The ARC version of as
supports the following additional
machine directives:
.lcomm symbol, length[, alignment]
Reserve length (an absolute expression) bytes for a local common
denoted by symbol. The section and value of symbol are
those of the new local common. The addresses are allocated in the bss
section, so that at run-time the bytes start off zeroed. Since
symbol is not declared global, it is normally not visible to
ld
. The optional third parameter, alignment,
specifies the desired alignment of the symbol in the bss section,
specified as a byte boundary (for example, an alignment of 16 means
that the least significant 4 bits of the address should be zero). The
alignment must be an absolute expression, and it must be a power of
two. If no alignment is specified, as will set the alignment to the
largest power of two less than or equal to the size of the symbol, up
to a maximum of 16.
.lcommon symbol, length[, alignment]
The same as lcomm
directive.
.cpu cpu
The .cpu
directive must be followed by the desired core
version. Permitted values for CPU are:
ARC600
Assemble for the ARC600 instruction set.
arc600_norm
Assemble for ARC 600 with norm instructions.
arc600_mul64
Assemble for ARC 600 with mul64 instructions.
arc600_mul32x16
Assemble for ARC 600 with mul32x16 instructions.
arc601
Assemble for ARC 601 instruction set.
arc601_norm
Assemble for ARC 601 with norm instructions.
arc601_mul64
Assemble for ARC 601 with mul64 instructions.
arc601_mul32x16
Assemble for ARC 601 with mul32x16 instructions.
ARC700
Assemble for the ARC700 instruction set.
NPS400
Assemble for the NPS400 instruction set.
EM
Assemble for the ARC EM instruction set.
arcem
Assemble for ARC EM instruction set
em4
Assemble for ARC EM with code-density instructions.
em4_dmips
Assemble for ARC EM with code-density instructions.
em4_fpus
Assemble for ARC EM with code-density instructions.
em4_fpuda
Assemble for ARC EM with code-density, and double-precision assist instructions.
quarkse_em
Assemble for QuarkSE-EM instruction set.
HS
Assemble for the ARC HS instruction set.
archs
Assemble for ARC HS instruction set.
hs
Assemble for ARC HS instruction set.
hs34
Assemble for ARC HS34 instruction set.
hs38
Assemble for ARC HS38 instruction set.
hs38_linux
Assemble for ARC HS38 with floating point support on.
Note: the .cpu
directive overrides the command-line option
-mcpu=cpu
; a warning is emitted when the version is not
consistent between the two.
.extAuxRegister name, addr, mode
¶Auxiliary registers can be defined in the assembler source code by using this directive. The first parameter, name, is the name of the new auxiliary register. The second parameter, addr, is address the of the auxiliary register. The third parameter, mode, specifies whether the register is readable and/or writable and is one of:
r
Read only;
w
Write only;
r|w
Read and write.
For example:
.extAuxRegister mulhi, 0x12, w
specifies a write only extension auxiliary register, mulhi at address 0x12.
.extCondCode suffix, val
¶ARC supports extensible condition codes. This directive defines a new condition code, to be known by the suffix, suffix and will depend on the value, val in the condition code.
For example:
.extCondCode is_busy,0x14 add.is_busy r1,r2,r3
will only execute the add
instruction if the condition code
value is 0x14.
.extCoreRegister name, regnum, mode, shortcut
¶Specifies an extension core register named name as a synonym for the register numbered regnum. The register number must be between 32 and 59. The third argument, mode, indicates whether the register is readable and/or writable and is one of:
r
Read only;
w
Write only;
r|w
Read and write.
The final parameter, shortcut indicates whether the register has a short cut in the pipeline. The valid values are:
can_shortcut
The register has a short cut in the pipeline;
cannot_shortcut
The register does not have a short cut in the pipeline.
For example:
.extCoreRegister mlo, 57, r , can_shortcut
defines a read only extension core register, mlo
, which is
register 57, and can short cut the pipeline.
.extInstruction name, opcode, subopcode, suffixclass, syntaxclass
¶ARC allows the user to specify extension instructions. These extension instructions are not macros; the assembler creates encodings for use of these instructions according to the specification by the user.
The first argument, name, gives the name of the instruction.
The second argument, opcode, is the opcode to be used (bits 31:27 in the encoding).
The third argument, subopcode, is the sub-opcode to be used, but the correct value also depends on the fifth argument, syntaxclass
The fourth argument, suffixclass, determines the kinds of suffixes to be allowed. Valid values are:
SUFFIX_NONE
No suffixes are permitted;
SUFFIX_COND
Conditional suffixes are permitted;
SUFFIX_FLAG
Flag setting suffixes are permitted.
SUFFIX_COND|SUFFIX_FLAG
Both conditional and flag setting suffices are permitted.
The fifth and final argument, syntaxclass, determines the syntax class for the instruction. It can have the following values:
SYNTAX_2OP
Two Operand Instruction;
SYNTAX_3OP
Three Operand Instruction.
SYNTAX_1OP
One Operand Instruction.
SYNTAX_NOP
No Operand Instruction.
The syntax class may be followed by ‘|’ and one of the following modifiers.
OP1_MUST_BE_IMM
Modifies syntax class SYNTAX_3OP
, specifying that the first
operand of a three-operand instruction must be an immediate (i.e., the
result is discarded). This is usually used to set the flags using
specific instructions and not retain results.
OP1_IMM_IMPLIED
Modifies syntax class SYNTAX_20P
, specifying that there is an
implied immediate destination operand which does not appear in the
syntax.
For example, if the source code contains an instruction like:
inst r1,r2
the first argument is an implied immediate (that is, the result is discarded). This is the same as though the source code were: inst 0,r1,r2.
For example, defining a 64-bit multiplier with immediate operands:
.extInstruction mp64, 0x07, 0x2d, SUFFIX_COND|SUFFIX_FLAG, SYNTAX_3OP|OP1_MUST_BE_IMM
which specifies an extension instruction named mp64
with 3
operands. It sets the flags and can be used with a condition code,
for which the first operand is an immediate, i.e. equivalent to
discarding the result of the operation.
A two operands instruction variant would be:
.extInstruction mul64, 0x07, 0x2d, SUFFIX_COND, SYNTAX_2OP|OP1_IMM_IMPLIED
which describes a two operand instruction with an implicit first immediate operand. The result of this operation would be discarded.
.arc_attribute tag, value
Set the ARC object attribute tag to value.
The tag is either an attribute number, or one of the following:
Tag_ARC_PCS_config
, Tag_ARC_CPU_base
,
Tag_ARC_CPU_variation
, Tag_ARC_CPU_name
,
Tag_ARC_ABI_rf16
, Tag_ARC_ABI_osver
, Tag_ARC_ABI_sda
,
Tag_ARC_ABI_pic
, Tag_ARC_ABI_tls
, Tag_ARC_ABI_enumsize
,
Tag_ARC_ABI_exceptions
, Tag_ARC_ABI_double_size
,
Tag_ARC_ISA_config
, Tag_ARC_ISA_apex
,
Tag_ARC_ISA_mpy_option
The value is either a number
, "string"
, or
number, "string"
depending on the tag.