
GNU gprofng
The next generation profiling tool for Linux

version 2.41 (last updated 3 July 2023)

Ruud van der Pas

This document is the manual for gprofng, last updated 3 July 2023.

Copyright c© 2022-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with no Front-Cover texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation
License.”

i

Table of Contents

1 Introduction . 1

2 A Brief Overview of gprofng 3
2.1 Main Features . 3
2.2 Sampling versus Tracing . 3
2.3 Steps Needed to Create a Profile . 4

3 A Mini Tutorial . 7
3.1 Getting Started . 7

3.1.1 The Example Program . 7
3.1.2 A First Profile . 7
3.1.3 The Source Code View . 9
3.1.4 The Disassembly View . 12
3.1.5 Display and Define the Metrics . 14
3.1.6 Customization of the Output . 14
3.1.7 Name the Experiment Directory . 15
3.1.8 Control the Number of Lines in the Output 16
3.1.9 Sorting the Performance Data . 16
3.1.10 Scripting . 16
3.1.11 A More Elaborate Example . 16
3.1.12 The Call Tree . 18
3.1.13 More Information on the Experiment . 20
3.1.14 Control the Sampling Frequency . 21
3.1.15 Information on Load Objects . 22

3.2 Support for Multithreading . 24
3.2.1 Creating a Multithreading Experiment . 24
3.2.2 Commands Specific to Multithreading . 25

3.3 View Multiple Experiments . 30
3.3.1 Aggregation of Experiments . 30
3.3.2 Comparison of Experiments . 32

3.4 Profile Hardware Event Counters . 34
3.4.1 Getting Information on the Counters Supported 34
3.4.2 Examples Using Hardware Event Counters 37

3.5 Java Profiling . 45

4 The gprofng Tools . 47
4.1 Tools Overview . 47
4.2 The gprofng.rc file with default settings . 47
4.3 Filters . 49
4.4 Supported Environment Variables . 50

ii

5 Performance Data Collection 51
5.1 The gprofng collect app command . 51

6 View the Performance Information 53
6.1 The gprofng display text Tool . 53

6.1.1 The gprofng display text Commands 53
Commands that List Experiment Details . 53
Commands that Affect Listings and Output 55
Predefined Filters . 55
Commands to Set and Change Search Paths 56

7 Terminology . 59
7.1 The Program Counter . 59
7.2 Inclusive and Exclusive Metrics . 59
7.3 Metric Definitions . 59
7.4 The Viewmode . 60
7.5 The Selection List . 60
7.6 Load Objects and Functions . 62
7.7 The Concept of a CPU in gprofng . 62
7.8 Hardware Event Counters Explained . 63
7.9 What is <apath>? . 64

8 Other Document Formats . 65

Appendix A The gprofng Man Pages 67
A.1 Man page for gprofng . 67
A.2 Man page for gprofng collect app . 70
A.3 Man page for gprofng display text . 74
A.4 Man page for gprofng display html . 79
A.5 Man page for gprofng display src . 81
A.6 Man page for gprofng archive . 83

Index . 85

1

1 Introduction

The gprofng tool is the next generation profiler for Linux. It consists of
various commands to generate and display profile information.

This manual starts with a tutorial how to create and interpret a
profile. This part is highly practical and has the goal to get users up to
speed as quickly as possible. As soon as possible, we would like to show you
how to get your first profile on your screen.

This is followed by more examples, covering many of the features. At
the end of this tutorial, you should feel confident enough to tackle the more
complex tasks.

In a future update a more formal reference manual will be included as
well. Since even in this tutorial we use certain terminology, we have included
a chapter with descriptions at the end. In case you encounter unfamiliar
wordings or terminology, please check this chapter.

One word of caution. In several cases we had to somewhat tweak
the screen output in order to make it fit. This is why the output may look
somewhat different when you try things yourself.

For now, we wish you a smooth profiling experience with gprofng and
good luck tackling performance bottlenecks.

3

2 A Brief Overview of gprofng

Before we cover this tool in quite some detail, we start with a brief overview
of what it is, and the main features. Since we know that many of you would
like to get started rightaway, already in this first chapter we explain the
basics of profiling with gprofng.

2.1 Main Features
These are the main features of the gprofng tool:

• Profiling is supported for an application written in C, C++, Java, or
Scala.

