]> sourceware.org Git - glibc.git/blame - elf/rtld.c
Sat May 6 11:06:47 1995 Roland McGrath <roland@churchy.gnu.ai.mit.edu>
[glibc.git] / elf / rtld.c
CommitLineData
d66e34cd
RM
1/* Run time dynamic linker.
2Copyright (C) 1995 Free Software Foundation, Inc.
3This file is part of the GNU C Library.
4
5The GNU C Library is free software; you can redistribute it and/or
6modify it under the terms of the GNU Library General Public License as
7published by the Free Software Foundation; either version 2 of the
8License, or (at your option) any later version.
9
10The GNU C Library is distributed in the hope that it will be useful,
11but WITHOUT ANY WARRANTY; without even the implied warranty of
12MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13Library General Public License for more details.
14
15You should have received a copy of the GNU Library General Public
16License along with the GNU C Library; see the file COPYING.LIB. If
17not, write to the Free Software Foundation, Inc., 675 Mass Ave,
18Cambridge, MA 02139, USA. */
19
20#include <link.h>
21#include "dynamic-link.h"
22#include <stddef.h>
23#include <stdlib.h>
24#include <unistd.h>
25
26
27#ifdef RTLD_START
28RTLD_START
29#else
30#error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
31#endif
32
33/* System-specific function to do initial startup for the dynamic linker.
34 After this, file access calls and getenv must work. This is responsible
35 for setting _dl_secure if we need to be secure (e.g. setuid),
36 and for setting _dl_argc and _dl_argv, and then calling _dl_main. */
37extern Elf32_Addr _dl_sysdep_start (void **start_argptr,
38 void (*dl_main) (const Elf32_Phdr *phdr,
39 Elf32_Word phent,
40 Elf32_Addr *user_entry));
41
42int _dl_secure;
43int _dl_argc;
44char **_dl_argv;
45
46struct r_debug dl_r_debug;
47
48static void dl_main (const Elf32_Phdr *phdr,
49 Elf32_Word phent,
50 Elf32_Addr *user_entry);
51
52Elf32_Addr
53_dl_start (void *arg)
54{
421f82e5 55 struct link_map rtld_map;
d66e34cd
RM
56
57 /* Figure out the run-time load address of the dynamic linker itself. */
421f82e5 58 rtld_map.l_addr = elf_machine_load_address ();
d66e34cd
RM
59
60 /* Read our own dynamic section and fill in the info array.
61 Conveniently, the first element of the GOT contains the
62 offset of _DYNAMIC relative to the run-time load address. */
421f82e5
RM
63 rtld_map.l_ld = (void *) rtld_map.l_addr + *elf_machine_got ();
64 elf_get_dynamic_info (rtld_map.l_ld, rtld_map.l_info);
d66e34cd
RM
65
66#ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
421f82e5 67 ELF_MACHINE_BEFORE_RTLD_RELOC (rtld_map.l_info);
d66e34cd
RM
68#endif
69
70 /* Relocate ourselves so we can do normal function calls and
71 data access using the global offset table. */
421f82e5
RM
72
73 ELF_DYNAMIC_RELOCATE (&rtld_map, 0, NULL);
74
d66e34cd
RM
75
76 /* Now life is sane; we can call functions and access global data.
77 Set up to use the operating system facilities, and find out from
78 the operating system's program loader where to find the program
79 header table in core. */
80
421f82e5 81 dl_r_debug.r_ldbase = rtld_map.l_addr; /* Record our load address. */
d66e34cd
RM
82
83 /* Call the OS-dependent function to set up life so we can do things like
84 file access. It will call `dl_main' (below) to do all the real work
85 of the dynamic linker, and then unwind our frame and run the user
86 entry point on the same stack we entered on. */
87 return _dl_sysdep_start (&arg, &dl_main);
88}
89
90
91/* Now life is peachy; we can do all normal operations.
92 On to the real work. */
93
94void _start (void);
95
96static void
97dl_main (const Elf32_Phdr *phdr,
98 Elf32_Word phent,
99 Elf32_Addr *user_entry)
100{
101 void doit (void)
102 {
421f82e5
RM
103 const Elf32_Phdr *ph;
104 struct link_map *l;
105 const char *interpreter_name;
106 int lazy;
d66e34cd 107
421f82e5
RM
108 if (*user_entry == (Elf32_Addr) &_start)
109 {
110 /* Ho ho. We are not the program interpreter! We are the program
111 itself! This means someone ran ld.so as a command. Well, that
112 might be convenient to do sometimes. We support it by
113 interpreting the args like this:
114
115 ld.so PROGRAM ARGS...
116
117 The first argument is the name of a file containing an ELF
118 executable we will load and run with the following arguments.
119 To simplify life here, PROGRAM is searched for using the
120 normal rules for shared objects, rather than $PATH or anything
121 like that. We just load it and use its entry point; we don't
122 pay attention to its PT_INTERP command (we are the interpreter
123 ourselves). This is an easy way to test a new ld.so before
124 installing it. */
125 if (_dl_argc < 2)
126 _dl_sysdep_fatal ("\
d66e34cd
RM
127Usage: ld.so EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
128You have invoked `ld.so', the helper program for shared library executables.\n\
129This program usually lives in the file `/lib/ld.so', and special directives\n\
130in executable files using ELF shared libraries tell the system's program\n\
131loader to load the helper program from this file. This helper program loads\n\
132the shared libraries needed by the program executable, prepares the program\n\
133to run, and runs it. You may invoke this helper program directly from the\n\
134command line to load and run an ELF executable file; this is like executing\n\
135that file itself, but always uses this helper program from the file you\n\
136specified, instead of the helper program file specified in the executable\n\
137file you run. This is mostly of use for maintainers to test new versions\n\
138of this helper program; chances are you did not intend to run this program.\n"
421f82e5
RM
139 );
140
141 interpreter_name = _dl_argv[0];
142 --_dl_argc;
143 ++_dl_argv;
144 l = _dl_map_object (NULL, _dl_argv[0], user_entry);
145 phdr = l->l_phdr;
146 phent = l->l_phnum;
147 l->l_type = lt_executable;
148 l->l_libname = (char *) "";
149 }
150 else
151 {
152 /* Create a link_map for the executable itself.
