]> sourceware.org Git - glibc.git/blame - sysdeps/ieee754/ldbl-128ibm/e_log2l.c
Replace FSF snail mail address with URLs.
[glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_log2l.c
CommitLineData
f964490f
RM
1/* log2l.c
2 * Base 2 logarithm, 128-bit long double precision
3 *
4 *
5 *
6 * SYNOPSIS:
7 *
8 * long double x, y, log2l();
9 *
10 * y = log2l( x );
11 *
12 *
13 *
14 * DESCRIPTION:
15 *
16 * Returns the base 2 logarithm of x.
17 *
18 * The argument is separated into its exponent and fractional
19 * parts. If the exponent is between -1 and +1, the (natural)
20 * logarithm of the fraction is approximated by
21 *
22 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
23 *
24 * Otherwise, setting z = 2(x-1)/x+1),
25 *
26 * log(x) = z + z^3 P(z)/Q(z).
27 *
28 *
29 *
30 * ACCURACY:
31 *
32 * Relative error:
33 * arithmetic domain # trials peak rms
34 * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35
35 * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35
36 *
37 * In the tests over the interval exp(+-10000), the logarithms
38 * of the random arguments were uniformly distributed over
39 * [-10000, +10000].
40 *
41 */
42
43/*
44 Cephes Math Library Release 2.2: January, 1991
45 Copyright 1984, 1991 by Stephen L. Moshier
46 Adapted for glibc November, 2001
47
48 This library is free software; you can redistribute it and/or
49 modify it under the terms of the GNU Lesser General Public
50 License as published by the Free Software Foundation; either
51 version 2.1 of the License, or (at your option) any later version.
52
53 This library is distributed in the hope that it will be useful,
54 but WITHOUT ANY WARRANTY; without even the implied warranty of
55 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
56 Lesser General Public License for more details.
57
58 You should have received a copy of the GNU Lesser General Public
59ba27a6 59 License along with this library; if not, see <http://www.gnu.org/licenses/>.
f964490f
RM
60 */
61
62#include "math.h"
63#include "math_private.h"
64
65/* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
66 * 1/sqrt(2) <= x < sqrt(2)
67 * Theoretical peak relative error = 5.3e-37,
68 * relative peak error spread = 2.3e-14
69 */
70static const long double P[13] =
71{
72 1.313572404063446165910279910527789794488E4L,
73 7.771154681358524243729929227226708890930E4L,
74 2.014652742082537582487669938141683759923E5L,
75 3.007007295140399532324943111654767187848E5L,
76 2.854829159639697837788887080758954924001E5L,
77 1.797628303815655343403735250238293741397E5L,
78 7.594356839258970405033155585486712125861E4L,
79 2.128857716871515081352991964243375186031E4L,
80 3.824952356185897735160588078446136783779E3L,
81 4.114517881637811823002128927449878962058E2L,
82 2.321125933898420063925789532045674660756E1L,
83 4.998469661968096229986658302195402690910E-1L,
84 1.538612243596254322971797716843006400388E-6L
85};
86static const long double Q[12] =
87{
88 3.940717212190338497730839731583397586124E4L,
89 2.626900195321832660448791748036714883242E5L,
90 7.777690340007566932935753241556479363645E5L,
91 1.347518538384329112529391120390701166528E6L,
92 1.514882452993549494932585972882995548426E6L,
93 1.158019977462989115839826904108208787040E6L,
94 6.132189329546557743179177159925690841200E5L,
95 2.248234257620569139969141618556349415120E5L,
96 5.605842085972455027590989944010492125825E4L,
97 9.147150349299596453976674231612674085381E3L,
98 9.104928120962988414618126155557301584078E2L,
