]> sourceware.org Git - glibc.git/blame - malloc/malloc.c
Update.
[glibc.git] / malloc / malloc.c
CommitLineData
f65fd747 1/* Malloc implementation for multiple threads without lock contention.
5290baf0 2 Copyright (C) 1996, 1997 Free Software Foundation, Inc.
f65fd747 3 This file is part of the GNU C Library.
6259ec0d
UD
4 Contributed by Wolfram Gloger <wmglo@dent.med.uni-muenchen.de>
5 and Doug Lea <dl@cs.oswego.edu>, 1996.
f65fd747
UD
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
2f6d1f1b 22/* V2.6.4-pt3 Thu Feb 20 1997
f65fd747
UD
23
24 This work is mainly derived from malloc-2.6.4 by Doug Lea
25 <dl@cs.oswego.edu>, which is available from:
26
27 ftp://g.oswego.edu/pub/misc/malloc.c
28
29 Most of the original comments are reproduced in the code below.
30
31* Why use this malloc?
32
33 This is not the fastest, most space-conserving, most portable, or
34 most tunable malloc ever written. However it is among the fastest
35 while also being among the most space-conserving, portable and tunable.
36 Consistent balance across these factors results in a good general-purpose
37 allocator. For a high-level description, see
38 http://g.oswego.edu/dl/html/malloc.html
39
40 On many systems, the standard malloc implementation is by itself not
41 thread-safe, and therefore wrapped with a single global lock around
42 all malloc-related functions. In some applications, especially with
43 multiple available processors, this can lead to contention problems
44 and bad performance. This malloc version was designed with the goal
45 to avoid waiting for locks as much as possible. Statistics indicate
46 that this goal is achieved in many cases.
47
48* Synopsis of public routines
49
50 (Much fuller descriptions are contained in the program documentation below.)
51
52 ptmalloc_init();
53 Initialize global configuration. When compiled for multiple threads,
54 this function must be called once before any other function in the
10dc2a90
UD
55 package. It is not required otherwise. It is called automatically
56 in the Linux/GNU C libray or when compiling with MALLOC_HOOKS.
f65fd747
UD
57 malloc(size_t n);
58 Return a pointer to a newly allocated chunk of at least n bytes, or null
59 if no space is available.
60 free(Void_t* p);
61 Release the chunk of memory pointed to by p, or no effect if p is null.
62 realloc(Void_t* p, size_t n);
63 Return a pointer to a chunk of size n that contains the same data
64 as does chunk p up to the minimum of (n, p's size) bytes, or null
65 if no space is available. The returned pointer may or may not be
66 the same as p. If p is null, equivalent to malloc. Unless the
67 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
68 size argument of zero (re)allocates a minimum-sized chunk.
69 memalign(size_t alignment, size_t n);
70 Return a pointer to a newly allocated chunk of n bytes, aligned
71 in accord with the alignment argument, which must be a power of
72 two.
73 valloc(size_t n);
74 Equivalent to memalign(pagesize, n), where pagesize is the page
75 size of the system (or as near to this as can be figured out from
76 all the includes/defines below.)
77 pvalloc(size_t n);
78 Equivalent to valloc(minimum-page-that-holds(n)), that is,
79 round up n to nearest pagesize.
80 calloc(size_t unit, size_t quantity);
81 Returns a pointer to quantity * unit bytes, with all locations
82 set to zero.
83 cfree(Void_t* p);
84 Equivalent to free(p).
85 malloc_trim(size_t pad);
86 Release all but pad bytes of freed top-most memory back
87 to the system. Return 1 if successful, else 0.
88 malloc_usable_size(Void_t* p);
89 Report the number usable allocated bytes associated with allocated
90 chunk p. This may or may not report more bytes than were requested,
91 due to alignment and minimum size constraints.
92 malloc_stats();
93 Prints brief summary statistics on stderr.
94 mallinfo()
95 Returns (by copy) a struct containing various summary statistics.
96 mallopt(int parameter_number, int parameter_value)
97 Changes one of the tunable parameters described below. Returns
98 1 if successful in changing the parameter, else 0.
99
100* Vital statistics:
101
102 Alignment: 8-byte
103 8 byte alignment is currently hardwired into the design. This
104 seems to suffice for all current machines and C compilers.
105
106 Assumed pointer representation: 4 or 8 bytes
107 Code for 8-byte pointers is untested by me but has worked
108 reliably by Wolfram Gloger, who contributed most of the
109 changes supporting this.
110
111 Assumed size_t representation: 4 or 8 bytes
112 Note that size_t is allowed to be 4 bytes even if pointers are 8.
113
114 Minimum overhead per allocated chunk: 4 or 8 bytes
115 Each malloced chunk has a hidden overhead of 4 bytes holding size
116 and status information.
117
118 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
119 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
120
121 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
122 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
123 needed; 4 (8) for a trailing size field
124 and 8 (16) bytes for free list pointers. Thus, the minimum
125 allocatable size is 16/24/32 bytes.
126
127 Even a request for zero bytes (i.e., malloc(0)) returns a
128 pointer to something of the minimum allocatable size.
129
130 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes
131 8-byte size_t: 2^63 - 16 bytes
132
133 It is assumed that (possibly signed) size_t bit values suffice to
134 represent chunk sizes. `Possibly signed' is due to the fact
135 that `size_t' may be defined on a system as either a signed or
136 an unsigned type. To be conservative, values that would appear
137 as negative numbers are avoided.
138 Requests for sizes with a negative sign bit will return a
139 minimum-sized chunk.
140
141 Maximum overhead wastage per allocated chunk: normally 15 bytes
142
6d52618b 143 Alignment demands, plus the minimum allocatable size restriction
f65fd747
UD
144 make the normal worst-case wastage 15 bytes (i.e., up to 15
145 more bytes will be allocated than were requested in malloc), with
146 two exceptions:
147 1. Because requests for zero bytes allocate non-zero space,
148 the worst case wastage for a request of zero bytes is 24 bytes.
149 2. For requests >= mmap_threshold that are serviced via
150 mmap(), the worst case wastage is 8 bytes plus the remainder
151 from a system page (the minimal mmap unit); typically 4096 bytes.
152
153* Limitations
154
155 Here are some features that are NOT currently supported
156
f65fd747
UD
157 * No automated mechanism for fully checking that all accesses
158 to malloced memory stay within their bounds.
159 * No support for compaction.
160
161* Synopsis of compile-time options:
162
163 People have reported using previous versions of this malloc on all
164 versions of Unix, sometimes by tweaking some of the defines
165 below. It has been tested most extensively on Solaris and
166 Linux. People have also reported adapting this malloc for use in
167 stand-alone embedded systems.
168
169 The implementation is in straight, hand-tuned ANSI C. Among other
170 consequences, it uses a lot of macros. Because of this, to be at
171 all usable, this code should be compiled using an optimizing compiler
172 (for example gcc -O2) that can simplify expressions and control
173 paths.
174
175 __STD_C (default: derived from C compiler defines)
176 Nonzero if using ANSI-standard C compiler, a C++ compiler, or
177 a C compiler sufficiently close to ANSI to get away with it.
178 MALLOC_DEBUG (default: NOT defined)
179 Define to enable debugging. Adds fairly extensive assertion-based
180 checking to help track down memory errors, but noticeably slows down
181 execution.
7e3be507 182 MALLOC_HOOKS (default: NOT defined)
10dc2a90
UD
183 Define to enable support run-time replacement of the allocation
184 functions through user-defined `hooks'.
f65fd747
UD
185 REALLOC_ZERO_BYTES_FREES (default: NOT defined)
186 Define this if you think that realloc(p, 0) should be equivalent
187 to free(p). Otherwise, since malloc returns a unique pointer for
188 malloc(0), so does realloc(p, 0).
189 HAVE_MEMCPY (default: defined)
190 Define if you are not otherwise using ANSI STD C, but still
191 have memcpy and memset in your C library and want to use them.
192 Otherwise, simple internal versions are supplied.
193 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
194 Define as 1 if you want the C library versions of memset and
195 memcpy called in realloc and calloc (otherwise macro versions are used).
196 At least on some platforms, the simple macro versions usually
197 outperform libc versions.
198 HAVE_MMAP (default: defined as 1)
199 Define to non-zero to optionally make malloc() use mmap() to
200 allocate very large blocks.
201 HAVE_MREMAP (default: defined as 0 unless Linux libc set)
202 Define to non-zero to optionally make realloc() use mremap() to
203 reallocate very large blocks.
204 malloc_getpagesize (default: derived from system #includes)
205 Either a constant or routine call returning the system page size.
206 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
207 Optionally define if you are on a system with a /usr/include/malloc.h
208 that declares struct mallinfo. It is not at all necessary to
209 define this even if you do, but will ensure consistency.
210 INTERNAL_SIZE_T (default: size_t)
211 Define to a 32-bit type (probably `unsigned int') if you are on a
212 64-bit machine, yet do not want or need to allow malloc requests of
213 greater than 2^31 to be handled. This saves space, especially for
214 very small chunks.
215 _LIBC (default: NOT defined)
216 Defined only when compiled as part of the Linux libc/glibc.
217 Also note that there is some odd internal name-mangling via defines
218 (for example, internally, `malloc' is named `mALLOc') needed
219 when compiling in this case. These look funny but don't otherwise
220 affect anything.
221 LACKS_UNISTD_H (default: undefined)
222 Define this if your system does not have a <unistd.h>.
223 MORECORE (default: sbrk)
224 The name of the routine to call to obtain more memory from the system.
225 MORECORE_FAILURE (default: -1)
226 The value returned upon failure of MORECORE.
227 MORECORE_CLEARS (default 1)
228 True (1) if the routine mapped to MORECORE zeroes out memory (which
229 holds for sbrk).
230 DEFAULT_TRIM_THRESHOLD
231 DEFAULT_TOP_PAD
232 DEFAULT_MMAP_THRESHOLD
233 DEFAULT_MMAP_MAX
234 Default values of tunable parameters (described in detail below)
235 controlling interaction with host system routines (sbrk, mmap, etc).
236 These values may also be changed dynamically via mallopt(). The
237 preset defaults are those that give best performance for typical
238 programs/systems.
10dc2a90
UD
239 DEFAULT_CHECK_ACTION
240 When the standard debugging hooks are in place, and a pointer is
241 detected as corrupt, do nothing (0), print an error message (1),
242 or call abort() (2).
f65fd747
UD
243
244
245*/
246
247/*
248
249* Compile-time options for multiple threads:
250
251 USE_PTHREADS, USE_THR, USE_SPROC
252 Define one of these as 1 to select the thread interface:
253 POSIX threads, Solaris threads or SGI sproc's, respectively.
254 If none of these is defined as non-zero, you get a `normal'
255 malloc implementation which is not thread-safe. Support for
256 multiple threads requires HAVE_MMAP=1. As an exception, when
257 compiling for GNU libc, i.e. when _LIBC is defined, then none of
258 the USE_... symbols have to be defined.
259
260 HEAP_MIN_SIZE
261 HEAP_MAX_SIZE
262 When thread support is enabled, additional `heap's are created
263 with mmap calls. These are limited in size; HEAP_MIN_SIZE should
264 be a multiple of the page size, while HEAP_MAX_SIZE must be a power
265 of two for alignment reasons. HEAP_MAX_SIZE should be at least
266 twice as large as the mmap threshold.
267 THREAD_STATS
268 When this is defined as non-zero, some statistics on mutex locking
269 are computed.
270
271*/
272
273\f
274
275
f65fd747
UD
276/* Preliminaries */
277
278#ifndef __STD_C
279#if defined (__STDC__)
280#define __STD_C 1
281#else
282#if __cplusplus
283#define __STD_C 1
284#else
285#define __STD_C 0
286#endif /*__cplusplus*/
287#endif /*__STDC__*/
288#endif /*__STD_C*/
289
290#ifndef Void_t
291#if __STD_C
292#define Void_t void
293#else
294#define Void_t char
295#endif
296#endif /*Void_t*/
297
298#if __STD_C
10dc2a90 299# include <stddef.h> /* for size_t */
dfd2257a 300# if defined _LIBC || defined MALLOC_HOOKS
7e3be507 301# include <stdlib.h> /* for getenv(), abort() */
10dc2a90 302# endif
f65fd747 303#else
10dc2a90 304# include <sys/types.h>
f65fd747
UD
305#endif
306
8a4b65b4
UD
307/* Macros for handling mutexes and thread-specific data. This is
308 included early, because some thread-related header files (such as
309 pthread.h) should be included before any others. */
310#include "thread-m.h"
311
f65fd747
UD
312#ifdef __cplusplus
313extern "C" {
314#endif
315
316#include <stdio.h> /* needed for malloc_stats */
317
318
319/*
320 Compile-time options
321*/
322
323
324/*
325 Debugging:
326
327 Because freed chunks may be overwritten with link fields, this
328 malloc will often die when freed memory is overwritten by user
329 programs. This can be very effective (albeit in an annoying way)
330 in helping track down dangling pointers.
331
332 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
333 enabled that will catch more memory errors. You probably won't be
334 able to make much sense of the actual assertion errors, but they
335 should help you locate incorrectly overwritten memory. The
336 checking is fairly extensive, and will slow down execution
337 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set will
338 attempt to check every non-mmapped allocated and free chunk in the
6d52618b 339 course of computing the summaries. (By nature, mmapped regions
f65fd747
UD
340 cannot be checked very much automatically.)
341
342 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
343 this code. The assertions in the check routines spell out in more
344 detail the assumptions and invariants underlying the algorithms.
345
346*/
347
348#if MALLOC_DEBUG
349#include <assert.h>
350#else
351#define assert(x) ((void)0)
352#endif
353
354
355/*
356 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
357 of chunk sizes. On a 64-bit machine, you can reduce malloc
358 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
359 at the expense of not being able to handle requests greater than
360 2^31. This limitation is hardly ever a concern; you are encouraged
361 to set this. However, the default version is the same as size_t.
362*/
363
364#ifndef INTERNAL_SIZE_T
365#define INTERNAL_SIZE_T size_t
366#endif
367
368/*
369 REALLOC_ZERO_BYTES_FREES should be set if a call to
370 realloc with zero bytes should be the same as a call to free.
371 Some people think it should. Otherwise, since this malloc
372 returns a unique pointer for malloc(0), so does realloc(p, 0).
373*/
374
375
376/* #define REALLOC_ZERO_BYTES_FREES */
377
378
379/*
380 HAVE_MEMCPY should be defined if you are not otherwise using
381 ANSI STD C, but still have memcpy and memset in your C library
382 and want to use them in calloc and realloc. Otherwise simple
383 macro versions are defined here.
384
385 USE_MEMCPY should be defined as 1 if you actually want to
386 have memset and memcpy called. People report that the macro
387 versions are often enough faster than libc versions on many
388 systems that it is better to use them.
389
390*/
391
10dc2a90 392#define HAVE_MEMCPY 1
f65fd747
UD
393
394#ifndef USE_MEMCPY
395#ifdef HAVE_MEMCPY
396#define USE_MEMCPY 1
397#else
398#define USE_MEMCPY 0
399#endif
400#endif
401
402#if (__STD_C || defined(HAVE_MEMCPY))
403
404#if __STD_C
405void* memset(void*, int, size_t);
406void* memcpy(void*, const void*, size_t);
407#else
408Void_t* memset();
409Void_t* memcpy();
410#endif
411#endif
412
413#if USE_MEMCPY
414
415/* The following macros are only invoked with (2n+1)-multiples of
416 INTERNAL_SIZE_T units, with a positive integer n. This is exploited
417 for fast inline execution when n is small. */
418
419#define MALLOC_ZERO(charp, nbytes) \
420do { \
421 INTERNAL_SIZE_T mzsz = (nbytes); \
422 if(mzsz <= 9*sizeof(mzsz)) { \
423 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \
424 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \
425 *mz++ = 0; \
426 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \
427 *mz++ = 0; \
428 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \
429 *mz++ = 0; }}} \
430 *mz++ = 0; \
431 *mz++ = 0; \
432 *mz = 0; \
433 } else memset((charp), 0, mzsz); \
434} while(0)
435
436#define MALLOC_COPY(dest,src,nbytes) \
437do { \
438 INTERNAL_SIZE_T mcsz = (nbytes); \
439 if(mcsz <= 9*sizeof(mcsz)) { \
440 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \
441 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \
442 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
443 *mcdst++ = *mcsrc++; \
444 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
445 *mcdst++ = *mcsrc++; \
446 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \
447 *mcdst++ = *mcsrc++; }}} \
448 *mcdst++ = *mcsrc++; \
449 *mcdst++ = *mcsrc++; \
450 *mcdst = *mcsrc ; \
451 } else memcpy(dest, src, mcsz); \
452} while(0)
453
454#else /* !USE_MEMCPY */
455
456/* Use Duff's device for good zeroing/copying performance. */
457
458#define MALLOC_ZERO(charp, nbytes) \
459do { \
460 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
461 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
462 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
463 switch (mctmp) { \
464 case 0: for(;;) { *mzp++ = 0; \
465 case 7: *mzp++ = 0; \
466 case 6: *mzp++ = 0; \
467 case 5: *mzp++ = 0; \
468 case 4: *mzp++ = 0; \
469 case 3: *mzp++ = 0; \
470 case 2: *mzp++ = 0; \
471 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
472 } \
473} while(0)
474
475#define MALLOC_COPY(dest,src,nbytes) \
476do { \
477 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
478 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
479 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \
480 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
481 switch (mctmp) { \
482 case 0: for(;;) { *mcdst++ = *mcsrc++; \
483 case 7: *mcdst++ = *mcsrc++; \
484 case 6: *mcdst++ = *mcsrc++; \
485 case 5: *mcdst++ = *mcsrc++; \
486 case 4: *mcdst++ = *mcsrc++; \
487 case 3: *mcdst++ = *mcsrc++; \
488 case 2: *mcdst++ = *mcsrc++; \
489 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
490 } \
491} while(0)
492
493#endif
494
495
496/*
497 Define HAVE_MMAP to optionally make malloc() use mmap() to
498 allocate very large blocks. These will be returned to the
499 operating system immediately after a free().
500*/
501
502#ifndef HAVE_MMAP
503#define HAVE_MMAP 1
504#endif
505
506/*
507 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
508 large blocks. This is currently only possible on Linux with
509 kernel versions newer than 1.3.77.
510*/
511
512#ifndef HAVE_MREMAP
d71b808a 513#define HAVE_MREMAP defined(__linux__) && !defined(__arm__)
f65fd747
UD
514#endif
515
516#if HAVE_MMAP
517
518#include <unistd.h>
519#include <fcntl.h>
520#include <sys/mman.h>
521
522#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
523#define MAP_ANONYMOUS MAP_ANON
524#endif
525
526#endif /* HAVE_MMAP */
527
528/*
529 Access to system page size. To the extent possible, this malloc
530 manages memory from the system in page-size units.
531
532 The following mechanics for getpagesize were adapted from
533 bsd/gnu getpagesize.h
534*/
535
536#ifndef LACKS_UNISTD_H
537# include <unistd.h>
538#endif
539
540#ifndef malloc_getpagesize
541# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
542# ifndef _SC_PAGE_SIZE
543# define _SC_PAGE_SIZE _SC_PAGESIZE
544# endif
545# endif
546# ifdef _SC_PAGE_SIZE
547# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
548# else
549# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
550 extern size_t getpagesize();
551# define malloc_getpagesize getpagesize()
552# else
553# include <sys/param.h>
554# ifdef EXEC_PAGESIZE
555# define malloc_getpagesize EXEC_PAGESIZE
556# else
557# ifdef NBPG
558# ifndef CLSIZE
559# define malloc_getpagesize NBPG
560# else
561# define malloc_getpagesize (NBPG * CLSIZE)
562# endif
563# else
564# ifdef NBPC
565# define malloc_getpagesize NBPC
566# else
567# ifdef PAGESIZE
568# define malloc_getpagesize PAGESIZE
569# else
570# define malloc_getpagesize (4096) /* just guess */
571# endif
572# endif
573# endif
574# endif
575# endif
576# endif
577#endif
578
579
580
581/*
582
583 This version of malloc supports the standard SVID/XPG mallinfo
584 routine that returns a struct containing the same kind of
585 information you can get from malloc_stats. It should work on
586 any SVID/XPG compliant system that has a /usr/include/malloc.h
587 defining struct mallinfo. (If you'd like to install such a thing
588 yourself, cut out the preliminary declarations as described above
589 and below and save them in a malloc.h file. But there's no
590 compelling reason to bother to do this.)
591
592 The main declaration needed is the mallinfo struct that is returned
593 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
594 bunch of fields, most of which are not even meaningful in this
595 version of malloc. Some of these fields are are instead filled by
596 mallinfo() with other numbers that might possibly be of interest.
597
598 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
599 /usr/include/malloc.h file that includes a declaration of struct
600 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
601 version is declared below. These must be precisely the same for
602 mallinfo() to work.
