
6044 if (!init_dw(s))
6045 return;
47dd066d 6046
75ead1f7
JS
6047 string tracepoint;
6048 assert(get_param (parameters, TOK_TRACE, tracepoint));
47dd066d 6049
75ead1f7 6050 tracepoint_query q(*dw, tracepoint, base, location, finished_results);
51178501 6051 dw->iterate_over_modules(&query_module, &q);
47dd066d 6052}
47dd066d 6053
e6fe60e7 6054
47dd066d 6055
b55bc428 6056// ------------------------------------------------------------------------
bd2b1e68 6057// Standard tapset registry.
b55bc428
FCE
6058// ------------------------------------------------------------------------
6059
7a053d3b 6060void
f8220a7b 6061register_standard_tapsets(systemtap_session & s)
b55bc428 6062{
47e0478e 6063 register_tapset_been(s);
93646f4d 6064 register_tapset_itrace(s);
dd0e4fa7 6065 register_tapset_mark(s);
01c2eefe 6066 register_tapset_perfmon(s);
7a212aa8 6067 register_tapset_procfs(s);
912e8c59 6068 register_tapset_timers(s);
b84779a5 6069 register_tapset_utrace(s);
b98a8d73 6070
7a24d422 6071 // dwarf-based kprobe/uprobe parts
c4ce66a1 6072 dwarf_derived_probe::register_patterns(s);
30a279be 6073
888af770
FCE
6074 // XXX: user-space starter set
6075 s.pattern_root->bind_num(TOK_PROCESS)
6076 ->bind_num(TOK_STATEMENT)->bind(TOK_ABSOLUTE)
6077 ->bind(new uprobe_builder ());
6078 s.pattern_root->bind_num(TOK_PROCESS)
6079 ->bind_num(TOK_STATEMENT)->bind(TOK_ABSOLUTE)->bind(TOK_RETURN)
6080 ->bind(new uprobe_builder ());
6081
0a6f5a3f
JS
6082 // kernel tracepoint probes
6083 s.pattern_root->bind(TOK_KERNEL)->bind_str(TOK_TRACE)
6084 ->bind(new tracepoint_builder());
6085
e6fe60e7
AM
6086 // Kprobe based probe
6087 s.pattern_root->bind(TOK_KPROBE)->bind_str(TOK_FUNCTION)
6088 ->bind(new kprobe_builder());
6089 s.pattern_root->bind(TOK_KPROBE)->bind_str(TOK_MODULE)
6090 ->bind_str(TOK_FUNCTION)->bind(new kprobe_builder());
6091 s.pattern_root->bind(TOK_KPROBE)->bind_str(TOK_FUNCTION)->bind(TOK_RETURN)
6092 ->bind(new kprobe_builder());
b6371390
JS
6093 s.pattern_root->bind(TOK_KPROBE)->bind_str(TOK_FUNCTION)->bind(TOK_RETURN)
6094 ->bind_num(TOK_MAXACTIVE)->bind(new kprobe_builder());
e6fe60e7
AM
6095 s.pattern_root->bind(TOK_KPROBE)->bind_str(TOK_MODULE)
6096 ->bind_str(TOK_FUNCTION)->bind(TOK_RETURN)->bind(new kprobe_builder());
b6371390
JS
6097 s.pattern_root->bind(TOK_KPROBE)->bind_str(TOK_MODULE)
6098 ->bind_str(TOK_FUNCTION)->bind(TOK_RETURN)
6099 ->bind_num(TOK_MAXACTIVE)->bind(new kprobe_builder());
e6fe60e7
AM
6100 s.pattern_root->bind(TOK_KPROBE)->bind_num(TOK_STATEMENT)
6101 ->bind(TOK_ABSOLUTE)->bind(new kprobe_builder());
b55bc428 6102}
dc38c0ae
DS
6103
6104
b20febf3
FCE
6105vector<derived_probe_group*>
6106all_session_groups(systemtap_session& s)
dc38c0ae 6107{
b20febf3 6108 vector<derived_probe_group*> g;
912e8c59
JS
6109
6110#define DOONE(x) \
6111 if (s. x##_derived_probes) \
6112 g.push_back ((derived_probe_group*)(s. x##_derived_probes))
ab655cf8
DS
6113
6114 // Note that order *is* important here. We want to make sure we
6115 // register (actually run) begin probes before any other probe type
6116 // is run. Similarly, when unregistering probes, we want to
6117 // unregister (actually run) end probes after every other probe type
6118 // has be unregistered. To do the latter,
6119 // c_unparser::emit_module_exit() will run this list backwards.
b20febf3
FCE
6120 DOONE(be);
6121 DOONE(dwarf);
888af770 6122 DOONE(uprobe);
b20febf3
FCE
6123 DOONE(timer);
6124 DOONE(profile);
6125 DOONE(mark);
0a6f5a3f 6126 DOONE(tracepoint);
e6fe60e7 6127 DOONE(kprobe);
b20febf3
FCE
6128 DOONE(hrtimer);
6129 DOONE(perfmon);
ce82316f 6130 DOONE(procfs);
935447c8
DS
6131
6132 // Another "order is important" item. We want to make sure we
6133 // "register" the dummy task_finder probe group after all probe
6134 // groups that use the task_finder.
6135 DOONE(utrace);
a96d1db0 6136 DOONE(itrace);
935447c8 6137 DOONE(task_finder);
b20febf3
FCE
6138#undef DOONE
6139 return g;
46b84a80 6140}
73267b89
JS
6141
6142/* vim: set sw=2 ts=8 cino=>4,n-2,{2,^-2,t0,(0,u0,w1,M1 : */
This page took 1.53805 seconds and 5 git commands to generate.