]> sourceware.org Git - newlib-cygwin.git/blame - libgloss/mips/cma101.c
2003-05-26 Eric Christopher <echristo@redhat.com>
[newlib-cygwin.git] / libgloss / mips / cma101.c
CommitLineData
03261851
RK
1/*
2 * cma101.c -- lo-level support for Cogent CMA101 development board.
3 *
2c8d7359 4 * Copyright (c) 1996, 2001, 2002 Cygnus Support
03261851
RK
5 *
6 * The authors hereby grant permission to use, copy, modify, distribute,
7 * and license this software and its documentation for any purpose, provided
8 * that existing copyright notices are retained in all copies and that this
9 * notice is included verbatim in any distributions. No written agreement,
10 * license, or royalty fee is required for any of the authorized uses.
11 * Modifications to this software may be copyrighted by their authors
12 * and need not follow the licensing terms described here, provided that
13 * the new terms are clearly indicated on the first page of each file where
14 * they apply.
15 */
16
17#ifdef __mips16
18/* The assembler portions of this file need to be re-written to
19 support mips16, if and when that seems useful.
20*/
21#error cma101.c can not be compiled -mips16
22#endif
23
24
25#include <time.h> /* standard ANSI time routines */
26
27/* Normally these would appear in a header file for external
28 use. However, we are only building a simple example world at the
29 moment: */
30
31#include "regs.S"
32
33#if defined(MIPSEB)
34#define BYTEREG(b,o) ((volatile unsigned char *)(PHYS_TO_K1((b) + (o) + 7)))
35#endif /* MIPSEB */
36#if defined(MIPSEL)
37#define BYTEREG(b,o) ((volatile unsigned char *)(PHYS_TO_K1((b) + (o))))
38#endif /* MIPSEL */
39
40/* I/O addresses: */
41#define RTCLOCK_BASE (0x0E800000) /* Mk48T02 NVRAM/RTC */
42#define UART_BASE (0x0E900000) /* NS16C552 DUART */
43#define LCD_BASE (0x0EB00000) /* Alphanumeric display */
44
45/* LCD panel manifests: */
46#define LCD_DATA BYTEREG(LCD_BASE,0)
47#define LCD_CMD BYTEREG(LCD_BASE,8)
48
49#define LCD_STAT_BUSY (0x80)
50#define LCD_SET_DDADDR (0x80)
51
52/* RTC manifests */
53/* The lo-offsets are the NVRAM locations (0x7F8 bytes) */
54#define RTC_CONTROL BYTEREG(RTCLOCK_BASE,0x3FC0)
55#define RTC_SECS BYTEREG(RTCLOCK_BASE,0x3FC8)
56#define RTC_MINS BYTEREG(RTCLOCK_BASE,0x3FD0)
57#define RTC_HOURS BYTEREG(RTCLOCK_BASE,0x3FD8)
58#define RTC_DAY BYTEREG(RTCLOCK_BASE,0x3FE0)
59#define RTC_DATE BYTEREG(RTCLOCK_BASE,0x3FE8)
60#define RTC_MONTH BYTEREG(RTCLOCK_BASE,0x3FF0)
61#define RTC_YEAR BYTEREG(RTCLOCK_BASE,0x3FF8)
62
63#define RTC_CTL_LOCK_READ (0x40) /* lock RTC whilst reading */
64#define RTC_CTL_LOCK_WRITE (0x80) /* lock RTC whilst writing */
65
66/* Macro to force out-standing memory transfers to complete before
67 next sequence. For the moment we assume that the processor in the
68 CMA101 board supports at least ISA II. */
69#define DOSYNC() asm(" .set mips2 ; sync ; .set mips0")
70
71/* We disable interrupts by writing zero to all of the masks, and the
72 global interrupt enable bit: */
73#define INTDISABLE(sr,tmp) asm("\
74 .set mips2 ; \
75 mfc0 %0,$12 ; \
76 lui %1,0xffff ; \
77 ori %1,%1,0xfffe ; \
78 and %1, %0, %1 ; \
79 mtc0 %1,$12 ; \
80 .set mips0" : "=d" (sr), "=d" (tmp))
81#define INTRESTORE(sr) asm("\
82 .set mips2 ; \
83 mtc0 %0,$12 ; \
84 .set mips0" : : "d" (sr))
85
86/* TODO:FIXME: The CPU card support should be in separate source file
87 from the standard CMA101 support provided in this file. */
88
89/* The CMA101 board being used contains a CMA257 Vr4300 CPU:
90 MasterClock is at 33MHz. PClock is derived from MasterClock by
91 multiplying by the ratio defined by the DivMode pins:
92 DivMode(1:0) MasterClock PClock Ratio
93 00 100MHz 100MHz 1:1
94 01 100MHz 150MHz 1.5:1
95 10 100MHz 200MHz 2:1
96 11 100Mhz 300MHz 3:1
97
98 Are these pins reflected in the EC bits in the CONFIG register? or
99 is that talking about a different clock multiplier?