603
604*/
605
606/* #define HAVE_USR_INCLUDE_MALLOC_H */
607
608#if HAVE_USR_INCLUDE_MALLOC_H
8a4b65b4 609# include "/usr/include/malloc.h"
f65fd747 610#else
8a4b65b4
UD
611# ifdef _LIBC
612# include "malloc.h"
613# else
614# include "ptmalloc.h"
615# endif
f65fd747
UD
616#endif
617
618
619
620#ifndef DEFAULT_TRIM_THRESHOLD
621#define DEFAULT_TRIM_THRESHOLD (128 * 1024)
622#endif
623
624/*
625 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
626 to keep before releasing via malloc_trim in free().
627
628 Automatic trimming is mainly useful in long-lived programs.
629 Because trimming via sbrk can be slow on some systems, and can
630 sometimes be wasteful (in cases where programs immediately
631 afterward allocate more large chunks) the value should be high
632 enough so that your overall system performance would improve by
633 releasing.
634
635 The trim threshold and the mmap control parameters (see below)
636 can be traded off with one another. Trimming and mmapping are
637 two different ways of releasing unused memory back to the
638 system. Between these two, it is often possible to keep
639 system-level demands of a long-lived program down to a bare
640 minimum. For example, in one test suite of sessions measuring
641 the XF86 X server on Linux, using a trim threshold of 128K and a
642 mmap threshold of 192K led to near-minimal long term resource
643 consumption.
644
645 If you are using this malloc in a long-lived program, it should
646 pay to experiment with these values. As a rough guide, you
647 might set to a value close to the average size of a process
648 (program) running on your system. Releasing this much memory
649 would allow such a process to run in memory. Generally, it's
831372e7 650 worth it to tune for trimming rather than memory mapping when a
f65fd747
UD
651 program undergoes phases where several large chunks are
652 allocated and released in ways that can reuse each other's
653 storage, perhaps mixed with phases where there are no such
654 chunks at all. And in well-behaved long-lived programs,
655 controlling release of large blocks via trimming versus mapping
656 is usually faster.
657
658 However, in most programs, these parameters serve mainly as
659 protection against the system-level effects of carrying around
660 massive amounts of unneeded memory. Since frequent calls to
661 sbrk, mmap, and munmap otherwise degrade performance, the default
662 parameters are set to relatively high values that serve only as
663 safeguards.
664
665 The default trim value is high enough to cause trimming only in
666 fairly extreme (by current memory consumption standards) cases.
667 It must be greater than page size to have any useful effect. To
668 disable trimming completely, you can set to (unsigned long)(-1);
669
670
671*/
672
673
674#ifndef DEFAULT_TOP_PAD
675#define DEFAULT_TOP_PAD (0)
676#endif
677
678/*
679 M_TOP_PAD is the amount of extra `padding' space to allocate or
680 retain whenever sbrk is called. It is used in two ways internally:
681
682 * When sbrk is called to extend the top of the arena to satisfy
683 a new malloc request, this much padding is added to the sbrk
684 request.
685
686 * When malloc_trim is called automatically from free(),
687 it is used as the `pad' argument.
688
689 In both cases, the actual amount of padding is rounded
690 so that the end of the arena is always a system page boundary.
691
692 The main reason for using padding is to avoid calling sbrk so
693 often. Having even a small pad greatly reduces the likelihood
694 that nearly every malloc request during program start-up (or
695 after trimming) will invoke sbrk, which needlessly wastes
696 time.
697
698 Automatic rounding-up to page-size units is normally sufficient
699 to avoid measurable overhead, so the default is 0. However, in
700 systems where sbrk is relatively slow, it can pay to increase
701 this value, at the expense of carrying around more memory than
702 the program needs.
703
704*/
705
706
707#ifndef DEFAULT_MMAP_THRESHOLD
708#define DEFAULT_MMAP_THRESHOLD (128 * 1024)
709#endif
710
711/*
712
713 M_MMAP_THRESHOLD is the request size threshold for using mmap()
714 to service a request. Requests of at least this size that cannot
715 be allocated using already-existing space will be serviced via mmap.
716 (If enough normal freed space already exists it is used instead.)
717
718 Using mmap segregates relatively large chunks of memory so that
719 they can be individually obtained and released from the host
720 system. A request serviced through mmap is never reused by any
721 other request (at least not directly; the system may just so
722 happen to remap successive requests to the same locations).
723
724 Segregating space in this way has the benefit that mmapped space
725 can ALWAYS be individually released back to the system, which
726 helps keep the system level memory demands of a long-lived
727 program low. Mapped memory can never become `locked' between
728 other chunks, as can happen with normally allocated chunks, which
729 menas that even trimming via malloc_trim would not release them.
730
731 However, it has the disadvantages that:
732
733 1. The space cannot be reclaimed, consolidated, and then
734 used to service later requests, as happens with normal chunks.
735 2. It can lead to more wastage because of mmap page alignment
736 requirements
737 3. It causes malloc performance to be more dependent on host
738 system memory management support routines which may vary in
739 implementation quality and may impose arbitrary
740 limitations. Generally, servicing a request via normal
741 malloc steps is faster than going through a system's mmap.
742
743 All together, these considerations should lead you to use mmap
744 only for relatively large requests.
745
746
747*/
748
749
750
751#ifndef DEFAULT_MMAP_MAX
752#if HAVE_MMAP
753#define DEFAULT_MMAP_MAX (1024)
754#else
755#define DEFAULT_MMAP_MAX (0)
756#endif
757#endif
758
759/*
760 M_MMAP_MAX is the maximum number of requests to simultaneously
761 service using mmap. This parameter exists because:
762
763 1. Some systems have a limited number of internal tables for
764 use by mmap.
765 2. In most systems, overreliance on mmap can degrade overall
766 performance.
767 3. If a program allocates many large regions, it is probably
768 better off using normal sbrk-based allocation routines that
769 can reclaim and reallocate normal heap memory. Using a
770 small value allows transition into this mode after the
771 first few allocations.
772
773 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set,
774 the default value is 0, and attempts to set it to non-zero values
775 in mallopt will fail.
776*/
777
778
779
10dc2a90
UD
780#ifndef DEFAULT_CHECK_ACTION
781#define DEFAULT_CHECK_ACTION 1
782#endif
783
784/* What to do if the standard debugging hooks are in place and a
785 corrupt pointer is detected: do nothing (0), print an error message
786 (1), or call abort() (2). */
787
788
789
f65fd747
UD
790#define HEAP_MIN_SIZE (32*1024)
791#define HEAP_MAX_SIZE (1024*1024) /* must be a power of two */
792
793/* HEAP_MIN_SIZE and HEAP_MAX_SIZE limit the size of mmap()ed heaps
794 that are dynamically created for multi-threaded programs. The
795 maximum size must be a power of two, for fast determination of
796 which heap belongs to a chunk. It should be much larger than
797 the mmap threshold, so that requests with a size just below that
798 threshold can be fulfilled without creating too many heaps.
799*/
800
801
802
803#ifndef THREAD_STATS
804#define THREAD_STATS 0
805#endif
806
807/* If THREAD_STATS is non-zero, some statistics on mutex locking are
808 computed. */
809
810
811/*
812
813 Special defines for the Linux/GNU C library.
814
815*/
816
817
818#ifdef _LIBC
819
820#if __STD_C
821
822Void_t * __default_morecore (ptrdiff_t);
1228ed5c 823Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
f65fd747
UD
824
825#else
826
827Void_t * __default_morecore ();
1228ed5c 828Void_t *(*__morecore)() = __default_morecore;
f65fd747
UD
829
830#endif
831
832#define MORECORE (*__morecore)
833#define MORECORE_FAILURE 0
834#define MORECORE_CLEARS 1
10dc2a90
UD
835#define mmap __mmap
836#define munmap __munmap
837#define mremap __mremap
4cca6b86 838#define mprotect __mprotect
10dc2a90
UD
839#undef malloc_getpagesize
840#define malloc_getpagesize __getpagesize()
f65fd747
UD
841
842#else /* _LIBC */
843
844#if __STD_C
845extern Void_t* sbrk(ptrdiff_t);
846#else
847extern Void_t* sbrk();
848#endif
849
850#ifndef MORECORE
851#define MORECORE sbrk
852#endif
853
854#ifndef MORECORE_FAILURE
855#define MORECORE_FAILURE -1
856#endif
857
858#ifndef MORECORE_CLEARS
859#define MORECORE_CLEARS 1
860#endif
861
862#endif /* _LIBC */
863
10dc2a90 864#ifdef _LIBC
f65fd747
UD
865
866#define cALLOc __libc_calloc
867#define fREe __libc_free
868#define mALLOc __libc_malloc
869#define mEMALIGn __libc_memalign
870#define rEALLOc __libc_realloc
871#define vALLOc __libc_valloc
872#define pvALLOc __libc_pvalloc
873#define mALLINFo __libc_mallinfo
874#define mALLOPt __libc_mallopt
7e3be507
UD
875#define mALLOC_STATs __malloc_stats
876#define mALLOC_USABLE_SIZe __malloc_usable_size
877#define mALLOC_TRIm __malloc_trim
2f6d1f1b
UD
878#define mALLOC_GET_STATe __malloc_get_state
879#define mALLOC_SET_STATe __malloc_set_state
f65fd747 880
f65fd747
UD
881#else
882
883#define cALLOc calloc
884#define fREe free
885#define mALLOc malloc
886#define mEMALIGn memalign
887#define rEALLOc realloc
888#define vALLOc valloc
889#define pvALLOc pvalloc
890#define mALLINFo mallinfo
891#define mALLOPt mallopt
7e3be507
UD
892#define mALLOC_STATs malloc_stats
893#define mALLOC_USABLE_SIZe malloc_usable_size
894#define mALLOC_TRIm malloc_trim
2f6d1f1b
UD
895#define mALLOC_GET_STATe malloc_get_state
896#define mALLOC_SET_STATe malloc_set_state
f65fd747
UD
897
898#endif
899
900/* Public routines */
901
902#if __STD_C
903
904#ifndef _LIBC
905void ptmalloc_init(void);
906#endif
907Void_t* mALLOc(size_t);
908void fREe(Void_t*);
909Void_t* rEALLOc(Void_t*, size_t);
910Void_t* mEMALIGn(size_t, size_t);
911Void_t* vALLOc(size_t);
912Void_t* pvALLOc(size_t);
913Void_t* cALLOc(size_t, size_t);
914void cfree(Void_t*);
7e3be507
UD
915int mALLOC_TRIm(size_t);
916size_t mALLOC_USABLE_SIZe(Void_t*);
917void mALLOC_STATs(void);
f65fd747
UD
918int mALLOPt(int, int);
919struct mallinfo mALLINFo(void);
2f6d1f1b
UD
920Void_t* mALLOC_GET_STATe(void);
921int mALLOC_SET_STATe(Void_t*);
922
923#else /* !__STD_C */
924
f65fd747
UD
925#ifndef _LIBC
926void ptmalloc_init();
927#endif
928Void_t* mALLOc();
929void fREe();
930Void_t* rEALLOc();
931Void_t* mEMALIGn();
932Void_t* vALLOc();
933Void_t* pvALLOc();
934Void_t* cALLOc();
935void cfree();
7e3be507
UD
936int mALLOC_TRIm();
937size_t mALLOC_USABLE_SIZe();
938void mALLOC_STATs();
f65fd747
UD
939int mALLOPt();
940struct mallinfo mALLINFo();
2f6d1f1b
UD
941Void_t* mALLOC_GET_STATe();
942int mALLOC_SET_STATe();
943
944#endif /* __STD_C */
f65fd747
UD
945
946
947#ifdef __cplusplus
948}; /* end of extern "C" */
949#endif
950
951#if !defined(NO_THREADS) && !HAVE_MMAP
952"Can't have threads support without mmap"
953#endif
954
955
956/*
957 Type declarations
958*/
959
960
961struct malloc_chunk
962{
963 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
964 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
965 struct malloc_chunk* fd; /* double links -- used only if free. */
966 struct malloc_chunk* bk;
967};
968
969typedef struct malloc_chunk* mchunkptr;
970
971/*
972
973 malloc_chunk details:
974
975 (The following includes lightly edited explanations by Colin Plumb.)
976
977 Chunks of memory are maintained using a `boundary tag' method as
978 described in e.g., Knuth or Standish. (See the paper by Paul
979 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
980 survey of such techniques.) Sizes of free chunks are stored both
981 in the front of each chunk and at the end. This makes
982 consolidating fragmented chunks into bigger chunks very fast. The
983 size fields also hold bits representing whether chunks are free or
984 in use.
985
986 An allocated chunk looks like this:
987
988
989 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
990 | Size of previous chunk, if allocated | |
991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
992 | Size of chunk, in bytes |P|
993 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
994 | User data starts here... .
995 . .
996 . (malloc_usable_space() bytes) .
997 . |
998nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
999 | Size of chunk |
1000 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1001
1002
1003 Where "chunk" is the front of the chunk for the purpose of most of
1004 the malloc code, but "mem" is the pointer that is returned to the
1005 user. "Nextchunk" is the beginning of the next contiguous chunk.
1006
6d52618b 1007 Chunks always begin on even word boundaries, so the mem portion
f65fd747
UD
1008 (which is returned to the user) is also on an even word boundary, and
1009 thus double-word aligned.
1010
1011 Free chunks are stored in circular doubly-linked lists, and look like this:
1012
1013 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1014 | Size of previous chunk |
1015 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1016 `head:' | Size of chunk, in bytes |P|
1017 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1018 | Forward pointer to next chunk in list |
1019 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1020 | Back pointer to previous chunk in list |
1021 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1022 | Unused space (may be 0 bytes long) .
1023 . .
1024 . |
1025nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1026 `foot:' | Size of chunk, in bytes |
1027 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1028
1029 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1030 chunk size (which is always a multiple of two words), is an in-use
1031 bit for the *previous* chunk. If that bit is *clear*, then the
1032 word before the current chunk size contains the previous chunk
1033 size, and can be used to find the front of the previous chunk.
1034 (The very first chunk allocated always has this bit set,
1035 preventing access to non-existent (or non-owned) memory.)
1036
1037 Note that the `foot' of the current chunk is actually represented
1038 as the prev_size of the NEXT chunk. (This makes it easier to
1039 deal with alignments etc).
1040
1041 The two exceptions to all this are
1042
1043 1. The special chunk `top', which doesn't bother using the
1044 trailing size field since there is no
1045 next contiguous chunk that would have to index off it. (After
1046 initialization, `top' is forced to always exist. If it would
1047 become less than MINSIZE bytes long, it is replenished via
1048 malloc_extend_top.)
1049
1050 2. Chunks allocated via mmap, which have the second-lowest-order
1051 bit (IS_MMAPPED) set in their size fields. Because they are
1052 never merged or traversed from any other chunk, they have no
1053 foot size or inuse information.
1054
1055 Available chunks are kept in any of several places (all declared below):
1056
1057 * `av': An array of chunks serving as bin headers for consolidated
1058 chunks. Each bin is doubly linked. The bins are approximately
1059 proportionally (log) spaced. There are a lot of these bins
1060 (128). This may look excessive, but works very well in
1061 practice. All procedures maintain the invariant that no
1062 consolidated chunk physically borders another one. Chunks in
1063 bins are kept in size order, with ties going to the
1064 approximately least recently used chunk.
1065
1066 The chunks in each bin are maintained in decreasing sorted order by
1067 size. This is irrelevant for the small bins, which all contain
1068 the same-sized chunks, but facilitates best-fit allocation for
1069 larger chunks. (These lists are just sequential. Keeping them in
1070 order almost never requires enough traversal to warrant using
1071 fancier ordered data structures.) Chunks of the same size are
1072 linked with the most recently freed at the front, and allocations
1073 are taken from the back. This results in LRU or FIFO allocation
1074 order, which tends to give each chunk an equal opportunity to be
1075 consolidated with adjacent freed chunks, resulting in larger free
1076 chunks and less fragmentation.
1077
1078 * `top': The top-most available chunk (i.e., the one bordering the
1079 end of available memory) is treated specially. It is never
1080 included in any bin, is used only if no other chunk is
1081 available, and is released back to the system if it is very
1082 large (see M_TRIM_THRESHOLD).
1083
1084 * `last_remainder': A bin holding only the remainder of the
1085 most recently split (non-top) chunk. This bin is checked
1086 before other non-fitting chunks, so as to provide better
1087 locality for runs of sequentially allocated chunks.
1088
1089 * Implicitly, through the host system's memory mapping tables.
1090 If supported, requests greater than a threshold are usually
1091 serviced via calls to mmap, and then later released via munmap.
1092
1093*/
1094
1095/*
1096 Bins
1097
1098 The bins are an array of pairs of pointers serving as the
1099 heads of (initially empty) doubly-linked lists of chunks, laid out
1100 in a way so that each pair can be treated as if it were in a
1101 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1102 and chunks are the same).
1103
1104 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1105 8 bytes apart. Larger bins are approximately logarithmically
1106 spaced. (See the table below.)
1107
1108 Bin layout:
1109
1110 64 bins of size 8
1111 32 bins of size 64
1112 16 bins of size 512
1113 8 bins of size 4096
1114 4 bins of size 32768
1115 2 bins of size 262144
1116 1 bin of size what's left
1117
1118 There is actually a little bit of slop in the numbers in bin_index
1119 for the sake of speed. This makes no difference elsewhere.
1120
1121 The special chunks `top' and `last_remainder' get their own bins,
1122 (this is implemented via yet more trickery with the av array),
1123 although `top' is never properly linked to its bin since it is
1124 always handled specially.
1125
1126*/
1127
1128#define NAV 128 /* number of bins */
1129
1130typedef struct malloc_chunk* mbinptr;
1131
1132/* An arena is a configuration of malloc_chunks together with an array
1133 of bins. With multiple threads, it must be locked via a mutex
1134 before changing its data structures. One or more `heaps' are
1135 associated with each arena, except for the main_arena, which is
1136 associated only with the `main heap', i.e. the conventional free
1137 store obtained with calls to MORECORE() (usually sbrk). The `av'
1138 array is never mentioned directly in the code, but instead used via
1139 bin access macros. */
1140
1141typedef struct _arena {
1142 mbinptr av[2*NAV + 2];
1143 struct _arena *next;
8a4b65b4
UD
1144 size_t size;
1145#if THREAD_STATS
1146 long stat_lock_direct, stat_lock_loop, stat_lock_wait;
1147#endif
f65fd747
UD
1148 mutex_t mutex;
1149} arena;
1150
1151
6d52618b 1152/* A heap is a single contiguous memory region holding (coalesceable)
f65fd747
UD
1153 malloc_chunks. It is allocated with mmap() and always starts at an
1154 address aligned to HEAP_MAX_SIZE. Not used unless compiling for
1155 multiple threads. */
1156
1157typedef struct _heap_info {
8a4b65b4
UD
1158 arena *ar_ptr; /* Arena for this heap. */
1159 struct _heap_info *prev; /* Previous heap. */
1160 size_t size; /* Current size in bytes. */
1161 size_t pad; /* Make sure the following data is properly aligned. */
f65fd747
UD
1162} heap_info;
1163
1164
1165/*
1166 Static functions (forward declarations)
1167*/
1168
1169#if __STD_C
10dc2a90 1170
dfd2257a
UD
1171static void chunk_free(arena *ar_ptr, mchunkptr p) internal_function;
1172static mchunkptr chunk_alloc(arena *ar_ptr, INTERNAL_SIZE_T size)
1173 internal_function;
10dc2a90 1174static mchunkptr chunk_realloc(arena *ar_ptr, mchunkptr oldp,
dfd2257a
UD
1175 INTERNAL_SIZE_T oldsize, INTERNAL_SIZE_T nb)
1176 internal_function;
10dc2a90 1177static mchunkptr chunk_align(arena *ar_ptr, INTERNAL_SIZE_T nb,
dfd2257a
UD
1178 size_t alignment) internal_function;
1179static int main_trim(size_t pad) internal_function;
8a4b65b4 1180#ifndef NO_THREADS
dfd2257a 1181static int heap_trim(heap_info *heap, size_t pad) internal_function;
8a4b65b4 1182#endif
dfd2257a 1183#if defined _LIBC || defined MALLOC_HOOKS
a2b08ee5
UD
1184static Void_t* malloc_check(size_t sz, const Void_t *caller);
1185static void free_check(Void_t* mem, const Void_t *caller);
1186static Void_t* realloc_check(Void_t* oldmem, size_t bytes,
1187 const Void_t *caller);
1188static Void_t* memalign_check(size_t alignment, size_t bytes,
1189 const Void_t *caller);
1190static Void_t* malloc_starter(size_t sz, const Void_t *caller);
1191static void free_starter(Void_t* mem, const Void_t *caller);
1192static Void_t* malloc_atfork(size_t sz, const Void_t *caller);
1193static void free_atfork(Void_t* mem, const Void_t *caller);
a2b08ee5 1194#endif
10dc2a90 1195
f65fd747 1196#else
10dc2a90 1197
f65fd747
UD
1198static void chunk_free();
1199static mchunkptr chunk_alloc();
10dc2a90
UD
1200static mchunkptr chunk_realloc();
1201static mchunkptr chunk_align();
8a4b65b4
UD
1202static int main_trim();
1203#ifndef NO_THREADS
1204static int heap_trim();
1205#endif
dfd2257a 1206#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90
UD
1207static Void_t* malloc_check();
1208static void free_check();
1209static Void_t* realloc_check();
1210static Void_t* memalign_check();
7e3be507
UD
1211static Void_t* malloc_starter();
1212static void free_starter();
ca34d7a7
UD
1213static Void_t* malloc_atfork();
1214static void free_atfork();
10dc2a90
UD
1215#endif
1216
f65fd747
UD
1217#endif
1218
dfd2257a
UD
1219/* On some platforms we can compile internal, not exported functions better.