• Shared libraries are supported. The information is presented at the
instruction level.

• The following multithreading programming models are supported:
Pthreads, OpenMP, and Java threads.

• This tool works with unmodified production level executables. There
is no need to recompile the code, but if the ‘-g’ option has been used
when building the application, source line level information is available.

• The focus is on support for code generated with the gcc compiler, but
there is some limited support for the icc compiler as well. Future
improvements and enhancements will focus on gcc though.

• Processors from Intel, AMD, and Arm are supported, but the level of
support depends on the architectural details. In particular, hardware
event counters may not be supported. If this is the case, all views not
related to these counters still ought to work though.

• Several views into the data are supported. For example, a function
overview where the time is spent, but also a source line, disassembly,
call tree and a caller-callees overview are available.

• Through filters, the user can zoom in on an area of interest.

• Two or more profiles can be aggregated, or used in a comparison. This
comparison can be obtained at the function, source line, and disassembly
level.

• Through a simple scripting language, and customization of the metrics
shown, the generation and creation of a profile can be fully automated
and provide tailored output.

2.2 Sampling versus Tracing
A key difference with some other profiling tools is that the main data col-
lection command gprofng collect app mostly uses Program Counter (PC)
sampling under the hood.

With sampling, the executable is interrupted at regular intervals.
Each time it is halted, key information is gathered and stored. This includes

4 GNU gprofng

the Program Counter that keeps track of where the execution is. Hence the
name.

Together with operational data, this information is stored in the ex-
periment directory and can be viewed in the second phase.

For example, the PC information is used to derive where the program
was when it was halted. Since the sampling interval is known, it is relatively
easy to derive how much time was spent in the various parts of the program.

The opposite technique is generally referred to as tracing. With trac-
ing, the target is instrumented with specific calls that collect the requested
information.

These are some of the pros and cons of PC sampling verus tracing:

• Since there is no need to recompile, existing executables can be used
and the profile measures the behaviour of exactly the same executable
that is used in production runs.

With sampling, one inherently profiles a different executable, because
the calls to the instrumentation library may affect the compiler opti-
mizations and run time behaviour.

• With sampling, there are very few restrictions on what can be profiled
and even without access to the source code, a basic profile can be made.

• A downside of sampling is that, depending on the sampling frequency,
small functions may be missed or not captured accurately. Although
this is rare, this may happen and is the reason why the user has control
over the sampling rate.

• While tracing produces precise information, sampling is statistical in na-
ture. As a result, small variations may occur across seemingly identical
runs. We have not observed more than a few percent deviation though.
Especially if the target job executed for a sufficiently long time.

• With sampling, it is not possible to get an accurate count how often
functions are called.

2.3 Steps Needed to Create a Profile
Creating a profile takes two steps. First the profile data needs to be gener-
ated. This is followed by a viewing step to create a report from the infor-
mation that has been gathered.

Every gprofng command starts with gprofng, the name of the driver.
This is followed by a keyword to define the high level functionality. Depend-
ing on this keyword, a third qualifier may be needed to further narrow down
the request. This combination is then followed by options that are specific
to the functionality desired.

The command to gather, or “collect”, the performance data is called
gprofng collect app. Aside from numerous options, this command takes
the name of the target executable as an input parameter.

Chapter 2: A Brief Overview of gprofng 5

Upon completion of the run, the performance data can be found in
the newly created experiment directory.

Unless explicitly specified otherwise, a default name for this directory
is chosen. The name is test.<n>.er where <n> is the first integer number
not in use yet for such a name.

For example, the first time gprofng collect app is invoked, an ex-
periment directory with the name test.1.er is created. Upon a subsequent
invocation of gprofng collect app in the same directory, an experiment
directory with the name test.2.er will be created, and so forth.

Note that gprofng collect app supports an option to explicitly
name the experiment directory. Aside from the restriction that the name of
this directory has to end with ‘.er’, any valid directory name can be used
for this.

Now that we have the performance data, the next step is to display
it.

The most commonly used command to view the performance infor-
mation is gprofng display text. This is a very extensive and customizable
tool that produces the information in ASCII format.

Another option is to use gprofng display html. This tool generates
a directory with files in html format. These can be viewed in a browser,
allowing for easy navigation through the profile data.