100 110 = 1
101 111 = 1.5
102 000 = 2
103 001 = 3
104 (all other values are undefined)
105*/
106
107#define MASTERCLOCK (33) /* ticks per uS */
108unsigned int pclock; /* number of PClock ticks per uS */
109void
110set_pclock (void)
111{
112 unsigned int config;
113 asm volatile ("mfc0 %0,$16 ; nop ; nop" : "=r" (config)); /* nasty CP0 register constant */
114 switch ((config >> 28) & 0x7) {
115 case 0x7 : /* 1.5:1 */
116 pclock = (MASTERCLOCK + (MASTERCLOCK / 2));
117 break;
118
119 case 0x0 : /* 2:1 */
120 pclock = (2 * MASTERCLOCK);
121 break;
122
123 case 0x1 : /* 3:1 */
124 pclock = (3 * MASTERCLOCK);
125 break;
126
127 case 0x6 : /* 1:1 */
128 default : /* invalid configuration, so assume the lowest */
129 pclock = MASTERCLOCK;
130 break;
131 }
132
133 return;
134}
135
136#define PCLOCK_WAIT(x) __cpu_timer_poll((x) * pclock)
137
138/* NOTE: On the Cogent CMA101 board the LCD controller will sometimes
139 return not-busy, even though it is. The work-around is to perform a
140 ~50uS delay before checking the busy signal. */
141
142static int
143lcd_busy (void)
144{
145 PCLOCK_WAIT(50); /* 50uS delay */
146 return(*LCD_CMD & LCD_STAT_BUSY);
147}
148
149/* Note: This code *ASSUMES* that the LCD has already been initialised
150 by the monitor. It only provides code to write to the LCD, and is
151 not a complete device driver. */
152
153void
154lcd_display (int line, const char *msg)
155{
156 int n;
157
158 if (lcd_busy ())
159 return;
160
161 *LCD_CMD = (LCD_SET_DDADDR | (line == 1 ? 0x40 : 0x00));
162
163 for (n = 0; n < 16; n++) {
164 if (lcd_busy ())
165 return;
166 if (*msg)
167 *LCD_DATA = *msg++;
168 else
169 *LCD_DATA = ' ';
170 }
171
172 return;
173}
174
175#define SM_PATTERN (0x55AA55AA)
176#define SM_INCR ((256 << 10) / sizeof(unsigned int)) /* 64K words */
177
178extern unsigned int __buserr_count(void);
179extern void __default_buserr_handler(void);
180extern void __restore_buserr_handler(void);
181
2c8d7359
MM
182/* Allow the user to provide his/her own defaults. */
183unsigned int __sizemem_default;
184
03261851
RK
185unsigned int
186__sizemem ()
187{
188 volatile unsigned int *base;
189 volatile unsigned int *probe;
190 unsigned int baseorig;
191 unsigned int sr;
ff524f6c 192 extern char end[];
b5b5b0d4 193 char *endptr = (char *)&end;
03261851
RK
194 int extra;
195
2c8d7359
MM
196 /* If the linker script provided a value for the memory size (or the user
197 overrode it in a debugger), use that. */
198 if (__sizemem_default)
199 return __sizemem_default;
200
b5b5b0d4
MM
201 /* If we are running in kernel segment 0 (possibly cached), try sizing memory
202 in kernel segment 1 (uncached) to avoid some problems with monitors. */
203 if (endptr >= K0BASE_ADDR && endptr < K1BASE_ADDR)
204 endptr = (endptr - K0BASE_ADDR) + K1BASE_ADDR;
205
03261851
RK
206 INTDISABLE(sr,baseorig); /* disable all interrupt masks */
207
208 __default_buserr_handler();
209 __cpu_flush();
210
211 DOSYNC();
212
213 /* _end is the end of the user program. _end may not be properly aligned
214 for an int pointer, so we adjust the address to make sure it is safe.