153 This will be what dlopen on "" returns. */
154 l = _dl_new_object ((char *) "", "", lt_executable);
155 l->l_phdr = phdr;
156 l->l_phnum = phent;
157 interpreter_name = 0;
158 }
d66e34cd 159
421f82e5
RM
160 /* Scan the program header table for the dynamic section. */
161 for (ph = phdr; ph < &phdr[phent]; ++ph)
162 switch (ph->p_type)
163 {
164 case PT_DYNAMIC:
165 /* This tells us where to find the dynamic section,
166 which tells us everything we need to do. */
167 l->l_ld = (void *) ph->p_vaddr;
168 break;
169 case PT_INTERP:
170 /* This "interpreter segment" was used by the program loader to
171 find the program interpreter, which is this program itself, the
172 dynamic linker. We note what name finds us, so that a future
173 dlopen call or DT_NEEDED entry, for something that wants to link
174 against the dynamic linker as a shared library, will know that
175 the shared object is already loaded. */
176 interpreter_name = (void *) ph->p_vaddr;
177 break;
178 }
179 assert (interpreter_name); /* How else did we get here? */
180
181 /* Extract the contents of the dynamic section for easy access. */
182 elf_get_dynamic_info (l->l_ld, l->l_info);
183 /* Set up our cache of pointers into the hash table. */
184 _dl_setup_hash (l);
185
186 if (l->l_info[DT_DEBUG])
187 /* There is a DT_DEBUG entry in the dynamic section. Fill it in
188 with the run-time address of the r_debug structure, which we
189 will set up later to communicate with the debugger. */
190 l->l_info[DT_DEBUG]->d_un.d_ptr = (Elf32_Addr) &dl_r_debug;
191
192 l = _dl_new_object ((char *) interpreter_name, interpreter_name,
193 lt_interpreter);
194
195 /* Now process all the DT_NEEDED entries and map in the objects.
196 Each new link_map will go on the end of the chain, so we will
197 come across it later in the loop to map in its dependencies. */
198 for (l = _dl_loaded; l; l = l->l_next)
d66e34cd 199 {
421f82e5
RM
200 if (l->l_info[DT_NEEDED])
201 {
202 const char *strtab
203 = (void *) l->l_addr + l->l_info[DT_STRTAB]->d_un.d_ptr;
204 const Elf32_Dyn *d;
205 for (d = l->l_ld; d->d_tag != DT_NULL; ++d)
206 if (d->d_tag == DT_NEEDED)
207 _dl_map_object (l, strtab + d->d_un.d_val, NULL);
208 }
209 l->l_deps_loaded = 1;
d66e34cd 210 }
d66e34cd 211
421f82e5
RM
212 l = _dl_loaded->l_next;
213 assert (l->l_type == lt_interpreter);
214 if (l->l_opencount == 0)
215 {
216 /* No DT_NEEDED entry referred to the interpreter object itself.
217 Remove it from the maps we will use for symbol resolution. */
218 l->l_prev->l_next = l->l_next;
219 if (l->l_next)
220 l->l_next->l_prev = l->l_prev;
221 }
d66e34cd 222
421f82e5 223 lazy = _dl_secure || *(getenv ("LD_BIND_NOW") ?: "");
d66e34cd 224
421f82e5
RM
225 /* Now we have all the objects loaded. Relocate them all.
226 We do this in reverse order so that copy relocs of earlier
227 objects overwrite the data written by later objects. */
228 l = _dl_loaded;
229 while (l->l_next)
230 l = l->l_next;
231 do
232 {
233 _dl_relocate_object (l, lazy);
234 l = l->l_prev;
235 } while (l);
236
237 /* Tell the debugger where to find the map of loaded objects. */
238 dl_r_debug.r_version = 1 /* R_DEBUG_VERSION XXX */;
239 dl_r_debug.r_map = _dl_loaded;
240 dl_r_debug.r_brk = (Elf32_Addr) &_dl_r_debug_state;
241 }
d66e34cd 242 const char *errstring;
421f82e5 243 const char *errobj;
d66e34cd
RM
244 int err;
245
421f82e5 246 err = _dl_catch_error (&errstring, &errobj, &doit);
d66e34cd
RM
247 if (errstring)
248 _dl_sysdep_fatal (_dl_argv[0] ?: "<program name unknown>",
249 ": error in loading shared libraries\n",
421f82e5 250 errobj ?: "", errobj ? ": " : "",
d66e34cd
RM
251 errstring, err ? ": " : NULL,
252 err ? strerror (err) : NULL, NULL);
253
254 /* Once we return, _dl_sysdep_start will invoke
255 the DT_INIT functions and then *USER_ENTRY. */
256}
257
258/* This function exists solely to have a breakpoint set on it by the
259 debugger. */
260void
261_dl_r_debug_state (void)
262{
263}
This page took 0.056245 seconds and 5 git commands to generate.