1220 Let the environment provide a macro and define it to be empty if it
1221 is not available. */
1222#ifndef internal_function
1223# define internal_function
1224#endif
1225
f65fd747
UD
1226\f
1227
1228/* sizes, alignments */
1229
1230#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
1231#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
1232#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
1233#define MINSIZE (sizeof(struct malloc_chunk))
1234
1235/* conversion from malloc headers to user pointers, and back */
1236
1237#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1238#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1239
1240/* pad request bytes into a usable size */
1241
1242#define request2size(req) \
1243 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1244 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1245 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1246
1247/* Check if m has acceptable alignment */
1248
1249#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1250
1251
1252\f
1253
1254/*
1255 Physical chunk operations
1256*/
1257
1258
1259/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1260
1261#define PREV_INUSE 0x1
1262
1263/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1264
1265#define IS_MMAPPED 0x2
1266
1267/* Bits to mask off when extracting size */
1268
1269#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1270
1271
1272/* Ptr to next physical malloc_chunk. */
1273
1274#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1275
1276/* Ptr to previous physical malloc_chunk */
1277
1278#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1279
1280
1281/* Treat space at ptr + offset as a chunk */
1282
1283#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
1284
1285
1286\f
1287
1288/*
1289 Dealing with use bits
1290*/
1291
1292/* extract p's inuse bit */
1293
1294#define inuse(p) \
1295 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1296
1297/* extract inuse bit of previous chunk */
1298
1299#define prev_inuse(p) ((p)->size & PREV_INUSE)
1300
1301/* check for mmap()'ed chunk */
1302
1303#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1304
1305/* set/clear chunk as in use without otherwise disturbing */
1306
1307#define set_inuse(p) \
1308 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1309
1310#define clear_inuse(p) \
1311 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1312
1313/* check/set/clear inuse bits in known places */
1314
1315#define inuse_bit_at_offset(p, s)\
1316 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1317
1318#define set_inuse_bit_at_offset(p, s)\
1319 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1320
1321#define clear_inuse_bit_at_offset(p, s)\
1322 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1323
1324
1325\f
1326
1327/*
1328 Dealing with size fields
1329*/
1330
1331/* Get size, ignoring use bits */
1332
1333#define chunksize(p) ((p)->size & ~(SIZE_BITS))
1334
1335/* Set size at head, without disturbing its use bit */
1336
1337#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1338
1339/* Set size/use ignoring previous bits in header */
1340
1341#define set_head(p, s) ((p)->size = (s))
1342
1343/* Set size at footer (only when chunk is not in use) */
1344
1345#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1346
1347
1348\f
1349
1350
1351/* access macros */
1352
1353#define bin_at(a, i) ((mbinptr)((char*)&(((a)->av)[2*(i) + 2]) - 2*SIZE_SZ))
1354#define init_bin(a, i) ((a)->av[2*i+2] = (a)->av[2*i+3] = bin_at((a), i))
1355#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1356#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1357
1358/*
1359 The first 2 bins are never indexed. The corresponding av cells are instead
1360 used for bookkeeping. This is not to save space, but to simplify
1361 indexing, maintain locality, and avoid some initialization tests.
1362*/
1363
1364#define binblocks(a) (bin_at(a,0)->size)/* bitvector of nonempty blocks */
1365#define top(a) (bin_at(a,0)->fd) /* The topmost chunk */
1366#define last_remainder(a) (bin_at(a,1)) /* remainder from last split */
1367
1368/*
1369 Because top initially points to its own bin with initial
1370 zero size, thus forcing extension on the first malloc request,
1371 we avoid having any special code in malloc to check whether
1372 it even exists yet. But we still need to in malloc_extend_top.
1373*/
1374
1375#define initial_top(a) ((mchunkptr)bin_at(a, 0))
1376
1377\f
1378
1379/* field-extraction macros */
1380
1381#define first(b) ((b)->fd)
1382#define last(b) ((b)->bk)
1383
1384/*
1385 Indexing into bins
1386*/
1387
dfd2257a
UD
1388#define bin_index(sz) \
1389(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3):\
1390 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6):\
1391 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9):\
1392 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12):\
1393 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15):\
1394 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18):\
f65fd747
UD
1395 126)
1396/*
1397 bins for chunks < 512 are all spaced 8 bytes apart, and hold
1398 identically sized chunks. This is exploited in malloc.
1399*/
1400
1401#define MAX_SMALLBIN 63
1402#define MAX_SMALLBIN_SIZE 512
1403#define SMALLBIN_WIDTH 8
1404
1405#define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
1406
1407/*
1408 Requests are `small' if both the corresponding and the next bin are small
1409*/
1410
1411#define is_small_request(nb) ((nb) < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1412
1413\f
1414
1415/*
1416 To help compensate for the large number of bins, a one-level index
1417 structure is used for bin-by-bin searching. `binblocks' is a
1418 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1419 have any (possibly) non-empty bins, so they can be skipped over
1420 all at once during during traversals. The bits are NOT always
1421 cleared as soon as all bins in a block are empty, but instead only
1422 when all are noticed to be empty during traversal in malloc.
1423*/
1424
1425#define BINBLOCKWIDTH 4 /* bins per block */
1426
1427/* bin<->block macros */
1428
1429#define idx2binblock(ix) ((unsigned)1 << ((ix) / BINBLOCKWIDTH))
1430#define mark_binblock(a, ii) (binblocks(a) |= idx2binblock(ii))
1431#define clear_binblock(a, ii) (binblocks(a) &= ~(idx2binblock(ii)))
1432
1433
1434\f
1435
1436/* Static bookkeeping data */
1437
1438/* Helper macro to initialize bins */
1439#define IAV(i) bin_at(&main_arena, i), bin_at(&main_arena, i)
1440
1441static arena main_arena = {
1442 {
1443 0, 0,
1444 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
1445 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
1446 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
1447 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
1448 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
1449 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
1450 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
1451 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
1452 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
1453 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
1454 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
1455 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
1456 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
1457 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1458 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1459 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1460 },
7e3be507 1461 &main_arena, /* next */
8a4b65b4
UD
1462 0, /* size */
1463#if THREAD_STATS
1464 0, 0, 0, /* stat_lock_direct, stat_lock_loop, stat_lock_wait */
1465#endif
f65fd747
UD
1466 MUTEX_INITIALIZER /* mutex */
1467};
1468
1469#undef IAV
1470
1471/* Thread specific data */
1472
8a4b65b4 1473#ifndef NO_THREADS
f65fd747
UD
1474static tsd_key_t arena_key;
1475static mutex_t list_lock = MUTEX_INITIALIZER;
8a4b65b4 1476#endif
f65fd747
UD
1477
1478#if THREAD_STATS
f65fd747 1479static int stat_n_heaps = 0;
f65fd747
UD
1480#define THREAD_STAT(x) x
1481#else
1482#define THREAD_STAT(x) do ; while(0)
1483#endif
1484
1485/* variables holding tunable values */
1486
1487static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
1488static unsigned long top_pad = DEFAULT_TOP_PAD;
1489static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
1490static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
10dc2a90 1491static int check_action = DEFAULT_CHECK_ACTION;
f65fd747
UD
1492
1493/* The first value returned from sbrk */
1494static char* sbrk_base = (char*)(-1);
1495
1496/* The maximum memory obtained from system via sbrk */
1497static unsigned long max_sbrked_mem = 0;
1498
8a4b65b4
UD
1499/* The maximum via either sbrk or mmap (too difficult to track with threads) */
1500#ifdef NO_THREADS
f65fd747 1501static unsigned long max_total_mem = 0;
8a4b65b4 1502#endif
f65fd747
UD
1503
1504/* The total memory obtained from system via sbrk */
8a4b65b4 1505#define sbrked_mem (main_arena.size)
f65fd747
UD
1506
1507/* Tracking mmaps */
1508
1509static unsigned int n_mmaps = 0;
1510static unsigned int max_n_mmaps = 0;
1511static unsigned long mmapped_mem = 0;
1512static unsigned long max_mmapped_mem = 0;
1513
1514
1515\f
831372e7
UD
1516#ifndef _LIBC
1517#define weak_variable
1518#else
1519/* In GNU libc we want the hook variables to be weak definitions to
1520 avoid a problem with Emacs. */
1521#define weak_variable weak_function
1522#endif
7e3be507
UD
1523
1524/* Already initialized? */
9756dfe1 1525int __malloc_initialized = -1;
f65fd747
UD
1526
1527
ca34d7a7
UD
1528/* The following two functions are registered via thread_atfork() to
1529 make sure that the mutexes remain in a consistent state in the
1530 fork()ed version of a thread. Also adapt the malloc and free hooks
1531 temporarily, because the `atfork' handler mechanism may use
1532 malloc/free internally (e.g. in LinuxThreads). */
1533
dfd2257a 1534#if defined _LIBC || defined MALLOC_HOOKS
a2b08ee5
UD
1535static __malloc_ptr_t (*save_malloc_hook) __MALLOC_P ((size_t __size,
1536 const __malloc_ptr_t));
1537static void (*save_free_hook) __MALLOC_P ((__malloc_ptr_t __ptr,
1538 const __malloc_ptr_t));
1539static Void_t* save_arena;
a2b08ee5 1540#endif
ca34d7a7
UD
1541
1542static void
1543ptmalloc_lock_all __MALLOC_P((void))
1544{
1545 arena *ar_ptr;
1546
1547 (void)mutex_lock(&list_lock);
1548 for(ar_ptr = &main_arena;;) {
1549 (void)mutex_lock(&ar_ptr->mutex);
1550 ar_ptr = ar_ptr->next;
1551 if(ar_ptr == &main_arena) break;
1552 }
dfd2257a 1553#if defined _LIBC || defined MALLOC_HOOKS
ca34d7a7
UD
1554 save_malloc_hook = __malloc_hook;
1555 save_free_hook = __free_hook;
1556 __malloc_hook = malloc_atfork;
1557 __free_hook = free_atfork;
1558 /* Only the current thread may perform malloc/free calls now. */
1559 tsd_getspecific(arena_key, save_arena);
1560 tsd_setspecific(arena_key, (Void_t*)0);
1561#endif
1562}
1563
1564static void
1565ptmalloc_unlock_all __MALLOC_P((void))
1566{
1567 arena *ar_ptr;
1568
dfd2257a 1569#if defined _LIBC || defined MALLOC_HOOKS
ca34d7a7
UD
1570 tsd_setspecific(arena_key, save_arena);
1571 __malloc_hook = save_malloc_hook;
1572 __free_hook = save_free_hook;
1573#endif
1574 for(ar_ptr = &main_arena;;) {
1575 (void)mutex_unlock(&ar_ptr->mutex);
1576 ar_ptr = ar_ptr->next;
1577 if(ar_ptr == &main_arena) break;
1578 }
1579 (void)mutex_unlock(&list_lock);
1580}
1581
f65fd747
UD
1582/* Initialization routine. */
1583#if defined(_LIBC)
10dc2a90 1584#if 0
f65fd747 1585static void ptmalloc_init __MALLOC_P ((void)) __attribute__ ((constructor));
10dc2a90 1586#endif
f65fd747
UD
1587
1588static void
1589ptmalloc_init __MALLOC_P((void))
1590#else
1591void
1592ptmalloc_init __MALLOC_P((void))
1593#endif
1594{
dfd2257a 1595#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90
UD
1596 const char* s;
1597#endif
f65fd747 1598
9756dfe1
UD
1599 if(__malloc_initialized >= 0) return;
1600 __malloc_initialized = 0;
dfd2257a 1601#if defined _LIBC || defined MALLOC_HOOKS
7e3be507
UD
1602 /* With some threads implementations, creating thread-specific data
1603 or initializing a mutex may call malloc() itself. Provide a
1604 simple starter version (realloc() won't work). */
1605 save_malloc_hook = __malloc_hook;
1606 save_free_hook = __free_hook;
1607 __malloc_hook = malloc_starter;
1608 __free_hook = free_starter;
1609#endif
dfd2257a 1610#if defined _LIBC && !defined NO_THREADS
8a4b65b4 1611 /* Initialize the pthreads interface. */
f65fd747 1612 if (__pthread_initialize != NULL)
8a4b65b4 1613 __pthread_initialize();
f65fd747 1614#endif
8a4b65b4 1615#ifndef NO_THREADS
10dc2a90
UD
1616 mutex_init(&main_arena.mutex);
1617 mutex_init(&list_lock);
1618 tsd_key_create(&arena_key, NULL);
1619 tsd_setspecific(arena_key, (Void_t *)&main_arena);
ca34d7a7 1620 thread_atfork(ptmalloc_lock_all, ptmalloc_unlock_all, ptmalloc_unlock_all);
10dc2a90 1621#endif
dfd2257a 1622#if defined _LIBC || defined MALLOC_HOOKS
831372e7
UD
1623 if((s = getenv("MALLOC_TRIM_THRESHOLD_")))
1624 mALLOPt(M_TRIM_THRESHOLD, atoi(s));
1625 if((s = getenv("MALLOC_TOP_PAD_")))
1626 mALLOPt(M_TOP_PAD, atoi(s));
1627 if((s = getenv("MALLOC_MMAP_THRESHOLD_")))
1628 mALLOPt(M_MMAP_THRESHOLD, atoi(s));
1629 if((s = getenv("MALLOC_MMAP_MAX_")))
1630 mALLOPt(M_MMAP_MAX, atoi(s));
10dc2a90 1631 s = getenv("MALLOC_CHECK_");
7e3be507
UD
1632 __malloc_hook = save_malloc_hook;
1633 __free_hook = save_free_hook;
10dc2a90 1634 if(s) {
831372e7
UD
1635 if(s[0]) mALLOPt(M_CHECK_ACTION, (int)(s[0] - '0'));
1636 __malloc_check_init();
f65fd747 1637 }
10dc2a90
UD
1638 if(__malloc_initialize_hook != NULL)
1639 (*__malloc_initialize_hook)();
1640#endif
9756dfe1 1641 __malloc_initialized = 1;
f65fd747
UD
1642}
1643
ca34d7a7
UD
1644/* There are platforms (e.g. Hurd) with a link-time hook mechanism. */
1645#ifdef thread_atfork_static
1646thread_atfork_static(ptmalloc_lock_all, ptmalloc_unlock_all, \
1647 ptmalloc_unlock_all)
1648#endif
1649
dfd2257a 1650#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90
UD
1651
1652/* Hooks for debugging versions. The initial hooks just call the
1653 initialization routine, then do the normal work. */
1654
1655static Void_t*
a2b08ee5
UD
1656#ifdef _LIBC
1657malloc_hook_ini(size_t sz, const __malloc_ptr_t caller)
1658#else
10dc2a90
UD
1659#if __STD_C
1660malloc_hook_ini(size_t sz)
1661#else
1662malloc_hook_ini(sz) size_t sz;
1663#endif
a2b08ee5 1664#endif
10dc2a90
UD
1665{
1666 __malloc_hook = NULL;
1667 __realloc_hook = NULL;
1668 __memalign_hook = NULL;
1669 ptmalloc_init();
1670 return mALLOc(sz);
1671}
1672
1673static Void_t*
1674#if __STD_C
dfd2257a 1675realloc_hook_ini(Void_t* ptr, size_t sz, const __malloc_ptr_t caller)
10dc2a90 1676#else
dfd2257a
UD
1677realloc_hook_ini(ptr, sz, caller)
1678 Void_t* ptr; size_t sz; const __malloc_ptr_t caller;
a2b08ee5 1679#endif
10dc2a90
UD
1680{
1681 __malloc_hook = NULL;
1682 __realloc_hook = NULL;
1683 __memalign_hook = NULL;
1684 ptmalloc_init();
1685 return rEALLOc(ptr, sz);
1686}
1687
1688static Void_t*
1689#if __STD_C
dfd2257a 1690memalign_hook_ini(size_t sz, size_t alignment, const __malloc_ptr_t caller)
10dc2a90 1691#else
dfd2257a
UD
1692memalign_hook_ini(sz, alignment, caller)
1693 size_t sz; size_t alignment; const __malloc_ptr_t caller;
a2b08ee5 1694#endif
10dc2a90
UD
1695{
1696 __malloc_hook = NULL;
1697 __realloc_hook = NULL;
1698 __memalign_hook = NULL;
1699 ptmalloc_init();
1700 return mEMALIGn(sz, alignment);
1701}
1702
831372e7 1703void weak_variable (*__malloc_initialize_hook) __MALLOC_P ((void)) = NULL;
a2b08ee5
UD
1704void weak_variable (*__free_hook) __MALLOC_P ((__malloc_ptr_t __ptr,
1705 const __malloc_ptr_t)) = NULL;
1706__malloc_ptr_t weak_variable (*__malloc_hook)
1707 __MALLOC_P ((size_t __size, const __malloc_ptr_t)) = malloc_hook_ini;
1708__malloc_ptr_t weak_variable (*__realloc_hook)
1709 __MALLOC_P ((__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t))
1710 = realloc_hook_ini;
1711__malloc_ptr_t weak_variable (*__memalign_hook)
1712 __MALLOC_P ((size_t __size, size_t __alignment, const __malloc_ptr_t))
1713 = memalign_hook_ini;
1228ed5c 1714void weak_variable (*__after_morecore_hook) __MALLOC_P ((void)) = NULL;
10dc2a90
UD
1715
1716/* Activate a standard set of debugging hooks. */
1717void
831372e7 1718__malloc_check_init()
10dc2a90
UD
1719{
1720 __malloc_hook = malloc_check;
1721 __free_hook = free_check;
1722 __realloc_hook = realloc_check;
1723 __memalign_hook = memalign_check;
7e3be507
UD
1724 if(check_action == 1)
1725 fprintf(stderr, "malloc: using debugging hooks\n");
10dc2a90
UD
1726}
1727
1728#endif
1729
f65fd747
UD
1730
1731\f
1732
1733
1734/* Routines dealing with mmap(). */
1735
1736#if HAVE_MMAP
1737
1738#ifndef MAP_ANONYMOUS
1739
1740static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1741
1742#define MMAP(size, prot) ((dev_zero_fd < 0) ? \
1743 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1744 mmap(0, (size), (prot), MAP_PRIVATE, dev_zero_fd, 0)) : \
1745 mmap(0, (size), (prot), MAP_PRIVATE, dev_zero_fd, 0))
1746
1747#else
1748
1749#define MMAP(size, prot) \
1750 (mmap(0, (size), (prot), MAP_PRIVATE|MAP_ANONYMOUS, -1, 0))
1751
1752#endif
1753
dfd2257a
UD
1754#if defined __GNUC__ && __GNUC__ >= 2
1755/* This function is only called from one place, inline it. */
1756inline
1757#endif
af6f3906 1758static mchunkptr
dfd2257a 1759internal_function
f65fd747 1760#if __STD_C
dfd2257a 1761mmap_chunk(size_t size)
f65fd747 1762#else
dfd2257a 1763mmap_chunk(size) size_t size;
f65fd747
UD
1764#endif
1765{
1766 size_t page_mask = malloc_getpagesize - 1;
1767 mchunkptr p;
1768
1769 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1770
1771 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1772 * there is no following chunk whose prev_size field could be used.
1773 */
1774 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1775
1776 p = (mchunkptr)MMAP(size, PROT_READ|PROT_WRITE);
0413b54c 1777 if(p == (mchunkptr) MAP_FAILED) return 0;
f65fd747
UD
1778
1779 n_mmaps++;
1780 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1781
1782 /* We demand that eight bytes into a page must be 8-byte aligned. */
1783 assert(aligned_OK(chunk2mem(p)));
1784
1785 /* The offset to the start of the mmapped region is stored
1786 * in the prev_size field of the chunk; normally it is zero,
1787 * but that can be changed in memalign().