215 We use void * arithmetic to avoid accidentally truncating the pointer. */
216
b5b5b0d4
MM
217 extra = ((int) endptr & (sizeof (int) - 1));
218 base = ((void *) endptr + sizeof (int) - extra);
03261851
RK
219 baseorig = *base;
220
221 *base = SM_PATTERN;
222 /* This assumes that the instructions fetched between the store, and
223 the following read will have changed the data bus contents: */
224 if (*base == SM_PATTERN) {
225 probe = base;
226 for (;;) {
227 unsigned int probeorig;
228 probe += SM_INCR;
229 probeorig = *probe;
230 /* Check if a bus error occurred: */
231 if (!__buserr_count()) {
232 *probe = SM_PATTERN;
233 DOSYNC();
234 if (*probe == SM_PATTERN) {
235 *probe = ~SM_PATTERN;
236 DOSYNC();
237 if (*probe == ~SM_PATTERN) {
238 if (*base == SM_PATTERN) {
239 *probe = probeorig;
240 continue;
241 }
242 }
243 }
244 *probe = probeorig;
245 }
246 break;
247 }
248 }
249
250 *base = baseorig;
251 __restore_buserr_handler();
252 __cpu_flush();
253
254 DOSYNC();
255
256 INTRESTORE(sr); /* restore interrupt mask to entry state */
257
258 return((probe - base) * sizeof(unsigned int));
259}
260
261/* Provided as a function, so as to avoid reading the I/O location
262 multiple times: */
263static int
264convertbcd(byte)
265 unsigned char byte;
266{
267 return ((((byte >> 4) & 0xF) * 10) + (byte & 0xF));
268}
269
270time_t
271time (_timer)
272 time_t *_timer;
273{
274 time_t result = 0;
275 struct tm tm;
276 *RTC_CONTROL |= RTC_CTL_LOCK_READ;
277 DOSYNC();
278
279 tm.tm_sec = convertbcd(*RTC_SECS);
280 tm.tm_min = convertbcd(*RTC_MINS);
281 tm.tm_hour = convertbcd(*RTC_HOURS);
282 tm.tm_mday = convertbcd(*RTC_DATE);
283 tm.tm_mon = convertbcd(*RTC_MONTH);
284 tm.tm_year = convertbcd(*RTC_YEAR);
285
286 DOSYNC();
287 *RTC_CONTROL &= ~(RTC_CTL_LOCK_READ | RTC_CTL_LOCK_WRITE);
288
289 tm.tm_isdst = 0;
290
291 /* Check for invalid time information */
292 if ((tm.tm_sec < 60) && (tm.tm_min < 60) && (tm.tm_hour < 24)
293 && (tm.tm_mday < 32) && (tm.tm_mon < 13)) {
294
295 /* Get the correct year number, but keep it in YEAR-1900 form: */
296 if (tm.tm_year < 70)
297 tm.tm_year += 100;
298
299#if 0 /* NOTE: mon_printf() can only accept 4 arguments (format string + 3 fields) */
300 mon_printf("[DBG: s=%d m=%d h=%d]", tm.tm_sec, tm.tm_min, tm.tm_hour);
301 mon_printf("[DBG: d=%d m=%d y=%d]", tm.tm_mday, tm.tm_mon, tm.tm_year);
302#endif
303
304 /* Convert the time-structure into a second count */
305 result = mktime (&tm);
306 }
307
308 if (_timer != NULL)
309 *_timer = result;
310
311 return (result);
312}
313
314/*> EOF cma101.c <*/
This page took 0.091233 seconds and 5 git commands to generate.