7

3 A Mini Tutorial

In this chapter we present and discuss the main functionality of gprofng.
This will be a practical approach, using an example code to generate profile
data and show how to get various performance reports.

3.1 Getting Started
The information presented here provides a good and common basis for many
profiling tasks, but there are more features that you may want to leverage.

These are covered in subsequent sections in this chapter.

3.1.1 The Example Program

Throughout this guide we use the same example C code that implements
the multiplication of a vector of length n by an m by n matrix. The result
is stored in a vector of length m. The algorithm has been parallelized using
Posix Threads, or Pthreads for short.

The code was built using the gcc compiler and the name of the exe-
cutable is mxv-pthreads.

The matrix sizes can be set through the -m and -n options. The
number of threads is set with the -t option. These are additional threads
that are used in the multiplication. To increase the duration of the run, the
computations are executed repeatedly.

This is an example that multiplies a 8000 by 4000 matrix with a
vector of length 4000. Although this is a multithreaded application, initially
we will be using 1 threads. Later on we will show examples using multiple
threads.

$./mxv-pthreads -m 8000 -n 4000 -t 1

mxv: error check passed - rows = 8000 columns = 4000 threads = 1

$

The program performs an internal check to verify that the computed
results are correct. The result of this check is printed, as well as the matrix
sizes and the number of threads used.

3.1.2 A First Profile

The first step is to collect the performance data. It is important to remember
that much more information is gathered than may be shown by default.
Often a single data collection run is sufficient to get a lot of insight.

The gprofng collect app command is used for the data collection.
Nothing needs to be changed in the way the application is executed. The
only difference is that it is now run under control of the tool, as shown below:� �

$ gprofng collect app ./mxv-pthreads -m 8000 -n 4000 -t 1
 	

8 GNU gprofng

This produces the following output:
Creating experiment directory test.1.er (Process ID: 2749878) ...

mxv: error check passed - rows = 8000 columns = 4000 threads = 1

We see a message that an experiment directory with the name
test.1.er has been created. The process id is also echoed. The appli-
cation completes as usual and we have our first experiment directory that
can be analyzed.

The tool we use for this is called gprofng display text. It takes the
name of the experiment directory as an argument.

If invoked this way, the tool starts in the interactive interpreter mode.
While in this environment, commands can be given and the tool responds.
This is illustrated below:

$ gprofng display text test.1.er

Warning: History and command editing is not supported on this system.

(gp-display-text) quit

$

While useful in certain cases, we prefer to use this tool in command
line mode by specifying the commands to be issued when invoking the tool.
The way to do this is to prepend the command(s) with a hyphen (‘-’) if used
on the command line.

Since this makes the command appear to be an option, they are also
sometimes referred to as such, but technically they are commands. This
is the terminology we will use in this user guide, but for convenience the
commands are also listed as options in the index.

For example, below we use the functions command to request a list
of the functions that have been executed, plus their respective CPU times:� �

$ gprofng display text -functions test.1.er
 	
$ gprofng display text -functions test.1.er

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name

CPU CPU

sec. % sec. %

9.367 100.00 9.367 100.00 <Total>

8.926 95.30 8.926 95.30 mxv_core

0.210 2.24 0.420 4.49 init_data

0.080 0.85 0.210 2.24 drand48

0.070 0.75 0.130 1.39 erand48_r

0.060 0.64 0.060 0.64 __drand48_iterate

0.010 0.11 0.020 0.21 _int_malloc

0.010 0.11 0.010 0.11 sysmalloc

0. 0. 8.926 95.30 <static>@0x47960 (<libgp-collector.so>)

0. 0. 0.440 4.70 __libc_start_main

0. 0. 0.020 0.21 allocate_data

Chapter 3: A Mini Tutorial 9

0. 0. 8.926 95.30 driver_mxv

0. 0. 0.440 4.70 main

0. 0. 0.020 0.21 malloc

0. 0. 8.926 95.30 start_thread

As easy and simple as these steps are, we do have a first profile of our
program!

There are five columns. The first four contain the ”Total CPU Time”,
which is the sum of the user and system time. See Section 7.2 [Inclusive and
Exclusive Metrics], page 59, for an explanation of “exclusive” and “inclusive”
times.

The first line echoes the metric that is used to sort the output. By
default, this is the exclusive CPU time, but through the sort command, the
sort metric can be changed by the user.