1788 */
1789 p->prev_size = 0;
1790 set_head(p, size|IS_MMAPPED);
1791
1792 mmapped_mem += size;
1793 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1794 max_mmapped_mem = mmapped_mem;
8a4b65b4 1795#ifdef NO_THREADS
f65fd747
UD
1796 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1797 max_total_mem = mmapped_mem + sbrked_mem;
8a4b65b4 1798#endif
f65fd747
UD
1799 return p;
1800}
1801
1802#if __STD_C
1803static void munmap_chunk(mchunkptr p)
1804#else
1805static void munmap_chunk(p) mchunkptr p;
1806#endif
1807{
1808 INTERNAL_SIZE_T size = chunksize(p);
1809 int ret;
1810
1811 assert (chunk_is_mmapped(p));
1812 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1813 assert((n_mmaps > 0));
1814 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1815
1816 n_mmaps--;
1817 mmapped_mem -= (size + p->prev_size);
1818
1819 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1820
1821 /* munmap returns non-zero on failure */
1822 assert(ret == 0);
1823}
1824
1825#if HAVE_MREMAP
1826
1827#if __STD_C
1828static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1829#else
1830static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1831#endif
1832{
1833 size_t page_mask = malloc_getpagesize - 1;
1834 INTERNAL_SIZE_T offset = p->prev_size;
1835 INTERNAL_SIZE_T size = chunksize(p);
1836 char *cp;
1837
1838 assert (chunk_is_mmapped(p));
1839 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1840 assert((n_mmaps > 0));
1841 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1842
1843 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1844 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1845
1846 cp = (char *)mremap((char *)p - offset, size + offset, new_size,
1847 MREMAP_MAYMOVE);
1848
1849 if (cp == (char *)-1) return 0;
1850
1851 p = (mchunkptr)(cp + offset);
1852
1853 assert(aligned_OK(chunk2mem(p)));
1854
1855 assert((p->prev_size == offset));
1856 set_head(p, (new_size - offset)|IS_MMAPPED);
1857
1858 mmapped_mem -= size + offset;
1859 mmapped_mem += new_size;
1860 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1861 max_mmapped_mem = mmapped_mem;
8a4b65b4 1862#ifdef NO_THREADS
f65fd747
UD
1863 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1864 max_total_mem = mmapped_mem + sbrked_mem;
8a4b65b4 1865#endif
f65fd747
UD
1866 return p;
1867}
1868
1869#endif /* HAVE_MREMAP */
1870
1871#endif /* HAVE_MMAP */
1872
1873\f
1874
1875/* Managing heaps and arenas (for concurrent threads) */
1876
1877#ifndef NO_THREADS
1878
1879/* Create a new heap. size is automatically rounded up to a multiple
1880 of the page size. */
1881
1882static heap_info *
dfd2257a 1883internal_function
f65fd747
UD
1884#if __STD_C
1885new_heap(size_t size)
1886#else
1887new_heap(size) size_t size;
1888#endif
1889{
1890 size_t page_mask = malloc_getpagesize - 1;
1891 char *p1, *p2;
1892 unsigned long ul;
1893 heap_info *h;
1894
7799b7b3 1895 if(size+top_pad < HEAP_MIN_SIZE)
f65fd747 1896 size = HEAP_MIN_SIZE;
7799b7b3
UD
1897 else if(size+top_pad <= HEAP_MAX_SIZE)
1898 size += top_pad;
1899 else if(size > HEAP_MAX_SIZE)
f65fd747 1900 return 0;
7799b7b3
UD
1901 else
1902 size = HEAP_MAX_SIZE;
1903 size = (size + page_mask) & ~page_mask;
1904
f65fd747 1905 p1 = (char *)MMAP(HEAP_MAX_SIZE<<1, PROT_NONE);
0413b54c 1906 if(p1 == MAP_FAILED)
f65fd747
UD
1907 return 0;
1908 p2 = (char *)(((unsigned long)p1 + HEAP_MAX_SIZE) & ~(HEAP_MAX_SIZE-1));
1909 ul = p2 - p1;
1910 munmap(p1, ul);
1911 munmap(p2 + HEAP_MAX_SIZE, HEAP_MAX_SIZE - ul);
1912 if(mprotect(p2, size, PROT_READ|PROT_WRITE) != 0) {
1913 munmap(p2, HEAP_MAX_SIZE);
1914 return 0;
1915 }
1916 h = (heap_info *)p2;
1917 h->size = size;
1918 THREAD_STAT(stat_n_heaps++);
1919 return h;
1920}
1921
1922/* Grow or shrink a heap. size is automatically rounded up to a
8a4b65b4 1923 multiple of the page size if it is positive. */
f65fd747
UD
1924
1925static int
1926#if __STD_C
1927grow_heap(heap_info *h, long diff)
1928#else
1929grow_heap(h, diff) heap_info *h; long diff;
1930#endif
1931{
1932 size_t page_mask = malloc_getpagesize - 1;
1933 long new_size;
1934
1935 if(diff >= 0) {
1936 diff = (diff + page_mask) & ~page_mask;
1937 new_size = (long)h->size + diff;
1938 if(new_size > HEAP_MAX_SIZE)
1939 return -1;
1940 if(mprotect((char *)h + h->size, diff, PROT_READ|PROT_WRITE) != 0)
1941 return -2;
1942 } else {
1943 new_size = (long)h->size + diff;
8a4b65b4 1944 if(new_size < (long)sizeof(*h))
f65fd747
UD
1945 return -1;
1946 if(mprotect((char *)h + new_size, -diff, PROT_NONE) != 0)
1947 return -2;
1948 }
1949 h->size = new_size;
1950 return 0;
1951}
1952
8a4b65b4
UD
1953/* Delete a heap. */
1954
1955#define delete_heap(heap) munmap((char*)(heap), HEAP_MAX_SIZE)
1956
f65fd747
UD
1957/* arena_get() acquires an arena and locks the corresponding mutex.
1958 First, try the one last locked successfully by this thread. (This
1959 is the common case and handled with a macro for speed.) Then, loop
7e3be507
UD
1960 once over the circularly linked list of arenas. If no arena is
1961 readily available, create a new one. */
f65fd747
UD
1962
1963#define arena_get(ptr, size) do { \
1964 Void_t *vptr = NULL; \
1965 ptr = (arena *)tsd_getspecific(arena_key, vptr); \
1966 if(ptr && !mutex_trylock(&ptr->mutex)) { \
8a4b65b4 1967 THREAD_STAT(++(ptr->stat_lock_direct)); \
7e3be507 1968 } else \
f65fd747 1969 ptr = arena_get2(ptr, (size)); \
f65fd747
UD
1970} while(0)
1971
1972static arena *
dfd2257a 1973internal_function
f65fd747
UD
1974#if __STD_C
1975arena_get2(arena *a_tsd, size_t size)
1976#else
1977arena_get2(a_tsd, size) arena *a_tsd; size_t size;
1978#endif
1979{
1980 arena *a;
1981 heap_info *h;
1982 char *ptr;
1983 int i;
1984 unsigned long misalign;
1985
7e3be507
UD
1986 if(!a_tsd)
1987 a = a_tsd = &main_arena;
1988 else {
1989 a = a_tsd->next;
1990 if(!a) {
1991 /* This can only happen while initializing the new arena. */
1992 (void)mutex_lock(&main_arena.mutex);
1993 THREAD_STAT(++(main_arena.stat_lock_wait));
1994 return &main_arena;
f65fd747 1995 }
8a4b65b4 1996 }
7e3be507
UD
1997
1998 /* Check the global, circularly linked list for available arenas. */
1999 do {
2000 if(!mutex_trylock(&a->mutex)) {
2001 THREAD_STAT(++(a->stat_lock_loop));
2002 tsd_setspecific(arena_key, (Void_t *)a);
2003 return a;
2004 }
2005 a = a->next;
2006 } while(a != a_tsd);
f65fd747
UD
2007
2008 /* Nothing immediately available, so generate a new arena. */
2009 h = new_heap(size + (sizeof(*h) + sizeof(*a) + MALLOC_ALIGNMENT));
2010 if(!h)
2011 return 0;
2012 a = h->ar_ptr = (arena *)(h+1);
2013 for(i=0; i<NAV; i++)
2014 init_bin(a, i);
7e3be507 2015 a->next = NULL;
8a4b65b4 2016 a->size = h->size;
7e3be507 2017 tsd_setspecific(arena_key, (Void_t *)a);
f65fd747
UD
2018 mutex_init(&a->mutex);
2019 i = mutex_lock(&a->mutex); /* remember result */
2020
2021 /* Set up the top chunk, with proper alignment. */
2022 ptr = (char *)(a + 1);
2023 misalign = (unsigned long)chunk2mem(ptr) & MALLOC_ALIGN_MASK;
2024 if (misalign > 0)
2025 ptr += MALLOC_ALIGNMENT - misalign;
2026 top(a) = (mchunkptr)ptr;
8a4b65b4 2027 set_head(top(a), (((char*)h + h->size) - ptr) | PREV_INUSE);
f65fd747
UD
2028
2029 /* Add the new arena to the list. */
2030 (void)mutex_lock(&list_lock);
2031 a->next = main_arena.next;
2032 main_arena.next = a;
f65fd747
UD
2033 (void)mutex_unlock(&list_lock);
2034
2035 if(i) /* locking failed; keep arena for further attempts later */
2036 return 0;
2037
8a4b65b4 2038 THREAD_STAT(++(a->stat_lock_loop));
f65fd747
UD
2039 return a;
2040}
2041
2042/* find the heap and corresponding arena for a given ptr */
2043
2044#define heap_for_ptr(ptr) \
2045 ((heap_info *)((unsigned long)(ptr) & ~(HEAP_MAX_SIZE-1)))
2046#define arena_for_ptr(ptr) \
2047 (((mchunkptr)(ptr) < top(&main_arena) && (char *)(ptr) >= sbrk_base) ? \
2048 &main_arena : heap_for_ptr(ptr)->ar_ptr)
2049
2050#else /* defined(NO_THREADS) */
2051
2052/* Without concurrent threads, there is only one arena. */
2053
2054#define arena_get(ptr, sz) (ptr = &main_arena)
2055#define arena_for_ptr(ptr) (&main_arena)
2056
2057#endif /* !defined(NO_THREADS) */
2058
2059\f
2060
2061/*
2062 Debugging support
2063*/
2064
2065#if MALLOC_DEBUG
2066
2067
2068/*
2069 These routines make a number of assertions about the states
2070 of data structures that should be true at all times. If any
2071 are not true, it's very likely that a user program has somehow
2072 trashed memory. (It's also possible that there is a coding error
2073 in malloc. In which case, please report it!)
2074*/
2075
2076#if __STD_C
2077static void do_check_chunk(arena *ar_ptr, mchunkptr p)
2078#else
2079static void do_check_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
2080#endif
2081{
2082 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
2083
2084 /* No checkable chunk is mmapped */
2085 assert(!chunk_is_mmapped(p));
2086
2087#ifndef NO_THREADS
2088 if(ar_ptr != &main_arena) {
2089 heap_info *heap = heap_for_ptr(p);
2090 assert(heap->ar_ptr == ar_ptr);
2091 assert((char *)p + sz <= (char *)heap + heap->size);
2092 return;
2093 }
2094#endif
2095
2096 /* Check for legal address ... */
2097 assert((char*)p >= sbrk_base);
2098 if (p != top(ar_ptr))
2099 assert((char*)p + sz <= (char*)top(ar_ptr));
2100 else
2101 assert((char*)p + sz <= sbrk_base + sbrked_mem);
2102
2103}
2104
2105
2106#if __STD_C
2107static void do_check_free_chunk(arena *ar_ptr, mchunkptr p)
2108#else
2109static void do_check_free_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
2110#endif
2111{
2112 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
2113 mchunkptr next = chunk_at_offset(p, sz);
2114
2115 do_check_chunk(ar_ptr, p);
2116
2117 /* Check whether it claims to be free ... */
2118 assert(!inuse(p));
2119
8a4b65b4
UD
2120 /* Must have OK size and fields */
2121 assert((long)sz >= (long)MINSIZE);
2122 assert((sz & MALLOC_ALIGN_MASK) == 0);
2123 assert(aligned_OK(chunk2mem(p)));
2124 /* ... matching footer field */
2125 assert(next->prev_size == sz);
2126 /* ... and is fully consolidated */
2127 assert(prev_inuse(p));
2128 assert (next == top(ar_ptr) || inuse(next));
2129
2130 /* ... and has minimally sane links */
2131 assert(p->fd->bk == p);
2132 assert(p->bk->fd == p);
f65fd747
UD
2133}
2134
2135#if __STD_C
2136static void do_check_inuse_chunk(arena *ar_ptr, mchunkptr p)
2137#else
2138static void do_check_inuse_chunk(ar_ptr, p) arena *ar_ptr; mchunkptr p;
2139#endif
2140{
2141 mchunkptr next = next_chunk(p);
2142 do_check_chunk(ar_ptr, p);
2143
2144 /* Check whether it claims to be in use ... */
2145 assert(inuse(p));
2146
8a4b65b4
UD
2147 /* ... whether its size is OK (it might be a fencepost) ... */
2148 assert(chunksize(p) >= MINSIZE || next->size == (0|PREV_INUSE));
2149
f65fd747
UD
2150 /* ... and is surrounded by OK chunks.
2151 Since more things can be checked with free chunks than inuse ones,
2152 if an inuse chunk borders them and debug is on, it's worth doing them.
2153 */
2154 if (!prev_inuse(p))
2155 {
2156 mchunkptr prv = prev_chunk(p);
2157 assert(next_chunk(prv) == p);
2158 do_check_free_chunk(ar_ptr, prv);
2159 }
2160 if (next == top(ar_ptr))
2161 {
2162 assert(prev_inuse(next));
2163 assert(chunksize(next) >= MINSIZE);
2164 }
2165 else if (!inuse(next))
2166 do_check_free_chunk(ar_ptr, next);
2167
2168}
2169
2170#if __STD_C
2171static void do_check_malloced_chunk(arena *ar_ptr,
2172 mchunkptr p, INTERNAL_SIZE_T s)
2173#else
2174static void do_check_malloced_chunk(ar_ptr, p, s)
2175arena *ar_ptr; mchunkptr p; INTERNAL_SIZE_T s;
2176#endif
2177{
2178 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
2179 long room = sz - s;
2180
2181 do_check_inuse_chunk(ar_ptr, p);
2182
2183 /* Legal size ... */
2184 assert((long)sz >= (long)MINSIZE);
2185 assert((sz & MALLOC_ALIGN_MASK) == 0);
2186 assert(room >= 0);
2187 assert(room < (long)MINSIZE);
2188
2189 /* ... and alignment */
2190 assert(aligned_OK(chunk2mem(p)));
2191
2192
2193 /* ... and was allocated at front of an available chunk */
2194 assert(prev_inuse(p));
2195
2196}
2197
2198
2199#define check_free_chunk(A,P) do_check_free_chunk(A,P)
2200#define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2201#define check_chunk(A,P) do_check_chunk(A,P)
2202#define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2203#else
2204#define check_free_chunk(A,P)
2205#define check_inuse_chunk(A,P)
2206#define check_chunk(A,P)
2207#define check_malloced_chunk(A,P,N)
2208#endif
2209
2210\f
2211
2212/*
2213 Macro-based internal utilities
2214*/
2215
2216
2217/*
2218 Linking chunks in bin lists.
2219 Call these only with variables, not arbitrary expressions, as arguments.
2220*/
2221
2222/*
2223 Place chunk p of size s in its bin, in size order,
2224 putting it ahead of others of same size.
2225*/
2226
2227
2228#define frontlink(A, P, S, IDX, BK, FD) \
2229{ \
2230 if (S < MAX_SMALLBIN_SIZE) \
2231 { \
2232 IDX = smallbin_index(S); \
2233 mark_binblock(A, IDX); \
2234 BK = bin_at(A, IDX); \
2235 FD = BK->fd; \
2236 P->bk = BK; \
2237 P->fd = FD; \
2238 FD->bk = BK->fd = P; \
2239 } \
2240 else \
2241 { \
2242 IDX = bin_index(S); \
2243 BK = bin_at(A, IDX); \
2244 FD = BK->fd; \
2245 if (FD == BK) mark_binblock(A, IDX); \
2246 else \
2247 { \
2248 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
2249 BK = FD->bk; \
2250 } \
2251 P->bk = BK; \
2252 P->fd = FD; \
2253 FD->bk = BK->fd = P; \
2254 } \
2255}
2256
2257
2258/* take a chunk off a list */
2259
2260#define unlink(P, BK, FD) \
2261{ \
2262 BK = P->bk; \
2263 FD = P->fd; \
2264 FD->bk = BK; \
2265 BK->fd = FD; \
2266} \
2267
2268/* Place p as the last remainder */
2269
2270#define link_last_remainder(A, P) \
2271{ \
2272 last_remainder(A)->fd = last_remainder(A)->bk = P; \
2273 P->fd = P->bk = last_remainder(A); \
2274}
2275
2276/* Clear the last_remainder bin */
2277
2278#define clear_last_remainder(A) \
2279 (last_remainder(A)->fd = last_remainder(A)->bk = last_remainder(A))
2280
2281
2282
2283\f
2284
2285/*
2286 Extend the top-most chunk by obtaining memory from system.
2287 Main interface to sbrk (but see also malloc_trim).
2288*/
2289
dfd2257a
UD
2290#if defined __GNUC__ && __GNUC__ >= 2
2291/* This function is called only from one place, inline it. */
2292inline
2293#endif
af6f3906 2294static void
dfd2257a 2295internal_function
f65fd747 2296#if __STD_C
dfd2257a 2297malloc_extend_top(arena *ar_ptr, INTERNAL_SIZE_T nb)
f65fd747 2298#else
dfd2257a 2299malloc_extend_top(ar_ptr, nb) arena *ar_ptr; INTERNAL_SIZE_T nb;
f65fd747
UD
2300#endif
2301{
2302 unsigned long pagesz = malloc_getpagesize;
2303 mchunkptr old_top = top(ar_ptr); /* Record state of old top */
2304 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2305 INTERNAL_SIZE_T top_size; /* new size of top chunk */
2306
2307#ifndef NO_THREADS
2308 if(ar_ptr == &main_arena) {
2309#endif
2310
2311 char* brk; /* return value from sbrk */
2312 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
2313 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
2314 char* new_brk; /* return of 2nd sbrk call */
2315 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
2316
2317 /* Pad request with top_pad plus minimal overhead */
2318 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
2319
2320 /* If not the first time through, round to preserve page boundary */
2321 /* Otherwise, we need to correct to a page size below anyway. */
2322 /* (We also correct below if an intervening foreign sbrk call.) */
2323
2324 if (sbrk_base != (char*)(-1))
2325 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2326
2327 brk = (char*)(MORECORE (sbrk_size));
2328
2329 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2330 if (brk == (char*)(MORECORE_FAILURE) ||
2331 (brk < old_end && old_top != initial_top(&main_arena)))
2332 return;
2333
dfd2257a 2334#if defined _LIBC || defined MALLOC_HOOKS
1228ed5c
UD
2335 /* Call the `morecore' hook if necessary. */
2336 if (__after_morecore_hook)
2337 (*__after_morecore_hook) ();
7799b7b3 2338#endif
1228ed5c 2339
f65fd747
UD
2340 sbrked_mem += sbrk_size;
2341
2342 if (brk == old_end) { /* can just add bytes to current top */
2343 top_size = sbrk_size + old_top_size;
2344 set_head(old_top, top_size | PREV_INUSE);
2345 old_top = 0; /* don't free below */
2346 } else {
2347 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
2348 sbrk_base = brk;
2349 else
2350 /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
2351 sbrked_mem += brk - (char*)old_end;
2352
2353 /* Guarantee alignment of first new chunk made from this space */
2354 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2355 if (front_misalign > 0) {
2356 correction = (MALLOC_ALIGNMENT) - front_misalign;
2357 brk += correction;
2358 } else
2359 correction = 0;
2360
2361 /* Guarantee the next brk will be at a page boundary */
2362 correction += pagesz - ((unsigned long)(brk + sbrk_size) & (pagesz - 1));
2363
2364 /* Allocate correction */
2365 new_brk = (char*)(MORECORE (correction));
2366 if (new_brk == (char*)(MORECORE_FAILURE)) return;
2367
dfd2257a 2368#if defined _LIBC || defined MALLOC_HOOKS
1228ed5c
UD
2369 /* Call the `morecore' hook if necessary. */
2370 if (__after_morecore_hook)
7799b7b3
UD
2371 (*__after_morecore_hook) ();
2372#endif
1228ed5c 2373
f65fd747
UD
2374 sbrked_mem += correction;
2375
2376 top(&main_arena) = (mchunkptr)brk;
2377 top_size = new_brk - brk + correction;
2378 set_head(top(&main_arena), top_size | PREV_INUSE);
2379
2380 if (old_top == initial_top(&main_arena))
2381 old_top = 0; /* don't free below */
2382 }
2383
2384 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2385 max_sbrked_mem = sbrked_mem;
8a4b65b4 2386#ifdef NO_THREADS
f65fd747
UD
2387 if ((unsigned long)(mmapped_mem + sbrked_mem) >
2388 (unsigned long)max_total_mem)
2389 max_total_mem = mmapped_mem + sbrked_mem;
8a4b65b4 2390#endif
f65fd747
UD
2391
2392#ifndef NO_THREADS
2393 } else { /* ar_ptr != &main_arena */
8a4b65b4
UD
2394 heap_info *old_heap, *heap;
2395 size_t old_heap_size;
f65fd747
UD
2396
2397 if(old_top_size < MINSIZE) /* this should never happen */
2398 return;
2399
2400 /* First try to extend the current heap. */
2401 if(MINSIZE + nb <= old_top_size)
2402 return;
8a4b65b4
UD
2403 old_heap = heap_for_ptr(old_top);
2404 old_heap_size = old_heap->size;
2405 if(grow_heap(old_heap, MINSIZE + nb - old_top_size) == 0) {
2406 ar_ptr->size += old_heap->size - old_heap_size;
2407 top_size = ((char *)old_heap + old_heap->size) - (char *)old_top;
f65fd747
UD
2408 set_head(old_top, top_size | PREV_INUSE);
2409 return;
2410 }
2411
2412 /* A new heap must be created. */
7799b7b3 2413 heap = new_heap(nb + (MINSIZE + sizeof(*heap)));
f65fd747
UD
2414 if(!heap)
2415 return;
2416 heap->ar_ptr = ar_ptr;
8a4b65b4
UD
2417 heap->prev = old_heap;
2418 ar_ptr->size += heap->size;
f65fd747
UD
2419
2420 /* Set up the new top, so we can safely use chunk_free() below. */
2421 top(ar_ptr) = chunk_at_offset(heap, sizeof(*heap));
2422 top_size = heap->size - sizeof(*heap);
2423 set_head(top(ar_ptr), top_size | PREV_INUSE);
2424 }
2425#endif /* !defined(NO_THREADS) */
2426
2427 /* We always land on a page boundary */
2428 assert(((unsigned long)((char*)top(ar_ptr) + top_size) & (pagesz-1)) == 0);
2429
2430 /* Setup fencepost and free the old top chunk. */
2431 if(old_top) {
8a4b65b4
UD
2432 /* The fencepost takes at least MINSIZE bytes, because it might
2433 become the top chunk again later. Note that a footer is set
2434 up, too, although the chunk is marked in use. */
2435 old_top_size -= MINSIZE;
2436 set_head(chunk_at_offset(old_top, old_top_size + 2*SIZE_SZ), 0|PREV_INUSE);
2437 if(old_top_size >= MINSIZE) {
2438 set_head(chunk_at_offset(old_top, old_top_size), (2*SIZE_SZ)|PREV_INUSE);
2439 set_foot(chunk_at_offset(old_top, old_top_size), (2*SIZE_SZ));
f65fd747
UD
2440 set_head_size(old_top, old_top_size);
2441 chunk_free(ar_ptr, old_top);
2442 } else {
8a4b65b4
UD
2443 set_head(old_top, (old_top_size + 2*SIZE_SZ)|PREV_INUSE);
2444 set_foot(old_top, (old_top_size + 2*SIZE_SZ));
f65fd747
UD
2445 }
2446 }
2447}
2448
2449
2450\f
2451
2452/* Main public routines */
2453
2454
2455/*
8a4b65b4 2456 Malloc Algorithm:
