]>
Commit | Line | Data |
---|---|---|
f7eac6eb RM |
1 | /* @(#)s_tanh.c 5.1 93/09/24 */ |
2 | /* | |
3 | * ==================================================== | |
4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
5 | * | |
6 | * Developed at SunPro, a Sun Microsystems, Inc. business. | |
7 | * Permission to use, copy, modify, and distribute this | |
cccda09f | 8 | * software is freely granted, provided that this notice |
f7eac6eb RM |
9 | * is preserved. |
10 | * ==================================================== | |
11 | */ | |
12 | ||
13 | #if defined(LIBM_SCCS) && !defined(lint) | |
14 | static char rcsid[] = "$NetBSD: s_tanh.c,v 1.7 1995/05/10 20:48:22 jtc Exp $"; | |
15 | #endif | |
16 | ||
17 | /* Tanh(x) | |
18 | * Return the Hyperbolic Tangent of x | |
19 | * | |
20 | * Method : | |
21 | * x -x | |
22 | * e - e | |
23 | * 0. tanh(x) is defined to be ----------- | |
24 | * x -x | |
25 | * e + e | |
26 | * 1. reduce x to non-negative by tanh(-x) = -tanh(x). | |
27 | * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) | |
28 | * -t | |
29 | * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) | |
30 | * t + 2 | |
31 | * 2 | |
32 | * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) | |
33 | * t + 2 | |
34 | * 22.0 < x <= INF : tanh(x) := 1. | |
35 | * | |
36 | * Special cases: | |
37 | * tanh(NaN) is NaN; | |
38 | * only tanh(0)=0 is exact for finite argument. | |
39 | */ | |
40 | ||
37d83a08 | 41 | #include <float.h> |
1ed0291c RH |
42 | #include <math.h> |
43 | #include <math_private.h> | |
8f5b00d3 | 44 | #include <math-underflow.h> |
1e2bffd0 | 45 | #include <libm-alias-double.h> |
f7eac6eb | 46 | |
c5d5d574 | 47 | static const double one = 1.0, two = 2.0, tiny = 1.0e-300; |
f7eac6eb | 48 | |
c5d5d574 OB |
49 | double |
50 | __tanh (double x) | |
f7eac6eb | 51 | { |
c5d5d574 OB |
52 | double t, z; |
53 | int32_t jx, ix, lx; | |
f7eac6eb | 54 | |
c5d5d574 OB |
55 | /* High word of |x|. */ |
56 | EXTRACT_WORDS (jx, lx, x); | |
57 | ix = jx & 0x7fffffff; | |
f7eac6eb | 58 | |
c5d5d574 OB |
59 | /* x is INF or NaN */ |
60 | if (ix >= 0x7ff00000) | |
61 | { | |
62 | if (jx >= 0) | |
63 | return one / x + one; /* tanh(+-inf)=+-1 */ | |
64 | else | |
65 | return one / x - one; /* tanh(NaN) = NaN */ | |
66 | } | |
f7eac6eb | 67 | |
c5d5d574 OB |
68 | /* |x| < 22 */ |
69 | if (ix < 0x40360000) /* |x|<22 */ | |
70 | { | |
71 | if ((ix | lx) == 0) | |
72 | return x; /* x == +-0 */ | |
73 | if (ix < 0x3c800000) /* |x|<2**-55 */ | |
37d83a08 | 74 | { |
d96164c3 | 75 | math_check_force_underflow (x); |
37d83a08 JM |
76 | return x * (one + x); /* tanh(small) = small */ |
77 | } | |
c5d5d574 OB |
78 | if (ix >= 0x3ff00000) /* |x|>=1 */ |
79 | { | |
80 | t = __expm1 (two * fabs (x)); | |
81 | z = one - two / (t + two); | |
82 | } | |
83 | else | |
84 | { | |
85 | t = __expm1 (-two * fabs (x)); | |
86 | z = -t / (t + two); | |
f7eac6eb | 87 | } |
c5d5d574 OB |
88 | /* |x| > 22, return +-1 */ |
89 | } | |
90 | else | |
91 | { | |
92 | z = one - tiny; /* raised inexact flag */ | |
93 | } | |
94 | return (jx >= 0) ? z : -z; | |
f7eac6eb | 95 | } |
1e2bffd0 | 96 | libm_alias_double (__tanh, tanh) |