Next, there are four columns with the exclusive and inclusive CPU
times and the respective percentages. This is followed by the name of the
function.

The function with the name <Total> is not a user function. It is
a pseudo function introduced by gprofng. It is used to display the accu-
mulated measured metric values. In this example, we see that the total
CPU time of this job was 9.367 seconds and it is scaled to 100%. All other
percentages in the same column are relative to this number.

With 8.926 seconds, function mxv_core takes 95.30% of the total time
and is by far the most time consuming function. The exclusive and inclusive
metrics are identical, which means that is a leaf function not calling any
other functions.

The next function in the list is init_data. Although with 4.49%, the
CPU time spent in this part is modest, this is an interesting entry because
the inclusive CPU time of 0.420 seconds is twice the exclusive CPU time
of 0.210 seconds. Clearly this function is calling another function, or even
more than one function and collectively this takes 0.210 seconds. Below we
show the call tree feature that provides more details on the call structure of
the application.

The function <static>@0x47960 (<libgp-collector.so>) does
odd and certainly not familiar. It is one of the internal functions used by
gprofng collect app and can be ignored. Also, while the inclusive time
is high, the exclusive time is zero. This means it doesn’t contribute to the
performance.

The question is how we know where this function originates from?
There are several commands to dig deeper an get more details on a function.
See Section 3.1.15 [Information on Load Objects], page 22.

3.1.3 The Source Code View

In general, the tuning efforts are best focused on the most time consuming
part(s) of an application. In this case that is easy, since over 95% of the total

10 GNU gprofng

CPU time is spent in function mxv_core. It is now time to dig deeper and
look at the metrics distribution at the source code level. Since we measured
CPU times, these are the metrics shown.

The source command is used to accomplish this. It takes the name
of the function, not the source filename, as an argument. This is demon-
strated below, where the gprofng display text command is used to show
the annotated source listing of function mxv_core.

Be aware that when using the gcc compiler, the source code has to
be compiled with the -g option in order for the source code feature to work.
Otherwise the location(s) can not be determined. For other compilers we
recommend to check the documentation for such an option.

Below the command to display the source code of a function is shown.
Since at this point we are primarily interested in the timings only, we use the
metrics command to request the exclusive and inclusive total CPU timings
only. See Section 3.1.5 [Display and Define the Metrics], page 14, for more
information how to define the metrics to be displayed.� �

$ gprofng display text -metrics ei.totalcpu -source mxv_core test.1.er
 	
The output is shown below. It has been somewhat modified to fit the

formatting constraints and reduce the number of lines.
Current metrics: e.totalcpu:i.totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.totalcpu)

Source file: <apath>/mxv.c

Object file: mxv-pthreads (found as test.1.er/archives/...)

Load Object: mxv-pthreads (found as test.1.er/archives/...)

Excl. Incl.

Total Total

CPU sec. CPU sec.

<lines deleted>

<Function: mxv_core>

43. void __attribute__ ((noinline))

mxv_core (int64_t row_index_start,

44. int64_t row_index_end,

45. int64_t m,

46. int64_t n,

47. double **restrict A,

48. double *restrict b,

49. double *restrict c)

50. {

0. 0. 50. {

0. 0. 51. for (int64_t i=row_index_start;

i<=row_index_end; i++)

52. {

0. 0. 53. double row_sum = 0.0;

4.613 4.613 54. for (int64_t j=0; j<n; j++)

Chapter 3: A Mini Tutorial 11

4.313 4.313 55. row_sum += A[i][j] * b[j];

0. 0. 56. c[i] = row_sum;

57. }

0. 0. 58. }

The first line echoes the metrics that have been selected. The second
line is not very meaningful when looking at the source code listing, but it
shows the metric that is used to sort the data.

The next three lines provide information on the location of the source
file, the object file and the load object (See Section 7.6 [Load Objects and
Functions], page 62).

Function mxv_core is part of a source file that has other functions as
well. These functions will be shown with the values for the metrics, but for
lay-out purposes they have been removed in the output shown above.

The header is followed by the annotated source code listing. The
selected metrics are shown first, followed by a source line number, and the
source code. The most time consuming line(s) are marked with the ##
symbol. In this way they are easier to identify and find with a search.

What we see is that all of the time is spent in lines 54-55.