f65fd747
UD
2457
2458 The requested size is first converted into a usable form, `nb'.
2459 This currently means to add 4 bytes overhead plus possibly more to
2460 obtain 8-byte alignment and/or to obtain a size of at least
8a4b65b4
UD
2461 MINSIZE (currently 16, 24, or 32 bytes), the smallest allocatable
2462 size. (All fits are considered `exact' if they are within MINSIZE
2463 bytes.)
f65fd747
UD
2464
2465 From there, the first successful of the following steps is taken:
2466
2467 1. The bin corresponding to the request size is scanned, and if
2468 a chunk of exactly the right size is found, it is taken.
2469
2470 2. The most recently remaindered chunk is used if it is big
2471 enough. This is a form of (roving) first fit, used only in
2472 the absence of exact fits. Runs of consecutive requests use
2473 the remainder of the chunk used for the previous such request
2474 whenever possible. This limited use of a first-fit style
2475 allocation strategy tends to give contiguous chunks
2476 coextensive lifetimes, which improves locality and can reduce
2477 fragmentation in the long run.
2478
2479 3. Other bins are scanned in increasing size order, using a
2480 chunk big enough to fulfill the request, and splitting off
2481 any remainder. This search is strictly by best-fit; i.e.,
2482 the smallest (with ties going to approximately the least
2483 recently used) chunk that fits is selected.
2484
2485 4. If large enough, the chunk bordering the end of memory
2486 (`top') is split off. (This use of `top' is in accord with
2487 the best-fit search rule. In effect, `top' is treated as
2488 larger (and thus less well fitting) than any other available
2489 chunk since it can be extended to be as large as necessary
2490 (up to system limitations).
2491
2492 5. If the request size meets the mmap threshold and the
2493 system supports mmap, and there are few enough currently
2494 allocated mmapped regions, and a call to mmap succeeds,
2495 the request is allocated via direct memory mapping.
2496
2497 6. Otherwise, the top of memory is extended by
2498 obtaining more space from the system (normally using sbrk,
2499 but definable to anything else via the MORECORE macro).
2500 Memory is gathered from the system (in system page-sized
2501 units) in a way that allows chunks obtained across different
2502 sbrk calls to be consolidated, but does not require
2503 contiguous memory. Thus, it should be safe to intersperse
2504 mallocs with other sbrk calls.
2505
2506
2507 All allocations are made from the the `lowest' part of any found
2508 chunk. (The implementation invariant is that prev_inuse is
2509 always true of any allocated chunk; i.e., that each allocated
2510 chunk borders either a previously allocated and still in-use chunk,
2511 or the base of its memory arena.)
2512
2513*/
2514
2515#if __STD_C
2516Void_t* mALLOc(size_t bytes)
2517#else
2518Void_t* mALLOc(bytes) size_t bytes;
2519#endif
2520{
2521 arena *ar_ptr;
10dc2a90 2522 INTERNAL_SIZE_T nb; /* padded request size */
f65fd747
UD
2523 mchunkptr victim;
2524
dfd2257a 2525#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90
UD
2526 if (__malloc_hook != NULL) {
2527 Void_t* result;
2528
dfd2257a 2529#if defined __GNUC__ && __GNUC__ >= 2
a2b08ee5
UD
2530 result = (*__malloc_hook)(bytes, __builtin_return_address (0));
2531#else
dfd2257a 2532 result = (*__malloc_hook)(bytes, NULL);
a2b08ee5 2533#endif
10dc2a90
UD
2534 return result;
2535 }
2536#endif
2537
2538 nb = request2size(bytes);
7799b7b3 2539 arena_get(ar_ptr, nb);
f65fd747
UD
2540 if(!ar_ptr)
2541 return 0;
2542 victim = chunk_alloc(ar_ptr, nb);
2543 (void)mutex_unlock(&ar_ptr->mutex);
7799b7b3
UD
2544 if(!victim) {
2545 /* Maybe the failure is due to running out of mmapped areas. */
2546 if(ar_ptr != &main_arena) {
2547 (void)mutex_lock(&main_arena.mutex);
2548 victim = chunk_alloc(&main_arena, nb);
2549 (void)mutex_unlock(&main_arena.mutex);
2550 }
2551 if(!victim) return 0;
2552 }
2553 return chunk2mem(victim);
f65fd747
UD
2554}
2555
2556static mchunkptr
dfd2257a 2557internal_function
f65fd747
UD
2558#if __STD_C
2559chunk_alloc(arena *ar_ptr, INTERNAL_SIZE_T nb)
2560#else
2561chunk_alloc(ar_ptr, nb) arena *ar_ptr; INTERNAL_SIZE_T nb;
2562#endif
2563{
2564 mchunkptr victim; /* inspected/selected chunk */
2565 INTERNAL_SIZE_T victim_size; /* its size */
2566 int idx; /* index for bin traversal */
2567 mbinptr bin; /* associated bin */
2568 mchunkptr remainder; /* remainder from a split */
2569 long remainder_size; /* its size */
2570 int remainder_index; /* its bin index */
2571 unsigned long block; /* block traverser bit */
2572 int startidx; /* first bin of a traversed block */
2573 mchunkptr fwd; /* misc temp for linking */
2574 mchunkptr bck; /* misc temp for linking */
2575 mbinptr q; /* misc temp */
2576
2577
2578 /* Check for exact match in a bin */
2579
2580 if (is_small_request(nb)) /* Faster version for small requests */
2581 {
2582 idx = smallbin_index(nb);
2583
2584 /* No traversal or size check necessary for small bins. */
2585
2586 q = bin_at(ar_ptr, idx);
2587 victim = last(q);
2588
2589 /* Also scan the next one, since it would have a remainder < MINSIZE */
2590 if (victim == q)
2591 {
2592 q = next_bin(q);
2593 victim = last(q);
2594 }
2595 if (victim != q)
2596 {
2597 victim_size = chunksize(victim);
2598 unlink(victim, bck, fwd);
2599 set_inuse_bit_at_offset(victim, victim_size);
2600 check_malloced_chunk(ar_ptr, victim, nb);
2601 return victim;
2602 }
2603
2604 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2605
2606 }
2607 else
2608 {
2609 idx = bin_index(nb);
2610 bin = bin_at(ar_ptr, idx);
2611
2612 for (victim = last(bin); victim != bin; victim = victim->bk)
2613 {
2614 victim_size = chunksize(victim);
2615 remainder_size = victim_size - nb;
2616
2617 if (remainder_size >= (long)MINSIZE) /* too big */
2618 {
2619 --idx; /* adjust to rescan below after checking last remainder */
2620 break;
2621 }
2622
2623 else if (remainder_size >= 0) /* exact fit */
2624 {
2625 unlink(victim, bck, fwd);
2626 set_inuse_bit_at_offset(victim, victim_size);
2627 check_malloced_chunk(ar_ptr, victim, nb);
2628 return victim;
2629 }
2630 }
2631
2632 ++idx;
2633
2634 }
2635
2636 /* Try to use the last split-off remainder */
2637
2638 if ( (victim = last_remainder(ar_ptr)->fd) != last_remainder(ar_ptr))
2639 {
2640 victim_size = chunksize(victim);
2641 remainder_size = victim_size - nb;
2642
2643 if (remainder_size >= (long)MINSIZE) /* re-split */
2644 {
2645 remainder = chunk_at_offset(victim, nb);
2646 set_head(victim, nb | PREV_INUSE);
2647 link_last_remainder(ar_ptr, remainder);
2648 set_head(remainder, remainder_size | PREV_INUSE);
2649 set_foot(remainder, remainder_size);
2650 check_malloced_chunk(ar_ptr, victim, nb);
2651 return victim;
2652 }
2653
2654 clear_last_remainder(ar_ptr);
2655
2656 if (remainder_size >= 0) /* exhaust */
2657 {
2658 set_inuse_bit_at_offset(victim, victim_size);
2659 check_malloced_chunk(ar_ptr, victim, nb);
2660 return victim;
2661 }
2662
2663 /* Else place in bin */
2664
2665 frontlink(ar_ptr, victim, victim_size, remainder_index, bck, fwd);
2666 }
2667
2668 /*
2669 If there are any possibly nonempty big-enough blocks,
2670 search for best fitting chunk by scanning bins in blockwidth units.
2671 */
2672
2673 if ( (block = idx2binblock(idx)) <= binblocks(ar_ptr))
2674 {
2675
2676 /* Get to the first marked block */
2677
2678 if ( (block & binblocks(ar_ptr)) == 0)
2679 {
2680 /* force to an even block boundary */
2681 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2682 block <<= 1;
2683 while ((block & binblocks(ar_ptr)) == 0)
2684 {
2685 idx += BINBLOCKWIDTH;
2686 block <<= 1;
2687 }
2688 }
2689
2690 /* For each possibly nonempty block ... */
2691 for (;;)
2692 {
2693 startidx = idx; /* (track incomplete blocks) */
2694 q = bin = bin_at(ar_ptr, idx);
2695
2696 /* For each bin in this block ... */
2697 do
2698 {
2699 /* Find and use first big enough chunk ... */
2700
2701 for (victim = last(bin); victim != bin; victim = victim->bk)
2702 {
2703 victim_size = chunksize(victim);
2704 remainder_size = victim_size - nb;
2705
2706 if (remainder_size >= (long)MINSIZE) /* split */
2707 {
2708 remainder = chunk_at_offset(victim, nb);
2709 set_head(victim, nb | PREV_INUSE);
2710 unlink(victim, bck, fwd);
2711 link_last_remainder(ar_ptr, remainder);
2712 set_head(remainder, remainder_size | PREV_INUSE);
2713 set_foot(remainder, remainder_size);
2714 check_malloced_chunk(ar_ptr, victim, nb);
2715 return victim;
2716 }
2717
2718 else if (remainder_size >= 0) /* take */
2719 {
2720 set_inuse_bit_at_offset(victim, victim_size);
2721 unlink(victim, bck, fwd);
2722 check_malloced_chunk(ar_ptr, victim, nb);
2723 return victim;
2724 }
2725
2726 }
2727
2728 bin = next_bin(bin);
2729
2730 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2731
2732 /* Clear out the block bit. */
2733
2734 do /* Possibly backtrack to try to clear a partial block */
2735 {
2736 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2737 {
2738 binblocks(ar_ptr) &= ~block;
2739 break;
2740 }
2741 --startidx;
2742 q = prev_bin(q);
2743 } while (first(q) == q);
2744
2745 /* Get to the next possibly nonempty block */
2746
2747 if ( (block <<= 1) <= binblocks(ar_ptr) && (block != 0) )
2748 {
2749 while ((block & binblocks(ar_ptr)) == 0)
2750 {
2751 idx += BINBLOCKWIDTH;
2752 block <<= 1;
2753 }
2754 }
2755 else
2756 break;
2757 }
2758 }
2759
2760
2761 /* Try to use top chunk */
2762
2763 /* Require that there be a remainder, ensuring top always exists */
2764 if ( (remainder_size = chunksize(top(ar_ptr)) - nb) < (long)MINSIZE)
2765 {
2766
2767#if HAVE_MMAP
2768 /* If big and would otherwise need to extend, try to use mmap instead */
2769 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2770 (victim = mmap_chunk(nb)) != 0)
2771 return victim;
2772#endif
2773
2774 /* Try to extend */
2775 malloc_extend_top(ar_ptr, nb);
2776 if ((remainder_size = chunksize(top(ar_ptr)) - nb) < (long)MINSIZE)
2777 return 0; /* propagate failure */
2778 }
2779
2780 victim = top(ar_ptr);
2781 set_head(victim, nb | PREV_INUSE);
2782 top(ar_ptr) = chunk_at_offset(victim, nb);
2783 set_head(top(ar_ptr), remainder_size | PREV_INUSE);
2784 check_malloced_chunk(ar_ptr, victim, nb);
2785 return victim;
2786
2787}
2788
2789
2790\f
2791
2792/*
2793
2794 free() algorithm :
2795
2796 cases:
2797
2798 1. free(0) has no effect.
2799
2800 2. If the chunk was allocated via mmap, it is released via munmap().
2801
2802 3. If a returned chunk borders the current high end of memory,
2803 it is consolidated into the top, and if the total unused
2804 topmost memory exceeds the trim threshold, malloc_trim is
2805 called.
2806
2807 4. Other chunks are consolidated as they arrive, and
2808 placed in corresponding bins. (This includes the case of
2809 consolidating with the current `last_remainder').
2810
2811*/
2812
2813
2814#if __STD_C
2815void fREe(Void_t* mem)
2816#else
2817void fREe(mem) Void_t* mem;
2818#endif
2819{
2820 arena *ar_ptr;
2821 mchunkptr p; /* chunk corresponding to mem */
2822
dfd2257a 2823#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90 2824 if (__free_hook != NULL) {
dfd2257a 2825#if defined __GNUC__ && __GNUC__ >= 2
a2b08ee5
UD
2826 (*__free_hook)(mem, __builtin_return_address (0));
2827#else
dfd2257a 2828 (*__free_hook)(mem, NULL);
a2b08ee5 2829#endif
10dc2a90
UD
2830 return;
2831 }
2832#endif
2833
f65fd747
UD
2834 if (mem == 0) /* free(0) has no effect */
2835 return;
2836
2837 p = mem2chunk(mem);
2838
2839#if HAVE_MMAP
2840 if (chunk_is_mmapped(p)) /* release mmapped memory. */
2841 {
2842 munmap_chunk(p);
2843 return;
2844 }
2845#endif
2846
2847 ar_ptr = arena_for_ptr(p);
8a4b65b4
UD
2848#if THREAD_STATS
2849 if(!mutex_trylock(&ar_ptr->mutex))
2850 ++(ar_ptr->stat_lock_direct);
2851 else {
2852 (void)mutex_lock(&ar_ptr->mutex);
2853 ++(ar_ptr->stat_lock_wait);
2854 }
2855#else
f65fd747 2856 (void)mutex_lock(&ar_ptr->mutex);
8a4b65b4 2857#endif
f65fd747
UD
2858 chunk_free(ar_ptr, p);
2859 (void)mutex_unlock(&ar_ptr->mutex);
2860}
2861
2862static void
dfd2257a 2863internal_function
f65fd747
UD
2864#if __STD_C
2865chunk_free(arena *ar_ptr, mchunkptr p)
2866#else
2867chunk_free(ar_ptr, p) arena *ar_ptr; mchunkptr p;
2868#endif
2869{
2870 INTERNAL_SIZE_T hd = p->size; /* its head field */
2871 INTERNAL_SIZE_T sz; /* its size */
2872 int idx; /* its bin index */
2873 mchunkptr next; /* next contiguous chunk */
2874 INTERNAL_SIZE_T nextsz; /* its size */
2875 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2876 mchunkptr bck; /* misc temp for linking */
2877 mchunkptr fwd; /* misc temp for linking */
2878 int islr; /* track whether merging with last_remainder */
2879
2880 check_inuse_chunk(ar_ptr, p);
2881
2882 sz = hd & ~PREV_INUSE;
2883 next = chunk_at_offset(p, sz);
2884 nextsz = chunksize(next);
2885
2886 if (next == top(ar_ptr)) /* merge with top */
2887 {
2888 sz += nextsz;
2889
2890 if (!(hd & PREV_INUSE)) /* consolidate backward */
2891 {
2892 prevsz = p->prev_size;
2893 p = chunk_at_offset(p, -prevsz);
2894 sz += prevsz;
2895 unlink(p, bck, fwd);
2896 }
2897
2898 set_head(p, sz | PREV_INUSE);
2899 top(ar_ptr) = p;
8a4b65b4
UD
2900
2901#ifndef NO_THREADS
2902 if(ar_ptr == &main_arena) {
2903#endif
2904 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2905 main_trim(top_pad);
2906#ifndef NO_THREADS
2907 } else {
2908 heap_info *heap = heap_for_ptr(p);
2909
2910 assert(heap->ar_ptr == ar_ptr);
2911
2912 /* Try to get rid of completely empty heaps, if possible. */
2913 if((unsigned long)(sz) >= (unsigned long)trim_threshold ||
2914 p == chunk_at_offset(heap, sizeof(*heap)))
2915 heap_trim(heap, top_pad);
2916 }
2917#endif
f65fd747
UD
2918 return;
2919 }
2920
f65fd747
UD
2921 islr = 0;
2922
2923 if (!(hd & PREV_INUSE)) /* consolidate backward */
2924 {
2925 prevsz = p->prev_size;
2926 p = chunk_at_offset(p, -prevsz);
2927 sz += prevsz;
2928
2929 if (p->fd == last_remainder(ar_ptr)) /* keep as last_remainder */
2930 islr = 1;
2931 else
2932 unlink(p, bck, fwd);
2933 }
2934
2935 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
2936 {
2937 sz += nextsz;
2938
2939 if (!islr && next->fd == last_remainder(ar_ptr))
2940 /* re-insert last_remainder */
2941 {
2942 islr = 1;
2943 link_last_remainder(ar_ptr, p);
2944 }
2945 else
2946 unlink(next, bck, fwd);
7799b7b3
UD
2947
2948 next = chunk_at_offset(p, sz);
f65fd747 2949 }
7799b7b3
UD
2950 else
2951 set_head(next, nextsz); /* clear inuse bit */
f65fd747
UD
2952
2953 set_head(p, sz | PREV_INUSE);
7799b7b3 2954 next->prev_size = sz;
f65fd747
UD
2955 if (!islr)
2956 frontlink(ar_ptr, p, sz, idx, bck, fwd);
7799b7b3
UD
2957
2958#ifndef NO_THREADS
2959 /* Check whether the heap containing top can go away now. */
2960 if(next->size < MINSIZE &&
2961 (unsigned long)sz > trim_threshold &&
2962 ar_ptr != &main_arena) { /* fencepost */
2963 heap_info* heap = heap_for_ptr(top(ar_ptr));
2964
2965 if(top(ar_ptr) == chunk_at_offset(heap, sizeof(*heap)) &&
2966 heap->prev == heap_for_ptr(p))
2967 heap_trim(heap, top_pad);
2968 }
2969#endif
f65fd747
UD
2970}
2971
2972
2973\f
2974
2975
2976/*
2977
2978 Realloc algorithm:
2979
2980 Chunks that were obtained via mmap cannot be extended or shrunk
2981 unless HAVE_MREMAP is defined, in which case mremap is used.