99 4.839208193348159620282142911143429644326E1L
100/* 1.000000000000000000000000000000000000000E0L, */
101};
102
103/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
104 * where z = 2(x-1)/(x+1)
105 * 1/sqrt(2) <= x < sqrt(2)
106 * Theoretical peak relative error = 1.1e-35,
107 * relative peak error spread 1.1e-9
108 */
109static const long double R[6] =
110{
111 1.418134209872192732479751274970992665513E5L,
112 -8.977257995689735303686582344659576526998E4L,
113 2.048819892795278657810231591630928516206E4L,
114 -2.024301798136027039250415126250455056397E3L,
115 8.057002716646055371965756206836056074715E1L,
116 -8.828896441624934385266096344596648080902E-1L
117};
118static const long double S[6] =
119{
120 1.701761051846631278975701529965589676574E6L,
121 -1.332535117259762928288745111081235577029E6L,
122 4.001557694070773974936904547424676279307E5L,
123 -5.748542087379434595104154610899551484314E4L,
124 3.998526750980007367835804959888064681098E3L,
125 -1.186359407982897997337150403816839480438E2L
126/* 1.000000000000000000000000000000000000000E0L, */
127};
128
129static const long double
130/* log2(e) - 1 */
131LOG2EA = 4.4269504088896340735992468100189213742664595E-1L,
132/* sqrt(2)/2 */
133SQRTH = 7.071067811865475244008443621048490392848359E-1L;
134
135
136/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
137
138static long double
139neval (long double x, const long double *p, int n)
140{
141 long double y;
142
143 p += n;
144 y = *p--;
145 do
146 {
147 y = y * x + *p--;
148 }
149 while (--n > 0);
150 return y;
151}
152
153
154/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
155
156static long double
157deval (long double x, const long double *p, int n)
158{
159 long double y;
160
161 p += n;
162 y = x + *p--;
163 do
164 {
165 y = y * x + *p--;
166 }
167 while (--n > 0);
168 return y;
169}
170
171
172
173long double
174__ieee754_log2l (x)
175 long double x;
176{
177 long double z;
178 long double y;
179 int e;
180 int64_t hx, lx;
181
182/* Test for domain */
183 GET_LDOUBLE_WORDS64 (hx, lx, x);
184 if (((hx & 0x7fffffffffffffffLL) | (lx & 0x7fffffffffffffffLL)) == 0)
185 return (-1.0L / (x - x));
186 if (hx < 0)
187 return (x - x) / (x - x);
188 if (hx >= 0x7ff0000000000000LL)
189 return (x + x);
190
191/* separate mantissa from exponent */
192
193/* Note, frexp is used so that denormal numbers
194 * will be handled properly.
195 */
196 x = __frexpl (x, &e);
197
198
199/* logarithm using log(x) = z + z**3 P(z)/Q(z),
200 * where z = 2(x-1)/x+1)
201 */
202 if ((e > 2) || (e < -2))
203 {
204 if (x < SQRTH)
205 { /* 2( 2x-1 )/( 2x+1 ) */
206 e -= 1;
207 z = x - 0.5L;
208 y = 0.5L * z + 0.5L;
209 }
210 else
211 { /* 2 (x-1)/(x+1) */
212 z = x - 0.5L;
213 z -= 0.5L;
214 y = 0.5L * x + 0.5L;
215 }
216 x = z / y;
217 z = x * x;
218 y = x * (z * neval (z, R, 5) / deval (z, S, 5));
219 goto done;
220 }
221
222
223/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
224
225 if (x < SQRTH)
226 {
227 e -= 1;
228 x = 2.0 * x - 1.0L; /* 2x - 1 */
229 }
230 else
231 {
232 x = x - 1.0L;
233 }
234 z = x * x;
235 y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
236 y = y - 0.5 * z;
237
238done:
239
240/* Multiply log of fraction by log2(e)
241 * and base 2 exponent by 1
242 */
243 z = y * LOG2EA;
244 z += x * LOG2EA;
245 z += y;
246 z += x;
247 z += e;
248 return (z);
249}
0ac5ae23 250strong_alias (__ieee754_log2l, __log2l_finite)
This page took 0.133633 seconds and 5 git commands to generate.