A related command sometimes comes handy as well. It is called lines
and displays a list of the source lines and their metrics, ordered according to
the current sort metric (See Section 3.1.9 [Sorting the Performance Data],
page 16).

Below the command and the output. For lay-out reasons, only the top
10 is shown here and the last part of the text on some lines has been replaced
by dots. The full text is ‘instructions without line numbers’ and means
that the line number information for that function was not found.� �

$ gprofng display text -lines test.1.er
 	
Lines sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name

CPU CPU

sec. % sec. %

9.367 100.00 9.367 100.00 <Total>

4.613 49.25 4.613 49.25 mxv_core, line 54 in "mxv.c"

4.313 46.05 4.313 46.05 mxv_core, line 55 in "mxv.c"

0.160 1.71 0.370 3.95 init_data, line 118 in "manage_data.c"

0.080 0.85 0.210 2.24 <Function: drand48, instructions ...>

0.070 0.75 0.130 1.39 <Function: erand48_r, instructions ...>

0.060 0.64 0.060 0.64 <Function: __drand48_iterate, ...>

0.040 0.43 0.040 0.43 init_data, line 124 in "manage_data.c"

0.010 0.11 0.020 0.21 <Function: _int_malloc, instructions ...>

0.010 0.11 0.010 0.11 <Function: sysmalloc, instructions ...>

What this overview immediately highlights is that the third most time
consuming source line takes 0.370 seconds only. This means that the inclu-

12 GNU gprofng

sive time is only 3.95% and clearly this branch of the code hardly impacts
the performance.

3.1.4 The Disassembly View

The source view is very useful to obtain more insight where the time is
spent, but sometimes this is not sufficient. The disassembly view provides
more details since it shows the metrics at the instruction level.

This view is displayed with the disasm command and as with the
source view, it displays an annotated listing. In this case it shows the in-
structions with the metrics, interleaved with the source lines. The instruc-
tions have a reference in square brackets ([and]) to the source line they
correspond to.

We again focus on the tmings only and set the metrics accordingly:� �
$ gprofng display text -metrics ei.totalcpu -disasm mxv_core test.1.er
 	
Current metrics: e.totalcpu:i.totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.totalcpu)

Source file: <apath>/src/mxv.c

Object file: mxv-pthreads (found as test.1.er/archives/...)

Load Object: mxv-pthreads (found as test.1.er/archives/...)

Excl. Incl.

Total Total

CPU sec. CPU sec.

<lines deleted>

43. void __attribute__ ((noinline))

mxv_core (int64_t row_index_start,

44. int64_t row_index_end,

45. int64_t m,

46. int64_t n,

47. double **restrict A,

48. double *restrict b,

49. double *restrict c)

50. {

<Function: mxv_core>

0. 0. [50] 401d56: mov 0x8(%rsp),%r10

51. for (int64_t i=row_index_start;

i<=row_index_end; i++)

0. 0. [51] 401d5b: cmp %rsi,%rdi

0. 0. [51] 401d5e: jg 0x47

0. 0. [51] 401d60: add $0x1,%rsi

0. 0. [51] 401d64: jmp 0x36

52. {

53. double row_sum = 0.0;

54. for (int64_t j=0; j<n; j++)

55 row_sum += A[i][j] * b[j];

0. 0. [55] 401d66: mov (%r8,%rdi,8),%rdx

Chapter 3: A Mini Tutorial 13

0. 0. [54] 401d6a: mov $0x0,%eax

0. 0. [53] 401d6f: pxor %xmm1,%xmm1

0.110 0.110 [55] 401d73: movsd (%rdx,%rax,8),%xmm0

1.921 1.921 [55] 401d78: mulsd (%r9,%rax,8),%xmm0

2.282 2.282 [55] 401d7e: addsd %xmm0,%xmm1

4.613 4.613 [54] 401d82: add $0x1,%rax

0. 0. [54] 401d86: cmp %rax,%rcx

0. 0. [54] 401d89: jne 0xffffffffffffffea

56. c[i] = row_sum;

0. 0. [56] 401d8b: movsd %xmm1,(%r10,%rdi,8)

0. 0. [51] 401d91: add $0x1,%rdi

0. 0. [51] 401d95: cmp %rsi,%rdi

0. 0. [51] 401d98: je 0xd

0. 0. [53] 401d9a: pxor %xmm1,%xmm1

0. 0. [54] 401d9e: test %rcx,%rcx

0. 0. [54] 401da1: jg 0xffffffffffffffc5

0. 0. [54] 401da3: jmp 0xffffffffffffffe8

57. }

58. }

0. 0. [58] 401da5: ret

For each instruction, the timing values are given and we can imme-
diately identify the most expensive instructions. As with the source level
view, these are marked with the ## symbol.