2982 Otherwise, if their reallocation is for additional space, they are
2983 copied. If for less, they are just left alone.
2984
2985 Otherwise, if the reallocation is for additional space, and the
2986 chunk can be extended, it is, else a malloc-copy-free sequence is
2987 taken. There are several different ways that a chunk could be
2988 extended. All are tried:
2989
2990 * Extending forward into following adjacent free chunk.
2991 * Shifting backwards, joining preceding adjacent space
2992 * Both shifting backwards and extending forward.
2993 * Extending into newly sbrked space
2994
2995 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2996 size argument of zero (re)allocates a minimum-sized chunk.
2997
2998 If the reallocation is for less space, and the new request is for
2999 a `small' (<512 bytes) size, then the newly unused space is lopped
3000 off and freed.
3001
3002 The old unix realloc convention of allowing the last-free'd chunk
3003 to be used as an argument to realloc is no longer supported.
3004 I don't know of any programs still relying on this feature,
3005 and allowing it would also allow too many other incorrect
3006 usages of realloc to be sensible.
3007
3008
3009*/
3010
3011
3012#if __STD_C
3013Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
3014#else
3015Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
3016#endif
3017{
3018 arena *ar_ptr;
3019 INTERNAL_SIZE_T nb; /* padded request size */
3020
3021 mchunkptr oldp; /* chunk corresponding to oldmem */
3022 INTERNAL_SIZE_T oldsize; /* its size */
3023
3024 mchunkptr newp; /* chunk to return */
f65fd747 3025
dfd2257a 3026#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90
UD
3027 if (__realloc_hook != NULL) {
3028 Void_t* result;
f65fd747 3029
dfd2257a 3030#if defined __GNUC__ && __GNUC__ >= 2
a2b08ee5
UD
3031 result = (*__realloc_hook)(oldmem, bytes, __builtin_return_address (0));
3032#else
dfd2257a 3033 result = (*__realloc_hook)(oldmem, bytes, NULL);
a2b08ee5 3034#endif
10dc2a90
UD
3035 return result;
3036 }
3037#endif
f65fd747
UD
3038
3039#ifdef REALLOC_ZERO_BYTES_FREES
3040 if (bytes == 0) { fREe(oldmem); return 0; }
3041#endif
3042
f65fd747
UD
3043 /* realloc of null is supposed to be same as malloc */
3044 if (oldmem == 0) return mALLOc(bytes);
3045
10dc2a90
UD
3046 oldp = mem2chunk(oldmem);
3047 oldsize = chunksize(oldp);
f65fd747
UD
3048
3049 nb = request2size(bytes);
3050
3051#if HAVE_MMAP
3052 if (chunk_is_mmapped(oldp))
3053 {
10dc2a90
UD
3054 Void_t* newmem;
3055
f65fd747
UD
3056#if HAVE_MREMAP
3057 newp = mremap_chunk(oldp, nb);
3058 if(newp) return chunk2mem(newp);
3059#endif
3060 /* Note the extra SIZE_SZ overhead. */
3061 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
3062 /* Must alloc, copy, free. */
3063 newmem = mALLOc(bytes);
3064 if (newmem == 0) return 0; /* propagate failure */
3065 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
3066 munmap_chunk(oldp);
3067 return newmem;
3068 }
3069#endif
3070
3071 ar_ptr = arena_for_ptr(oldp);
8a4b65b4
UD
3072#if THREAD_STATS
3073 if(!mutex_trylock(&ar_ptr->mutex))
3074 ++(ar_ptr->stat_lock_direct);
3075 else {
3076 (void)mutex_lock(&ar_ptr->mutex);
3077 ++(ar_ptr->stat_lock_wait);
3078 }
3079#else
f65fd747 3080 (void)mutex_lock(&ar_ptr->mutex);
8a4b65b4
UD
3081#endif
3082
1228ed5c 3083#ifndef NO_THREADS
f65fd747
UD
3084 /* As in malloc(), remember this arena for the next allocation. */
3085 tsd_setspecific(arena_key, (Void_t *)ar_ptr);
1228ed5c 3086#endif
f65fd747 3087
10dc2a90
UD
3088 newp = chunk_realloc(ar_ptr, oldp, oldsize, nb);
3089
3090 (void)mutex_unlock(&ar_ptr->mutex);
3091 return newp ? chunk2mem(newp) : NULL;
3092}
3093
3094static mchunkptr
dfd2257a 3095internal_function
10dc2a90
UD
3096#if __STD_C
3097chunk_realloc(arena* ar_ptr, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
7e3be507 3098 INTERNAL_SIZE_T nb)
10dc2a90
UD
3099#else
3100chunk_realloc(ar_ptr, oldp, oldsize, nb)
3101arena* ar_ptr; mchunkptr oldp; INTERNAL_SIZE_T oldsize, nb;
3102#endif
3103{
3104 mchunkptr newp = oldp; /* chunk to return */
3105 INTERNAL_SIZE_T newsize = oldsize; /* its size */
3106
3107 mchunkptr next; /* next contiguous chunk after oldp */
3108 INTERNAL_SIZE_T nextsize; /* its size */
3109
3110 mchunkptr prev; /* previous contiguous chunk before oldp */
3111 INTERNAL_SIZE_T prevsize; /* its size */
3112
3113 mchunkptr remainder; /* holds split off extra space from newp */
3114 INTERNAL_SIZE_T remainder_size; /* its size */
3115
3116 mchunkptr bck; /* misc temp for linking */
3117 mchunkptr fwd; /* misc temp for linking */
3118
f65fd747
UD
3119 check_inuse_chunk(ar_ptr, oldp);
3120
3121 if ((long)(oldsize) < (long)(nb))
3122 {
3123
3124 /* Try expanding forward */
3125
3126 next = chunk_at_offset(oldp, oldsize);
3127 if (next == top(ar_ptr) || !inuse(next))
3128 {
3129 nextsize = chunksize(next);
3130
3131 /* Forward into top only if a remainder */
3132 if (next == top(ar_ptr))
3133 {
3134 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
3135 {
3136 newsize += nextsize;
3137 top(ar_ptr) = chunk_at_offset(oldp, nb);
3138 set_head(top(ar_ptr), (newsize - nb) | PREV_INUSE);
3139 set_head_size(oldp, nb);
10dc2a90 3140 return oldp;
f65fd747
UD
3141 }
3142 }
3143
3144 /* Forward into next chunk */
3145 else if (((long)(nextsize + newsize) >= (long)(nb)))
3146 {
3147 unlink(next, bck, fwd);
3148 newsize += nextsize;
3149 goto split;
3150 }
3151 }
3152 else
3153 {
3154 next = 0;
3155 nextsize = 0;
3156 }
3157
3158 /* Try shifting backwards. */
3159
3160 if (!prev_inuse(oldp))
3161 {
3162 prev = prev_chunk(oldp);
3163 prevsize = chunksize(prev);
3164
3165 /* try forward + backward first to save a later consolidation */
3166
3167 if (next != 0)
3168 {
3169 /* into top */
3170 if (next == top(ar_ptr))
3171 {
3172 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
3173 {
3174 unlink(prev, bck, fwd);
3175 newp = prev;
3176 newsize += prevsize + nextsize;
10dc2a90 3177 MALLOC_COPY(chunk2mem(newp), chunk2mem(oldp), oldsize - SIZE_SZ);
f65fd747
UD
3178 top(ar_ptr) = chunk_at_offset(newp, nb);
3179 set_head(top(ar_ptr), (newsize - nb) | PREV_INUSE);
3180 set_head_size(newp, nb);
10dc2a90 3181 return newp;
f65fd747
UD
3182 }
3183 }
3184
3185 /* into next chunk */
3186 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
3187 {
3188 unlink(next, bck, fwd);
3189 unlink(prev, bck, fwd);
3190 newp = prev;
3191 newsize += nextsize + prevsize;
10dc2a90 3192 MALLOC_COPY(chunk2mem(newp), chunk2mem(oldp), oldsize - SIZE_SZ);
f65fd747
UD
3193 goto split;
3194 }
3195 }
3196
3197 /* backward only */
3198 if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
3199 {
3200 unlink(prev, bck, fwd);
3201 newp = prev;
3202 newsize += prevsize;
10dc2a90 3203 MALLOC_COPY(chunk2mem(newp), chunk2mem(oldp), oldsize - SIZE_SZ);
f65fd747
UD
3204 goto split;
3205 }
3206 }
3207
3208 /* Must allocate */
3209
3210 newp = chunk_alloc (ar_ptr, nb);
3211
7799b7b3
UD
3212 if (newp == 0) {
3213 /* Maybe the failure is due to running out of mmapped areas. */
3214 if (ar_ptr != &main_arena) {
3215 (void)mutex_lock(&main_arena.mutex);
3216 newp = chunk_alloc(&main_arena, nb);
3217 (void)mutex_unlock(&main_arena.mutex);
3218 }
3219 if (newp == 0) /* propagate failure */
3220 return 0;
3221 }
f65fd747
UD
3222
3223 /* Avoid copy if newp is next chunk after oldp. */
3224 /* (This can only happen when new chunk is sbrk'ed.) */
3225
3226 if ( newp == next_chunk(oldp))
3227 {
3228 newsize += chunksize(newp);
3229 newp = oldp;
3230 goto split;
3231 }
3232
3233 /* Otherwise copy, free, and exit */
10dc2a90 3234 MALLOC_COPY(chunk2mem(newp), chunk2mem(oldp), oldsize - SIZE_SZ);
f65fd747 3235 chunk_free(ar_ptr, oldp);
10dc2a90 3236 return newp;
f65fd747
UD
3237 }
3238
3239
3240 split: /* split off extra room in old or expanded chunk */
3241
3242 if (newsize - nb >= MINSIZE) /* split off remainder */
3243 {
3244 remainder = chunk_at_offset(newp, nb);
3245 remainder_size = newsize - nb;
3246 set_head_size(newp, nb);
3247 set_head(remainder, remainder_size | PREV_INUSE);
3248 set_inuse_bit_at_offset(remainder, remainder_size);
3249 chunk_free(ar_ptr, remainder);
3250 }
3251 else
3252 {
3253 set_head_size(newp, newsize);
3254 set_inuse_bit_at_offset(newp, newsize);
3255 }
3256
3257 check_inuse_chunk(ar_ptr, newp);
10dc2a90 3258 return newp;
f65fd747
UD
3259}
3260
3261
3262\f
3263
3264/*
3265
3266 memalign algorithm:
3267
3268 memalign requests more than enough space from malloc, finds a spot
3269 within that chunk that meets the alignment request, and then
3270 possibly frees the leading and trailing space.
3271
3272 The alignment argument must be a power of two. This property is not
3273 checked by memalign, so misuse may result in random runtime errors.
3274
3275 8-byte alignment is guaranteed by normal malloc calls, so don't
3276 bother calling memalign with an argument of 8 or less.
3277
3278 Overreliance on memalign is a sure way to fragment space.
3279
3280*/
3281
3282
3283#if __STD_C
3284Void_t* mEMALIGn(size_t alignment, size_t bytes)
3285#else
3286Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
3287#endif
3288{
3289 arena *ar_ptr;
3290 INTERNAL_SIZE_T nb; /* padded request size */
10dc2a90
UD
3291 mchunkptr p;
3292
dfd2257a 3293#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90
UD
3294 if (__memalign_hook != NULL) {
3295 Void_t* result;
3296
dfd2257a 3297#if defined __GNUC__ && __GNUC__ >= 2
a2b08ee5
UD
3298 result = (*__memalign_hook)(alignment, bytes,
3299 __builtin_return_address (0));
3300#else
dfd2257a 3301 result = (*__memalign_hook)(alignment, bytes, NULL);
a2b08ee5 3302#endif
10dc2a90
UD
3303 return result;
3304 }
3305#endif
f65fd747
UD
3306
3307 /* If need less alignment than we give anyway, just relay to malloc */
3308
3309 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
3310
3311 /* Otherwise, ensure that it is at least a minimum chunk size */
3312
3313 if (alignment < MINSIZE) alignment = MINSIZE;
3314
f65fd747
UD
3315 nb = request2size(bytes);
3316 arena_get(ar_ptr, nb + alignment + MINSIZE);
3317 if(!ar_ptr)
3318 return 0;
10dc2a90
UD
3319 p = chunk_align(ar_ptr, nb, alignment);
3320 (void)mutex_unlock(&ar_ptr->mutex);
7799b7b3
UD
3321 if(!p) {
3322 /* Maybe the failure is due to running out of mmapped areas. */
3323 if(ar_ptr != &main_arena) {
3324 (void)mutex_lock(&main_arena.mutex);
3325 p = chunk_align(&main_arena, nb, alignment);
3326 (void)mutex_unlock(&main_arena.mutex);
3327 }
3328 if(!p) return 0;
3329 }
3330 return chunk2mem(p);
10dc2a90 3331}
f65fd747 3332
10dc2a90 3333static mchunkptr
dfd2257a 3334internal_function
10dc2a90
UD
3335#if __STD_C
3336chunk_align(arena* ar_ptr, INTERNAL_SIZE_T nb, size_t alignment)
3337#else
3338chunk_align(ar_ptr, nb, alignment)
3339arena* ar_ptr; INTERNAL_SIZE_T nb; size_t alignment;
3340#endif
3341{
3342 char* m; /* memory returned by malloc call */
3343 mchunkptr p; /* corresponding chunk */
3344 char* brk; /* alignment point within p */
3345 mchunkptr newp; /* chunk to return */
3346 INTERNAL_SIZE_T newsize; /* its size */
3347 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
3348 mchunkptr remainder; /* spare room at end to split off */
3349 long remainder_size; /* its size */
3350
3351 /* Call chunk_alloc with worst case padding to hit alignment. */
3352 p = chunk_alloc(ar_ptr, nb + alignment + MINSIZE);
3353 if (p == 0)
f65fd747 3354 return 0; /* propagate failure */
f65fd747
UD
3355
3356 m = chunk2mem(p);
3357
3358 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
3359 {
3360#if HAVE_MMAP
3361 if(chunk_is_mmapped(p)) {
10dc2a90 3362 return p; /* nothing more to do */
f65fd747
UD
3363 }
3364#endif
3365 }
3366 else /* misaligned */
3367 {
3368 /*
3369 Find an aligned spot inside chunk.
3370 Since we need to give back leading space in a chunk of at
3371 least MINSIZE, if the first calculation places us at
3372 a spot with less than MINSIZE leader, we can move to the
3373 next aligned spot -- we've allocated enough total room so that
3374 this is always possible.
3375 */
3376
3377 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -alignment);
10dc2a90 3378 if ((long)(brk - (char*)(p)) < (long)MINSIZE) brk += alignment;
f65fd747
UD
3379
3380 newp = (mchunkptr)brk;
3381 leadsize = brk - (char*)(p);
3382 newsize = chunksize(p) - leadsize;
3383
3384#if HAVE_MMAP
3385 if(chunk_is_mmapped(p))
3386 {
3387 newp->prev_size = p->prev_size + leadsize;
3388 set_head(newp, newsize|IS_MMAPPED);
10dc2a90 3389 return newp;
f65fd747
UD
3390 }
3391#endif
3392
3393 /* give back leader, use the rest */
3394
3395 set_head(newp, newsize | PREV_INUSE);
3396 set_inuse_bit_at_offset(newp, newsize);
3397 set_head_size(p, leadsize);
3398 chunk_free(ar_ptr, p);
3399 p = newp;
3400
3401 assert (newsize>=nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
3402 }
3403
3404 /* Also give back spare room at the end */
3405
3406 remainder_size = chunksize(p) - nb;
3407
3408 if (remainder_size >= (long)MINSIZE)
3409 {
3410 remainder = chunk_at_offset(p, nb);
3411 set_head(remainder, remainder_size | PREV_INUSE);
3412 set_head_size(p, nb);
3413 chunk_free(ar_ptr, remainder);
3414 }
3415
3416 check_inuse_chunk(ar_ptr, p);
10dc2a90 3417 return p;
f65fd747
UD
3418}
3419
3420\f
3421
3422
3423/*
3424 valloc just invokes memalign with alignment argument equal
3425 to the page size of the system (or as near to this as can
3426 be figured out from all the includes/defines above.)
3427*/
3428
3429#if __STD_C
3430Void_t* vALLOc(size_t bytes)
3431#else
3432Void_t* vALLOc(bytes) size_t bytes;
3433#endif
3434{
3435 return mEMALIGn (malloc_getpagesize, bytes);
3436}
3437
3438/*
3439 pvalloc just invokes valloc for the nearest pagesize
3440 that will accommodate request
3441*/
3442
3443
3444#if __STD_C
3445Void_t* pvALLOc(size_t bytes)
3446#else
3447Void_t* pvALLOc(bytes) size_t bytes;
3448#endif
3449{
3450 size_t pagesize = malloc_getpagesize;
3451 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
3452}
3453
3454/*
3455
10dc2a90 3456 calloc calls chunk_alloc, then zeroes out the allocated chunk.
f65fd747
UD
3457
3458*/
3459
3460#if __STD_C
3461Void_t* cALLOc(size_t n, size_t elem_size)
3462#else
3463Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
3464#endif
3465{
3466 arena *ar_ptr;
3467 mchunkptr p, oldtop;
10dc2a90 3468 INTERNAL_SIZE_T sz, csz, oldtopsize;
f65fd747
UD
3469 Void_t* mem;
3470
dfd2257a 3471#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90
UD
3472 if (__malloc_hook != NULL) {
3473 sz = n * elem_size;
dfd2257a 3474#if defined __GNUC__ && __GNUC__ >= 2
a2b08ee5
UD
3475 mem = (*__malloc_hook)(sz, __builtin_return_address (0));
3476#else
dfd2257a 3477 mem = (*__malloc_hook)(sz, NULL);
a2b08ee5 3478#endif
831372e7
UD
3479 if(mem == 0)
3480 return 0;
a2b08ee5 3481#ifdef HAVE_MEMSET
c131718c 3482 return memset(mem, 0, sz);
10dc2a90 3483#else
831372e7 3484 while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
10dc2a90 3485 return mem;
c131718c 3486#endif
10dc2a90
UD
3487 }
3488#endif
f65fd747 3489
10dc2a90 3490 sz = request2size(n * elem_size);
f65fd747
UD
3491 arena_get(ar_ptr, sz);
3492 if(!ar_ptr)
3493 return 0;
3494
3495 /* check if expand_top called, in which case don't need to clear */
3496#if MORECORE_CLEARS
3497 oldtop = top(ar_ptr);
3498 oldtopsize = chunksize(top(ar_ptr));
3499#endif
3500 p = chunk_alloc (ar_ptr, sz);
3501
3502 /* Only clearing follows, so we can unlock early. */
3503 (void)mutex_unlock(&ar_ptr->mutex);
3504
7799b7b3
UD
3505 if (p == 0) {
3506 /* Maybe the failure is due to running out of mmapped areas. */
3507 if(ar_ptr != &main_arena) {
3508 (void)mutex_lock(&main_arena.mutex);
3509 p = chunk_alloc(&main_arena, sz);
3510 (void)mutex_unlock(&main_arena.mutex);
3511 }
3512 if (p == 0) return 0;
3513 }
3514 mem = chunk2mem(p);
f65fd747 3515
7799b7b3 3516 /* Two optional cases in which clearing not necessary */
f65fd747
UD
3517
3518#if HAVE_MMAP
7799b7b3 3519 if (chunk_is_mmapped(p)) return mem;
f65fd747
UD
3520#endif
3521
7799b7b3 3522 csz = chunksize(p);
f65fd747
UD
3523
3524#if MORECORE_CLEARS
7799b7b3
UD
3525 if (p == oldtop && csz > oldtopsize) {
3526 /* clear only the bytes from non-freshly-sbrked memory */
3527 csz = oldtopsize;
3528 }
f65fd747
UD
3529#endif
3530
7799b7b3
UD
3531 MALLOC_ZERO(mem, csz - SIZE_SZ);
3532 return mem;
f65fd747
UD
3533}
3534
3535/*
3536
3537 cfree just calls free. It is needed/defined on some systems
3538 that pair it with calloc, presumably for odd historical reasons.
3539
3540*/
3541
3542#if !defined(_LIBC)
3543#if __STD_C
3544void cfree(Void_t *mem)
3545#else
3546void cfree(mem) Void_t *mem;
3547#endif
3548{
3549 free(mem);
3550}
3551#endif
3552
3553\f
3554
3555/*
3556
3557 Malloc_trim gives memory back to the system (via negative
3558 arguments to sbrk) if there is unused memory at the `high' end of
3559 the malloc pool. You can call this after freeing large blocks of
3560 memory to potentially reduce the system-level memory requirements
3561 of a program. However, it cannot guarantee to reduce memory. Under
3562 some allocation patterns, some large free blocks of memory will be
3563 locked between two used chunks, so they cannot be given back to
3564 the system.
3565
3566 The `pad' argument to malloc_trim represents the amount of free
3567 trailing space to leave untrimmed. If this argument is zero,
3568 only the minimum amount of memory to maintain internal data
3569 structures will be left (one page or less). Non-zero arguments
3570 can be supplied to maintain enough trailing space to service
3571 future expected allocations without having to re-obtain memory
3572 from the system.
3573
3574 Malloc_trim returns 1 if it actually released any memory, else 0.
3575
3576*/
3577
3578#if __STD_C
7e3be507 3579int mALLOC_TRIm(size_t pad)
f65fd747 3580#else
7e3be507 3581int mALLOC_TRIm(pad) size_t pad;
f65fd747
UD
3582#endif
3583{
3584 int res;
3585
3586 (void)mutex_lock(&main_arena.mutex);
8a4b65b4 3587 res = main_trim(pad);
f65fd747
UD
3588 (void)mutex_unlock(&main_arena.mutex);
3589 return res;
3590}
3591
8a4b65b4
UD
3592/* Trim the main arena. */
3593
f65fd747 3594static int
dfd2257a 3595internal_function
f65fd747 3596#if __STD_C
8a4b65b4 3597main_trim(size_t pad)
f65fd747 3598#else
8a4b65b4 3599main_trim(pad) size_t pad;
f65fd747
UD
3600#endif
3601{
3602 mchunkptr top_chunk; /* The current top chunk */
3603 long top_size; /* Amount of top-most memory */
3604 long extra; /* Amount to release */
3605 char* current_brk; /* address returned by pre-check sbrk call */
3606 char* new_brk; /* address returned by negative sbrk call */
3607
3608 unsigned long pagesz = malloc_getpagesize;
3609
8a4b65b4 3610 top_chunk = top(&main_arena);
f65fd747
UD
3611 top_size = chunksize(top_chunk);
3612 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3613
3614 if (extra < (long)pagesz) /* Not enough memory to release */
3615 return 0;
3616
8a4b65b4
UD
3617 /* Test to make sure no one else called sbrk */
3618 current_brk = (char*)(MORECORE (0));
3619 if (current_brk != (char*)(top_chunk) + top_size)
3620 return 0; /* Apparently we don't own memory; must fail */
f65fd747 3621
8a4b65b4 3622 new_brk = (char*)(MORECORE (-extra));
f65fd747 3623
dfd2257a 3624#if defined _LIBC || defined MALLOC_HOOKS
1228ed5c
UD
3625 /* Call the `morecore' hook if necessary. */
3626 if (__after_morecore_hook)
3627 (*__after_morecore_hook) ();
7799b7b3 3628#endif
1228ed5c 3629
8a4b65b4
UD
3630 if (new_brk == (char*)(MORECORE_FAILURE)) { /* sbrk failed? */
3631 /* Try to figure out what we have */
3632 current_brk = (char*)(MORECORE (0));
3633 top_size = current_brk - (char*)top_chunk;
3634 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3635 {
3636 sbrked_mem = current_brk - sbrk_base;
3637 set_head(top_chunk, top_size | PREV_INUSE);
f65fd747 3638 }
8a4b65b4
UD
3639 check_chunk(&main_arena, top_chunk);
3640 return 0;
3641 }
3642 sbrked_mem -= extra;
3643
3644 /* Success. Adjust top accordingly. */
3645 set_head(top_chunk, (top_size - extra) | PREV_INUSE);
3646 check_chunk(&main_arena, top_chunk);
3647 return 1;
3648}
f65fd747
UD
3649
3650#ifndef NO_THREADS
8a4b65b4
UD
3651
3652static int
dfd2257a 3653internal_function
8a4b65b4
UD
3654#if __STD_C
3655heap_trim(heap_info *heap, size_t pad)
3656#else
3657heap_trim(heap, pad) heap_info *heap; size_t pad;
f65fd747 3658#endif
8a4b65b4
UD
3659{
3660 unsigned long pagesz = malloc_getpagesize;
3661 arena *ar_ptr = heap->ar_ptr;
3662 mchunkptr top_chunk = top(ar_ptr), p, bck, fwd;
3663 heap_info *prev_heap;
3664 long new_size, top_size, extra;
3665
3666 /* Can this heap go away completely ? */
3667 while(top_chunk == chunk_at_offset(heap, sizeof(*heap))) {
3668 prev_heap = heap->prev;
3669 p = chunk_at_offset(prev_heap, prev_heap->size - (MINSIZE-2*SIZE_SZ));
3670 assert(p->size == (0|PREV_INUSE)); /* must be fencepost */
3671 p = prev_chunk(p);
3672 new_size = chunksize(p) + (MINSIZE-2*SIZE_SZ);
10dc2a90 3673 assert(new_size>0 && new_size<(long)(2*MINSIZE));
8a4b65b4
UD
3674 if(!prev_inuse(p))
3675 new_size += p->prev_size;
3676 assert(new_size>0 && new_size<HEAP_MAX_SIZE);
3677 if(new_size + (HEAP_MAX_SIZE - prev_heap->size) < pad + MINSIZE + pagesz)
3678 break;
3679 ar_ptr->size -= heap->size;
3680 delete_heap(heap);
3681 heap = prev_heap;
3682 if(!prev_inuse(p)) { /* consolidate backward */
3683 p = prev_chunk(p);
3684 unlink(p, bck, fwd);
3685 }
3686 assert(((unsigned long)((char*)p + new_size) & (pagesz-1)) == 0);
3687 assert( ((char*)p + new_size) == ((char*)heap + heap->size) );
3688 top(ar_ptr) = top_chunk = p;
3689 set_head(top_chunk, new_size | PREV_INUSE);
3690 check_chunk(ar_ptr, top_chunk);
3691 }
3692 top_size = chunksize(top_chunk);
3693 extra = ((top_size - pad - MINSIZE + (pagesz-1))/pagesz - 1) * pagesz;
3694 if(extra < (long)pagesz)
3695 return 0;
3696 /* Try to shrink. */
3697 if(grow_heap(heap, -extra) != 0)
3698 return 0;
3699 ar_ptr->size -= extra;
f65fd747
UD
3700
3701 /* Success. Adjust top accordingly. */
3702 set_head(top_chunk, (top_size - extra) | PREV_INUSE);
3703 check_chunk(ar_ptr, top_chunk);
3704 return 1;
3705}
3706
8a4b65b4
UD
3707#endif
3708
f65fd747
UD
3709\f
3710
3711/*
3712 malloc_usable_size:
3713
3714 This routine tells you how many bytes you can actually use in an
3715 allocated chunk, which may be more than you requested (although
3716 often not). You can use this many bytes without worrying about
3717 overwriting other allocated objects. Not a particularly great
3718 programming practice, but still sometimes useful.
3719
3720*/
3721
3722#if __STD_C
7e3be507 3723size_t mALLOC_USABLE_SIZe(Void_t* mem)
f65fd747 3724#else
7e3be507 3725size_t mALLOC_USABLE_SIZe(mem) Void_t* mem;
f65fd747
UD
3726#endif
3727{
3728 mchunkptr p;
3729
3730 if (mem == 0)
3731 return 0;
3732 else
3733 {
3734 p = mem2chunk(mem);
3735 if(!chunk_is_mmapped(p))
3736 {
3737 if (!inuse(p)) return 0;
3738 check_inuse_chunk(arena_for_ptr(mem), p);
3739 return chunksize(p) - SIZE_SZ;
3740 }
3741 return chunksize(p) - 2*SIZE_SZ;
3742 }
3743}
3744
3745
3746\f
3747
8a4b65b4 3748/* Utility to update mallinfo for malloc_stats() and mallinfo() */
f65fd747 3749
8a4b65b4
UD
3750static void
3751#if __STD_C
3752malloc_update_mallinfo(arena *ar_ptr, struct mallinfo *mi)
3753#else
3754malloc_update_mallinfo(ar_ptr, mi) arena *ar_ptr; struct mallinfo *mi;
3755#endif
f65fd747 3756{
f65fd747
UD
3757 int i, navail;
3758 mbinptr b;
3759 mchunkptr p;
3760#if MALLOC_DEBUG
3761 mchunkptr q;
3762#endif
3763 INTERNAL_SIZE_T avail;
3764
f43ce637
UD
3765 /* Initialize the memory. */
3766 memset (mi, '\0', sizeof (struct mallinfo));
3767
f65fd747
UD
3768 (void)mutex_lock(&ar_ptr->mutex);
3769 avail = chunksize(top(ar_ptr));
3770 navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3771
3772 for (i = 1; i < NAV; ++i)
3773 {
3774 b = bin_at(ar_ptr, i);
3775 for (p = last(b); p != b; p = p->bk)
3776 {
3777#if MALLOC_DEBUG
3778 check_free_chunk(ar_ptr, p);
3779 for (q = next_chunk(p);
8a4b65b4 3780 q != top(ar_ptr) && inuse(q) && (long)chunksize(q) > 0;
f65fd747
UD
3781 q = next_chunk(q))
3782 check_inuse_chunk(ar_ptr, q);
3783#endif
3784 avail += chunksize(p);
3785 navail++;
3786 }
3787 }
3788
8a4b65b4
UD
3789 mi->arena = ar_ptr->size;
3790 mi->ordblks = navail;
3791 mi->uordblks = ar_ptr->size - avail;
3792 mi->fordblks = avail;
3793 mi->hblks = n_mmaps;
3794 mi->hblkhd = mmapped_mem;
3795 mi->keepcost = chunksize(top(ar_ptr));
f65fd747
UD
3796
3797 (void)mutex_unlock(&ar_ptr->mutex);
3798}
3799
8a4b65b4
UD
3800#if !defined(NO_THREADS) && MALLOC_DEBUG > 1
3801
3802/* Print the complete contents of a single heap to stderr. */
3803
3804static void
3805#if __STD_C
3806dump_heap(heap_info *heap)
3807#else
3808dump_heap(heap) heap_info *heap;
3809#endif
3810{
3811 char *ptr;
3812 mchunkptr p;
3813
3814 fprintf(stderr, "Heap %p, size %10lx:\n", heap, (long)heap->size);
3815 ptr = (heap->ar_ptr != (arena*)(heap+1)) ?
3816 (char*)(heap + 1) : (char*)(heap + 1) + sizeof(arena);
3817 p = (mchunkptr)(((unsigned long)ptr + MALLOC_ALIGN_MASK) &
3818 ~MALLOC_ALIGN_MASK);
3819 for(;;) {
3820 fprintf(stderr, "chunk %p size %10lx", p, (long)p->size);
3821 if(p == top(heap->ar_ptr)) {
3822 fprintf(stderr, " (top)\n");
3823 break;
3824 } else if(p->size == (0|PREV_INUSE)) {
3825 fprintf(stderr, " (fence)\n");
3826 break;
3827 }
3828 fprintf(stderr, "\n");
3829 p = next_chunk(p);
3830 }
3831}
3832
3833#endif
3834
f65fd747
UD
3835\f
3836
3837/*
3838
3839 malloc_stats:
3840
6d52618b 3841 For all arenas separately and in total, prints on stderr the
8a4b65b4 3842 amount of space obtained from the system, and the current number
f65fd747
UD
3843 of bytes allocated via malloc (or realloc, etc) but not yet
3844 freed. (Note that this is the number of bytes allocated, not the
3845 number requested. It will be larger than the number requested
8a4b65b4
UD
3846 because of alignment and bookkeeping overhead.) When not compiled
3847 for multiple threads, the maximum amount of allocated memory
3848 (which may be more than current if malloc_trim and/or munmap got
3849 called) is also reported. When using mmap(), prints the maximum
3850 number of simultaneous mmap regions used, too.
f65fd747
UD
3851
3852*/
3853
7e3be507 3854void mALLOC_STATs()
f65fd747 3855{
8a4b65b4
UD
3856 int i;
3857 arena *ar_ptr;
3858 struct mallinfo mi;
3859 unsigned int in_use_b = mmapped_mem, system_b = in_use_b;
3860#if THREAD_STATS
3861 long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
3862#endif
3863
7e3be507 3864 for(i=0, ar_ptr = &main_arena;; i++) {
8a4b65b4
UD
3865 malloc_update_mallinfo(ar_ptr, &mi);
3866 fprintf(stderr, "Arena %d:\n", i);
3867 fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
3868 fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
3869 system_b += mi.arena;
3870 in_use_b += mi.uordblks;
3871#if THREAD_STATS
3872 stat_lock_direct += ar_ptr->stat_lock_direct;
3873 stat_lock_loop += ar_ptr->stat_lock_loop;
3874 stat_lock_wait += ar_ptr->stat_lock_wait;
3875#endif
3876#if !defined(NO_THREADS) && MALLOC_DEBUG > 1
3877 if(ar_ptr != &main_arena) {
c131718c 3878 heap_info *heap;
7e3be507 3879 (void)mutex_lock(&ar_ptr->mutex);
c131718c 3880 heap = heap_for_ptr(top(ar_ptr));
8a4b65b4 3881 while(heap) { dump_heap(heap); heap = heap->prev; }
7e3be507 3882 (void)mutex_unlock(&ar_ptr->mutex);
8a4b65b4
UD
3883 }
3884#endif
7e3be507
UD
3885 ar_ptr = ar_ptr->next;
3886 if(ar_ptr == &main_arena) break;
8a4b65b4 3887 }
7799b7b3 3888#if HAVE_MMAP
8a4b65b4 3889 fprintf(stderr, "Total (incl. mmap):\n");
7799b7b3
UD
3890#else
3891 fprintf(stderr, "Total:\n");
3892#endif
8a4b65b4
UD
3893 fprintf(stderr, "system bytes = %10u\n", system_b);
3894 fprintf(stderr, "in use bytes = %10u\n", in_use_b);
3895#ifdef NO_THREADS
3896 fprintf(stderr, "max system bytes = %10u\n", (unsigned int)max_total_mem);
3897#endif
f65fd747 3898#if HAVE_MMAP
8a4b65b4 3899 fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)max_n_mmaps);
7799b7b3 3900 fprintf(stderr, "max mmap bytes = %10lu\n", max_mmapped_mem);
f65fd747
UD
3901#endif
3902#if THREAD_STATS
8a4b65b4 3903 fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
f65fd747
UD
3904 fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
3905 fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
8a4b65b4
UD
3906 fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
3907 fprintf(stderr, "locked total = %10ld\n",
3908 stat_lock_direct + stat_lock_loop + stat_lock_wait);
f65fd747
UD
3909#endif
3910}
3911
3912/*
3913 mallinfo returns a copy of updated current mallinfo.
8a4b65b4 3914 The information reported is for the arena last used by the thread.
f65fd747
UD
3915*/
3916
3917struct mallinfo mALLINFo()
3918{
8a4b65b4
UD
3919 struct mallinfo mi;
3920 Void_t *vptr = NULL;
3921
1228ed5c 3922#ifndef NO_THREADS
8a4b65b4 3923 tsd_getspecific(arena_key, vptr);
1228ed5c 3924#endif
8a4b65b4
UD
3925 malloc_update_mallinfo((vptr ? (arena*)vptr : &main_arena), &mi);
3926 return mi;
f65fd747
UD
3927}
3928
3929
3930\f
3931
3932/*
3933 mallopt:
3934
3935 mallopt is the general SVID/XPG interface to tunable parameters.
3936 The format is to provide a (parameter-number, parameter-value) pair.
3937 mallopt then sets the corresponding parameter to the argument
3938 value if it can (i.e., so long as the value is meaningful),
3939 and returns 1 if successful else 0.
3940
3941 See descriptions of tunable parameters above.
3942
3943*/
3944
3945#if __STD_C
3946int mALLOPt(int param_number, int value)
3947#else
3948int mALLOPt(param_number, value) int param_number; int value;
3949#endif
3950{
3951 switch(param_number)
3952 {
3953 case M_TRIM_THRESHOLD:
3954 trim_threshold = value; return 1;
3955 case M_TOP_PAD:
3956 top_pad = value; return 1;
3957 case M_MMAP_THRESHOLD:
3958#ifndef NO_THREADS
3959 /* Forbid setting the threshold too high. */
3960 if((unsigned long)value > HEAP_MAX_SIZE/2) return 0;
3961#endif
3962 mmap_threshold = value; return 1;
3963 case M_MMAP_MAX:
3964#if HAVE_MMAP
3965 n_mmaps_max = value; return 1;
3966#else
3967 if (value != 0) return 0; else n_mmaps_max = value; return 1;
3968#endif
10dc2a90
UD
3969 case M_CHECK_ACTION:
3970 check_action = value; return 1;
f65fd747
UD
3971
3972 default:
3973 return 0;
3974 }
3975}
10dc2a90 3976
10dc2a90
UD
3977\f
3978
2f6d1f1b
UD
3979/* Get/set state: malloc_get_state() records the current state of all
3980 malloc variables (_except_ for the actual heap contents and `hook'
3981 function pointers) in a system dependent, opaque data structure.
3982 This data structure is dynamically allocated and can be free()d
3983 after use. malloc_set_state() restores the state of all malloc
3984 variables to the previously obtained state. This is especially
3985 useful when using this malloc as part of a shared library, and when
3986 the heap contents are saved/restored via some other method. The
3987 primary example for this is GNU Emacs with its `dumping' procedure.