It comes as no surprise that the time consuming instructions originate
from the source code at lines 54-55. One thing to note is that the source
line numbers no longer appear in sequential order. This is because the
compiler has re-ordered the instructions as part of the code optimizations it
has performed.

As illustrated below and similar to the lines command, we can get
an overview of the instructions executed by using the pcs command.

Below the command and the output, which again has been restricted to 10
lines. As before, some lines have been shortened for lay-out purposes.� �

$ gprofng display text -pcs test.1.er
 	
PCs sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name

CPU CPU

sec. % sec. %

9.367 100.00 9.367 100.00 <Total>

4.613 49.25 4.613 49.25 mxv_core + 0x0000002C, line 54 in "mxv.c"

2.282 24.36 2.282 24.36 mxv_core + 0x00000028, line 55 in "mxv.c"

1.921 20.51 1.921 20.51 mxv_core + 0x00000022, line 55 in "mxv.c"

0.150 1.60 0.150 1.60 init_data + 0x000000AC, line 118 in ...

0.110 1.18 0.110 1.18 mxv_core + 0x0000001D, line 55 in "mxv.c"

0.040 0.43 0.040 0.43 drand48 + 0x00000022

0.040 0.43 0.040 0.43 init_data + 0x000000F1, line 124 in ...

0.030 0.32 0.030 0.32 __drand48_iterate + 0x0000001E

14 GNU gprofng

0.020 0.21 0.020 0.21 __drand48_iterate + 0x00000038

What we see is that the top three instructions take 94% of the total CPU
time and any optimizations should focus on this part of the code..

3.1.5 Display and Define the Metrics

The metrics shown by gprofng display text are useful, but there is more
recorded than displayed by default. We can customize the values shown by
defining the metrics ourselves.

There are two commands related to changing the metrics shown:
metric_list and metrics.

The first command shows the currently selected metrics, plus all the
metrics that have been stored as part of the experiment. The second com-
mand may be used to define the metric list.

This is the way to get the information about the metrics:� �
$ gprofng display text -metric_list test.1.er
 	

This is the output:
Current metrics: e.%totalcpu:i.%totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Available metrics:

Exclusive Total CPU Time: e.%totalcpu

Inclusive Total CPU Time: i.%totalcpu

Size: size

PC Address: address

Name: name

This shows the metrics that are currently used, the metric that is
used to sort the data and all the metrics that have been recorded, but are
not necessarily shown.

In this case, the current metrics are set to the exclusive and inclusive
total CPU times, the respective percentages, and the name of the function,
or load object.

The metrics command is used to define the metrics that need to be
displayed.

For example, to swap the exclusive and inclusive metrics, use the
following metric definition: i.%totalcpu:e.%totalcpu.

Since the metrics can be tailored for different views, there is also a
way to reset them to the default. This is done through the special keyword
default for the metrics definition (-metrics default).

3.1.6 Customization of the Output

With the information just given, the function overview can be customized.
For sake of the example, we would like to display the name of the function

Chapter 3: A Mini Tutorial 15

first, only followed by the exclusive CPU time, given as an absolute number
and a percentage.

Note that the commands are parsed in order of appearance. This is
why we need to define the metrics before requesting the function overview:� �

$ gprofng display text -metrics name:e.%totalcpu -functions test.1.er
 	
Current metrics: name:e.%totalcpu

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Functions sorted by metric: Exclusive Total CPU Time

Name Excl. Total

CPU

sec. %

<Total> 9.367 100.00

mxv_core 8.926 95.30

init_data 0.210 2.24

drand48 0.080 0.85

erand48_r 0.070 0.75

__drand48_iterate 0.060 0.64

_int_malloc 0.010 0.11

sysmalloc 0.010 0.11

<static>@0x47960 (<libgp-collector.so>) 0. 0.

__libc_start_main 0. 0.

allocate_data 0. 0.

driver_mxv 0. 0.

main 0. 0.

malloc 0. 0.

start_thread 0. 0.

This was a first and simple example how to customize the output.
Note that we did not rerun our profiling job and merely modified the display
settings. Below we will show other and also more advanced examples of
customization.

3.1.7 Name the Experiment Directory

When using gprofng collect app, the default names for experiments work
fine, but they are quite generic. It is often more convenient to select a
more descriptive name. For example, one that reflects conditions for the
experiment conducted, like the number of threads used.

For this, the mutually exclusive -o and -O options come in handy.
Both may be used to provide a name for the experiment directory, but the
behaviour of gprofng collect app is different.

With the ‘-o’ option, an existing experiment directory is not over-
written. Any directory with the same name either needs to be renamed,
moved, or removed, before the experiment can be conducted.

This is in contrast with the behaviour for the ‘-O’ option. Any
existing directory with the same name is silently overwritten.

16 GNU gprofng

Be aware that the name of the experiment directory has to end with
.er.

3.1.8 Control the Number of Lines in the Output

The limit <n> command can be used to control the number of lines printed
in various views. For example it impacts the function view, but also takes
effect for other display commands, like lines.

The argument <n> should be a positive integer number. It sets the
number of lines in the (function) view. A value of zero resets the limit to
the default.

Be aware that the pseudo-function <Total> counts as a regular func-
tion. For example limit 10 displays nine user level functions.

3.1.9 Sorting the Performance Data

The sort <key> command sets the key to be used when sorting the perfor-
mance data.

The key is a valid metric definition, but the visibility field (See
Section 7.3 [Metric Definitions], page 59) in the metric definition is ignored,
since this does not affect the outcome of the sorting operation. For example
if the sort key is set to e.totalcpu, the values will be sorted in descending
order with respect to the exclusive total CPU time.

The data can be sorted in reverse order by prepending the metric
definition with a minus (‘-’) sign. For example sort -e.totalcpu.

A default metric for the sort operation has been defined and since
this is a persistent command, this default can be restored with default as
the key (sort default).

3.1.10 Scripting

The list with commands for gprofng display text can be very long. This
is tedious and also error prone. Luckily, there is an easier and elegant way
to control the output of this tool.

Through the script command, the name of a file with commands can
be passed in. These commands are parsed and executed as if they appeared
on the command line in the same order as encountered in the file. The
commands in this script file can actually be mixed with commands on the
command line and multiple script files may be used. The difference between
the commands in the script file and those used on the command line is that
the latter require a leading dash (‘-’) symbol.

Comment lines in a script file are supported. They need to start with
the ‘#’ symbol.

3.1.11 A More Elaborate Example

With the information presented so far, we can customize our data gathering
and display commands.

Chapter 3: A Mini Tutorial 17

As an example, we would like to use mxv.1.thr.er as the name for
the experiment directory. In this way, the name of the algorithm and the
number of threads that were used are included in the name. We also don’t
mind to overwrite an existing experiment directory with the same name.

All that needs to be done is to use the ‘-O’ option, followed by the
directory name of choice when running gprofng collect app:� �

$ exe=mxv-pthreads

$ m=8000

$ n=4000

$ gprofng collect app -O mxv.1.thr.er ./$exe -m $m -n $n -t 1
 	
Since we want to customize the profile and prefer to keep the com-

mand line short, the commands to generate the profile are put into a file
with the name my-script:

$ cat my-script

This is my first gprofng script

Set the metrics

metrics i.%totalcpu:e.%totalcpu:name

Use the exclusive time to sort

sort e.totalcpu

Limit the function list to 5 lines

limit 5

Show the function list

functions

This script file is specified as input to the gprofng display text
command that is used to display the performance information stored in
experiment directory mxv.1.thr.er:� �

$ gprofng display text -script my-script mxv.1.thr.er
 	
This command produces the following output:

This is my first gprofng script

Set the metrics

Current metrics: i.%totalcpu:e.%totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Use the exclusive time to sort

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Limit the function list to 5 lines

Print limit set to 5

Show the function list

Functions sorted by metric: Exclusive Total CPU Time

Incl. Total Excl. Total Name

CPU CPU

sec. % sec. %

9.703 100.00 9.703 100.00 <Total>

9.226 95.09 9.226 95.09 mxv_core

18 GNU gprofng

0.455 4.69 0.210 2.17 init_data

0.169 1.75 0.123 1.26 erand48_r

0.244 2.52 0.075 0.77 drand48

In the first part of the output the comment lines in the script file
are echoed. These are interleaved with an acknowledgement message for the
commands.