3988 `Hook' function pointers are never saved or restored by these
3989 functions. */
3990
3991#define MALLOC_STATE_MAGIC 0x444c4541l
3992#define MALLOC_STATE_VERSION (0*0x100l + 0l) /* major*0x100 + minor */
3993
3994struct malloc_state {
3995 long magic;
3996 long version;
3997 mbinptr av[NAV * 2 + 2];
3998 char* sbrk_base;
3999 int sbrked_mem_bytes;
4000 unsigned long trim_threshold;
4001 unsigned long top_pad;
4002 unsigned int n_mmaps_max;
4003 unsigned long mmap_threshold;
4004 int check_action;
4005 unsigned long max_sbrked_mem;
4006 unsigned long max_total_mem;
4007 unsigned int n_mmaps;
4008 unsigned int max_n_mmaps;
4009 unsigned long mmapped_mem;
4010 unsigned long max_mmapped_mem;
4011};
4012
4013Void_t*
4014mALLOC_GET_STATe()
4015{
4016 mchunkptr victim;
4017 struct malloc_state* ms;
4018 int i;
4019 mbinptr b;
4020
4021 ptmalloc_init();
4022 (void)mutex_lock(&main_arena.mutex);
4023 victim = chunk_alloc(&main_arena, request2size(sizeof(*ms)));
4024 if(!victim) {
4025 (void)mutex_unlock(&main_arena.mutex);
4026 return 0;
4027 }
4028 ms = (struct malloc_state*)chunk2mem(victim);
4029 ms->magic = MALLOC_STATE_MAGIC;
4030 ms->version = MALLOC_STATE_VERSION;
4031 ms->av[0] = main_arena.av[0];
4032 ms->av[1] = main_arena.av[1];
4033 for(i=0; i<NAV; i++) {
4034 b = bin_at(&main_arena, i);
4035 if(first(b) == b)
4036 ms->av[2*i+2] = ms->av[2*i+3] = 0; /* empty bin (or initial top) */
4037 else {
4038 ms->av[2*i+2] = first(b);
4039 ms->av[2*i+3] = last(b);
4040 }
4041 }
4042 ms->sbrk_base = sbrk_base;
4043 ms->sbrked_mem_bytes = sbrked_mem;
4044 ms->trim_threshold = trim_threshold;
4045 ms->top_pad = top_pad;
4046 ms->n_mmaps_max = n_mmaps_max;
4047 ms->mmap_threshold = mmap_threshold;
4048 ms->check_action = check_action;
4049 ms->max_sbrked_mem = max_sbrked_mem;
4050#ifdef NO_THREADS
4051 ms->max_total_mem = max_total_mem;
4052#else
4053 ms->max_total_mem = 0;
4054#endif
4055 ms->n_mmaps = n_mmaps;
4056 ms->max_n_mmaps = max_n_mmaps;
4057 ms->mmapped_mem = mmapped_mem;
4058 ms->max_mmapped_mem = max_mmapped_mem;
4059 (void)mutex_unlock(&main_arena.mutex);
4060 return (Void_t*)ms;
4061}
4062
4063int
4064#if __STD_C
4065mALLOC_SET_STATe(Void_t* msptr)
4066#else
4067mALLOC_SET_STATe(msptr) Void_t* msptr;
4068#endif
4069{
4070 struct malloc_state* ms = (struct malloc_state*)msptr;
4071 int i;
4072 mbinptr b;
4073
4074 ptmalloc_init();
4075 if(ms->magic != MALLOC_STATE_MAGIC) return -1;
4076 /* Must fail if the major version is too high. */
4077 if((ms->version & ~0xffl) > (MALLOC_STATE_VERSION & ~0xffl)) return -2;
4078 (void)mutex_lock(&main_arena.mutex);
4079 main_arena.av[0] = ms->av[0];
4080 main_arena.av[1] = ms->av[1];
4081 for(i=0; i<NAV; i++) {
4082 b = bin_at(&main_arena, i);
4083 if(ms->av[2*i+2] == 0)
4084 first(b) = last(b) = b;
4085 else {
4086 first(b) = ms->av[2*i+2];
4087 last(b) = ms->av[2*i+3];
4088 if(i > 0) {
4089 /* Make sure the links to the `av'-bins in the heap are correct. */
4090 first(b)->bk = b;
4091 last(b)->fd = b;
4092 }
4093 }
4094 }
4095 sbrk_base = ms->sbrk_base;
4096 sbrked_mem = ms->sbrked_mem_bytes;
4097 trim_threshold = ms->trim_threshold;
4098 top_pad = ms->top_pad;
4099 n_mmaps_max = ms->n_mmaps_max;
4100 mmap_threshold = ms->mmap_threshold;
4101 check_action = ms->check_action;
4102 max_sbrked_mem = ms->max_sbrked_mem;
4103#ifdef NO_THREADS
4104 max_total_mem = ms->max_total_mem;
4105#endif
4106 n_mmaps = ms->n_mmaps;
4107 max_n_mmaps = ms->max_n_mmaps;
4108 mmapped_mem = ms->mmapped_mem;
4109 max_mmapped_mem = ms->max_mmapped_mem;
4110 /* add version-dependent code here */
4111 (void)mutex_unlock(&main_arena.mutex);
4112 return 0;
4113}
4114
4115\f
4116
dfd2257a 4117#if defined _LIBC || defined MALLOC_HOOKS
10dc2a90
UD
4118
4119/* A simple, standard set of debugging hooks. Overhead is `only' one
4120 byte per chunk; still this will catch most cases of double frees or
4121 overruns. */
4122
c0e45674 4123#define MAGICBYTE(p) ( ( ((size_t)p >> 3) ^ ((size_t)p >> 11)) & 0xFF )
f65fd747 4124
10dc2a90
UD
4125/* Convert a pointer to be free()d or realloc()ed to a valid chunk
4126 pointer. If the provided pointer is not valid, return NULL. The
4127 goal here is to avoid crashes, unlike in the MALLOC_DEBUG code. */
4128
4129static mchunkptr
dfd2257a 4130internal_function
10dc2a90
UD
4131#if __STD_C
4132mem2chunk_check(Void_t* mem)
4133#else
4134mem2chunk_check(mem) Void_t* mem;
f65fd747 4135#endif
10dc2a90
UD
4136{
4137 mchunkptr p;
4138 INTERNAL_SIZE_T sz;
4139
4140 p = mem2chunk(mem);
4141 if(!aligned_OK(p)) return NULL;
4142 if( (char*)p>=sbrk_base && (char*)p<(sbrk_base+sbrked_mem) ) {
7e3be507 4143 /* Must be a chunk in conventional heap memory. */
10dc2a90
UD
4144 if(chunk_is_mmapped(p) ||
4145 ( (sz = chunksize(p)), ((char*)p + sz)>=(sbrk_base+sbrked_mem) ) ||
7e3be507
UD
4146 sz<MINSIZE || sz&MALLOC_ALIGN_MASK || !inuse(p) ||
4147 ( !prev_inuse(p) && (p->prev_size&MALLOC_ALIGN_MASK ||
4148 (long)prev_chunk(p)<(long)sbrk_base ||
4149 next_chunk(prev_chunk(p))!=p) ))
4150 return NULL;
4151 if(*((unsigned char*)p + sz + (SIZE_SZ-1)) != MAGICBYTE(p))
4152 return NULL;
4153 *((unsigned char*)p + sz + (SIZE_SZ-1)) ^= 0xFF;
10dc2a90
UD
4154 } else {
4155 unsigned long offset, page_mask = malloc_getpagesize-1;
4156
7e3be507 4157 /* mmap()ed chunks have MALLOC_ALIGNMENT or higher power-of-two
10dc2a90
UD
4158 alignment relative to the beginning of a page. Check this
4159 first. */
4160 offset = (unsigned long)mem & page_mask;
4161 if((offset!=MALLOC_ALIGNMENT && offset!=0 && offset!=0x10 &&
7e3be507
UD
4162 offset!=0x20 && offset!=0x40 && offset!=0x80 && offset!=0x100 &&
4163 offset!=0x200 && offset!=0x400 && offset!=0x800 && offset!=0x1000 &&
4164 offset<0x2000) ||
10dc2a90
UD
4165 !chunk_is_mmapped(p) || (p->size & PREV_INUSE) ||
4166 ( (((unsigned long)p - p->prev_size) & page_mask) != 0 ) ||
4167 ( (sz = chunksize(p)), ((p->prev_size + sz) & page_mask) != 0 ) )
4168 return NULL;
7e3be507
UD
4169 if(*((unsigned char*)p + sz - 1) != MAGICBYTE(p))
4170 return NULL;
4171 *((unsigned char*)p + sz - 1) ^= 0xFF;
10dc2a90
UD
4172 }
4173 return p;
4174}
4175
4176static Void_t*
4177#if __STD_C
dfd2257a 4178malloc_check(size_t sz, const Void_t *caller)
10dc2a90 4179#else
dfd2257a 4180malloc_check(sz, caller) size_t sz; const Void_t *caller;
a2b08ee5 4181#endif
10dc2a90
UD
4182{
4183 mchunkptr victim;
4184 INTERNAL_SIZE_T nb = request2size(sz + 1);
4185
4186 (void)mutex_lock(&main_arena.mutex);
4187 victim = chunk_alloc(&main_arena, nb);
4188 (void)mutex_unlock(&main_arena.mutex);
4189 if(!victim) return NULL;
4190 nb = chunksize(victim);
4191 if(chunk_is_mmapped(victim))
4192 --nb;
4193 else
4194 nb += SIZE_SZ - 1;
7e3be507 4195 *((unsigned char*)victim + nb) = MAGICBYTE(victim);
10dc2a90
UD
4196 return chunk2mem(victim);
4197}
4198
4199static void
4200#if __STD_C
dfd2257a 4201free_check(Void_t* mem, const Void_t *caller)
10dc2a90 4202#else
dfd2257a 4203free_check(mem, caller) Void_t* mem; const Void_t *caller;
a2b08ee5 4204#endif
10dc2a90
UD
4205{
4206 mchunkptr p;
4207
4208 if(!mem) return;
7e3be507 4209 (void)mutex_lock(&main_arena.mutex);
10dc2a90
UD
4210 p = mem2chunk_check(mem);
4211 if(!p) {
7e3be507 4212 (void)mutex_unlock(&main_arena.mutex);
10dc2a90
UD
4213 switch(check_action) {
4214 case 1:
4215 fprintf(stderr, "free(): invalid pointer %lx!\n", (long)(mem));
4216 break;
4217 case 2:
4218 abort();
4219 }
4220 return;
4221 }
4222#if HAVE_MMAP
4223 if (chunk_is_mmapped(p)) {
7e3be507 4224 (void)mutex_unlock(&main_arena.mutex);
10dc2a90
UD
4225 munmap_chunk(p);
4226 return;
4227 }
4228#endif
7e3be507
UD
4229#if 0 /* Erase freed memory. */
4230 memset(mem, 0, chunksize(p) - (SIZE_SZ+1));
4231#endif
10dc2a90
UD
4232 chunk_free(&main_arena, p);
4233 (void)mutex_unlock(&main_arena.mutex);
4234}
4235
4236static Void_t*
4237#if __STD_C
dfd2257a 4238realloc_check(Void_t* oldmem, size_t bytes, const Void_t *caller)
10dc2a90 4239#else
dfd2257a
UD
4240realloc_check(oldmem, bytes, caller)
4241 Void_t* oldmem; size_t bytes; const Void_t *caller;
a2b08ee5 4242#endif
10dc2a90
UD
4243{
4244 mchunkptr oldp, newp;
4245 INTERNAL_SIZE_T nb, oldsize;
4246
a2b08ee5 4247 if (oldmem == 0) return malloc_check(bytes, NULL);
7e3be507 4248 (void)mutex_lock(&main_arena.mutex);
10dc2a90
UD
4249 oldp = mem2chunk_check(oldmem);
4250 if(!oldp) {
7e3be507 4251 (void)mutex_unlock(&main_arena.mutex);
10dc2a90
UD
4252 switch(check_action) {
4253 case 1:
4254 fprintf(stderr, "realloc(): invalid pointer %lx!\n", (long)(oldmem));
4255 break;
4256 case 2:
4257 abort();
4258 }
a2b08ee5 4259 return malloc_check(bytes, NULL);
10dc2a90
UD
4260 }
4261 oldsize = chunksize(oldp);
4262
4263 nb = request2size(bytes+1);
4264
10dc2a90
UD
4265#if HAVE_MMAP
4266 if (chunk_is_mmapped(oldp)) {
4267#if HAVE_MREMAP
4268 newp = mremap_chunk(oldp, nb);
4269 if(!newp) {
4270#endif
4271 /* Note the extra SIZE_SZ overhead. */
4272 if(oldsize - SIZE_SZ >= nb) newp = oldp; /* do nothing */
4273 else {
7e3be507
UD
4274 /* Must alloc, copy, free. */
4275 newp = chunk_alloc(&main_arena, nb);
4276 if (newp) {
4277 MALLOC_COPY(chunk2mem(newp), oldmem, oldsize - 2*SIZE_SZ);
4278 munmap_chunk(oldp);
4279 }
10dc2a90
UD
4280 }
4281#if HAVE_MREMAP
4282 }
4283#endif
7e3be507 4284 } else {
10dc2a90
UD
4285#endif /* HAVE_MMAP */
4286 newp = chunk_realloc(&main_arena, oldp, oldsize, nb);
7e3be507
UD
4287#if 0 /* Erase freed memory. */
4288 nb = chunksize(newp);
4289 if(oldp<newp || oldp>=chunk_at_offset(newp, nb)) {
4290 memset((char*)oldmem + 2*sizeof(mbinptr), 0,
4291 oldsize - (2*sizeof(mbinptr)+2*SIZE_SZ+1));
4292 } else if(nb > oldsize+SIZE_SZ) {
4293 memset((char*)chunk2mem(newp) + oldsize, 0, nb - (oldsize+SIZE_SZ));
4294 }
4295#endif
4296#if HAVE_MMAP
4297 }
4298#endif
10dc2a90
UD
4299 (void)mutex_unlock(&main_arena.mutex);
4300
4301 if(!newp) return NULL;
4302 nb = chunksize(newp);
4303 if(chunk_is_mmapped(newp))
4304 --nb;
4305 else
4306 nb += SIZE_SZ - 1;
7e3be507 4307 *((unsigned char*)newp + nb) = MAGICBYTE(newp);
10dc2a90
UD
4308 return chunk2mem(newp);
4309}
4310
4311static Void_t*
4312#if __STD_C
dfd2257a 4313memalign_check(size_t alignment, size_t bytes, const Void_t *caller)
10dc2a90 4314#else
dfd2257a
UD
4315memalign_check(alignment, bytes, caller)
4316 size_t alignment; size_t bytes; const Void_t *caller;
a2b08ee5 4317#endif
10dc2a90
UD
4318{
4319 INTERNAL_SIZE_T nb;
4320 mchunkptr p;
4321
a2b08ee5 4322 if (alignment <= MALLOC_ALIGNMENT) return malloc_check(bytes, NULL);
10dc2a90
UD
4323 if (alignment < MINSIZE) alignment = MINSIZE;
4324
4325 nb = request2size(bytes+1);
4326 (void)mutex_lock(&main_arena.mutex);
4327 p = chunk_align(&main_arena, nb, alignment);
4328 (void)mutex_unlock(&main_arena.mutex);
4329 if(!p) return NULL;
4330 nb = chunksize(p);
4331 if(chunk_is_mmapped(p))
4332 --nb;
4333 else
4334 nb += SIZE_SZ - 1;
7e3be507 4335 *((unsigned char*)p + nb) = MAGICBYTE(p);
10dc2a90
UD
4336 return chunk2mem(p);
4337}
4338
7e3be507
UD
4339/* The following hooks are used when the global initialization in
4340 ptmalloc_init() hasn't completed yet. */
4341
4342static Void_t*
4343#if __STD_C
dfd2257a 4344malloc_starter(size_t sz, const Void_t *caller)
7e3be507 4345#else
dfd2257a 4346malloc_starter(sz, caller) size_t sz; const Void_t *caller;
a2b08ee5 4347#endif
7e3be507
UD
4348{
4349 mchunkptr victim = chunk_alloc(&main_arena, request2size(sz));
4350
4351 return victim ? chunk2mem(victim) : 0;
4352}
4353
4354static void
4355#if __STD_C
dfd2257a 4356free_starter(Void_t* mem, const Void_t *caller)
7e3be507 4357#else
dfd2257a 4358free_starter(mem, caller) Void_t* mem; const Void_t *caller;
a2b08ee5 4359#endif
7e3be507
UD
4360{
4361 mchunkptr p;
4362
4363 if(!mem) return;
4364 p = mem2chunk(mem);
4365#if HAVE_MMAP
4366 if (chunk_is_mmapped(p)) {
4367 munmap_chunk(p);
4368 return;
4369 }
4370#endif
4371 chunk_free(&main_arena, p);
4372}
4373
ca34d7a7
UD
4374/* The following hooks are used while the `atfork' handling mechanism
4375 is active. */
4376
4377static Void_t*
4378#if __STD_C
dfd2257a 4379malloc_atfork (size_t sz, const Void_t *caller)
ca34d7a7 4380#else
dfd2257a 4381malloc_atfork(sz, caller) size_t sz; const Void_t *caller;
a2b08ee5 4382#endif
ca34d7a7
UD
4383{
4384 Void_t *vptr = NULL;
4385
4386 tsd_getspecific(arena_key, vptr);
4387 if(!vptr) {
4388 mchunkptr victim = chunk_alloc(&main_arena, request2size(sz));
4389 return victim ? chunk2mem(victim) : 0;
4390 } else {
4391 /* Suspend the thread until the `atfork' handlers have completed.
4392 By that time, the hooks will have been reset as well, so that
4393 mALLOc() can be used again. */
4394 (void)mutex_lock(&list_lock);
4395 (void)mutex_unlock(&list_lock);
4396 return mALLOc(sz);
4397 }
4398}
4399
4400static void
4401#if __STD_C
dfd2257a 4402free_atfork(Void_t* mem, const Void_t *caller)
ca34d7a7 4403#else
dfd2257a 4404free_atfork(mem, caller) Void_t* mem; const Void_t *caller;
a2b08ee5 4405#endif
ca34d7a7
UD
4406{
4407 Void_t *vptr = NULL;
4408 arena *ar_ptr;
4409 mchunkptr p; /* chunk corresponding to mem */
4410
4411 if (mem == 0) /* free(0) has no effect */
4412 return;
4413
4414 p = mem2chunk(mem);
4415
4416#if HAVE_MMAP
4417 if (chunk_is_mmapped(p)) /* release mmapped memory. */
4418 {
4419 munmap_chunk(p);
4420 return;
4421 }
4422#endif
4423
4424 ar_ptr = arena_for_ptr(p);
4425 tsd_getspecific(arena_key, vptr);
4426 if(vptr)
4427 (void)mutex_lock(&ar_ptr->mutex);
4428 chunk_free(ar_ptr, p);
4429 if(vptr)
4430 (void)mutex_unlock(&ar_ptr->mutex);
4431}
4432
dfd2257a 4433#endif /* defined _LIBC || defined MALLOC_HOOKS */
f65fd747 4434
7e3be507
UD
4435\f
4436
4437#ifdef _LIBC
4438weak_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
4439weak_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
4440weak_alias (__libc_free, __free) weak_alias (__libc_free, free)
4441weak_alias (__libc_malloc, __malloc) weak_alias (__libc_malloc, malloc)
4442weak_alias (__libc_memalign, __memalign) weak_alias (__libc_memalign, memalign)
4443weak_alias (__libc_realloc, __realloc) weak_alias (__libc_realloc, realloc)
4444weak_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
4445weak_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
4446weak_alias (__libc_mallinfo, __mallinfo) weak_alias (__libc_mallinfo, mallinfo)
4447weak_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
4448
4449weak_alias (__malloc_stats, malloc_stats)
4450weak_alias (__malloc_usable_size, malloc_usable_size)
4451weak_alias (__malloc_trim, malloc_trim)
2f6d1f1b
UD
4452weak_alias (__malloc_get_state, malloc_get_state)
4453weak_alias (__malloc_set_state, malloc_set_state)
7e3be507
UD
4454#endif
4455
f65fd747
UD
4456/*
4457
4458History:
4459
2f6d1f1b
UD
4460 V2.6.4-pt3 Thu Feb 20 1997 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
4461 * Added malloc_get/set_state() (mainly for use in GNU emacs),
4462 using interface from Marcus Daniels
4463 * All parameters are now adjustable via environment variables
4464
10dc2a90
UD
4465 V2.6.4-pt2 Sat Dec 14 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
4466 * Added debugging hooks
4467 * Fixed possible deadlock in realloc() when out of memory
4468 * Don't pollute namespace in glibc: use __getpagesize, __mmap, etc.
4469
f65fd747
UD
4470 V2.6.4-pt Wed Dec 4 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
4471 * Very minor updates from the released 2.6.4 version.
4472 * Trimmed include file down to exported data structures.
4473 * Changes from H.J. Lu for glibc-2.0.
4474
4475 V2.6.3i-pt Sep 16 1996 Wolfram Gloger (wmglo@dent.med.uni-muenchen.de)
4476 * Many changes for multiple threads
4477 * Introduced arenas and heaps
4478
4479 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
4480 * Added pvalloc, as recommended by H.J. Liu
4481 * Added 64bit pointer support mainly from Wolfram Gloger
4482 * Added anonymously donated WIN32 sbrk emulation
4483 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
4484 * malloc_extend_top: fix mask error that caused wastage after
4485 foreign sbrks
4486 * Add linux mremap support code from HJ Liu
4487
4488 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
4489 * Integrated most documentation with the code.
4490 * Add support for mmap, with help from
4491 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4492 * Use last_remainder in more cases.
4493 * Pack bins using idea from colin@nyx10.cs.du.edu
6d52618b 4494 * Use ordered bins instead of best-fit threshold
f65fd747
UD
4495 * Eliminate block-local decls to simplify tracing and debugging.
4496 * Support another case of realloc via move into top
6d52618b 4497 * Fix error occurring when initial sbrk_base not word-aligned.
f65fd747
UD
4498 * Rely on page size for units instead of SBRK_UNIT to
4499 avoid surprises about sbrk alignment conventions.
4500 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
4501 (raymond@es.ele.tue.nl) for the suggestion.
4502 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
4503 * More precautions for cases where other routines call sbrk,
4504 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
4505 * Added macros etc., allowing use in linux libc from
4506 H.J. Lu (hjl@gnu.ai.mit.edu)
4507 * Inverted this history list
4508
4509 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
4510 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
4511 * Removed all preallocation code since under current scheme
4512 the work required to undo bad preallocations exceeds
4513 the work saved in good cases for most test programs.
4514 * No longer use return list or unconsolidated bins since
4515 no scheme using them consistently outperforms those that don't
4516 given above changes.
4517 * Use best fit for very large chunks to prevent some worst-cases.
4518 * Added some support for debugging
4519
4520 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
4521 * Removed footers when chunks are in use. Thanks to
4522 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
4523
4524 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
4525 * Added malloc_trim, with help from Wolfram Gloger
4526 (wmglo@Dent.MED.Uni-Muenchen.DE).
4527
4528 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
4529
4530 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
4531 * realloc: try to expand in both directions
4532 * malloc: swap order of clean-bin strategy;
4533 * realloc: only conditionally expand backwards
4534 * Try not to scavenge used bins
4535 * Use bin counts as a guide to preallocation
4536 * Occasionally bin return list chunks in first scan
4537 * Add a few optimizations from colin@nyx10.cs.du.edu
4538
4539 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
4540 * faster bin computation & slightly different binning
4541 * merged all consolidations to one part of malloc proper
4542 (eliminating old malloc_find_space & malloc_clean_bin)
4543 * Scan 2 returns chunks (not just 1)
4544 * Propagate failure in realloc if malloc returns 0
4545 * Add stuff to allow compilation on non-ANSI compilers
4546 from kpv@research.att.com
4547
4548 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
4549 * removed potential for odd address access in prev_chunk
4550 * removed dependency on getpagesize.h
4551 * misc cosmetics and a bit more internal documentation
4552 * anticosmetics: mangled names in macros to evade debugger strangeness
4553 * tested on sparc, hp-700, dec-mips, rs6000
4554 with gcc & native cc (hp, dec only) allowing
4555 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
4556
4557 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
4558 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
4559 structure of old version, but most details differ.)
4560
4561*/
This page took 0.518039 seconds and 5 git commands to generate.