This is followed by a profile consisting of 5 lines only. For both met-
rics, the percentages plus the timings are given. The numbers are sorted
with respect to the exclusive total CPU time. Although this is the default,
for demonstration purposes we use the sort command to explicitly define
the metric for the sort.

While we executed the same job as before and only changed the name
of the experiment directory, the results are somewhat different. This is
sampling in action. The numbers are not all that different though. It is
seen that function mxv_core is responsbile for 95% of the CPU time and
init_data takes 4.5% only.

3.1.12 The Call Tree

The call tree shows the dynamic structure of the application by display-
ing the functions executed and their parent. The CPU time attributed to
each function is shown as well. This view helps to find the most expensive
execution path in the program.

This feature is enabled through the calltree command. For exam-
ple, this is how to get the call tree for our current experiment:� �

$ gprofng display text -calltree mxv.1.thr.er
 	
This displays the following structure:

Functions Call Tree. Metric: Attributed Total CPU Time

Attr. Total Name

CPU

sec. %

9.703 100.00 +-<Total>

9.226 95.09 +-start_thread

9.226 95.09 | +-<static>@0x47960 (<libgp-collector.so>)

9.226 95.09 | +-driver_mxv

9.226 95.09 | +-mxv_core

0.477 4.91 +-__libc_start_main

0.477 4.91 +-main

0.455 4.69 +-init_data

0.244 2.52 | +-drand48

0.169 1.75 | +-erand48_r

0.047 0.48 | +-__drand48_iterate

0.021 0.22 +-allocate_data

0.021 0.22 | +-malloc

0.021 0.22 | +-_int_malloc

Chapter 3: A Mini Tutorial 19

0.006 0.06 | +-sysmalloc

0.003 0.03 | +-__default_morecore

0.003 0.03 | +-sbrk

0.003 0.03 | +-brk

0.001 0.01 +-pthread_create

0.001 0.01 +-__pthread_create_2_1

At first sight this may not be what is expected and some explanation
is in place.

The top function is the pseudo-function <Total> that we have seen
before. It is introduced and shown here to provide the total value of the
metric(s).

We also see function <static>@0x47960 in the call tree and appar-
ently it is from libgp-collector.so, a library that is internal to gprofng.
The <static>marker, followed by the program counter, is shown if the name
of the function cannot be found. This function is part of the implementation
of the data collection process and should be hidden to the user. This is part
of a planned future enhancement.

In general, if a view has a function that does not appear to be part of
the user code, or seems odd anyhow, the objects and fsingle commands
are very useful to find out more about load objects in general, but also to
help identify an unknown entry in the function overview. See Section 7.6
[Load Objects and Functions], page 62.

Another thing to note is that there are two main branches. The one
under <static>@0x47960 and the second one under __libc_start_main.
This reflects the fact that this is a multithreaded program and the threaded
part shows up as a separate branch in the call tree.

The way to interpret this structure is as follows. The program starts
under control of __libc_start_main. This executes the main program
called main, which at the top level executes functions init_data, allocate_
data, and pthread_create. The latter function creates and executes the
additional thread(s).

For this multithreaded part of the code, we need to look at the branch
under function start_thread that calls the driver code for the matrix-vector
multiplication (driver_mxv), which executes the function that performs the
actual multiplication (mxv_core).

There are two things worth noting for the call tree feature:

• This is a dynamic tree and since sampling is used, it most likely looks
slighlty different across seemingly identical profile runs. In case the run
times are short, it is worth considering to use a high resolution through
the ‘-p’ option. For example use ‘-p hi’ to increase the sampling rate.

• In case hardware event counters have been enabled (See Section 3.4 [Pro-
file Hardware Event Counters], page 34), these values are also displayed
in the call tree view.

20 GNU gprofng

3.1.13 More Information on the Experiment

The experiment directory not only contains performance related data. Sev-
eral system characteristics, the profiling command executed, plus some
global performance statistics are stored and can be displayed.

The header command displays information about the experiment(s).
For example, this is command is used to extract this data from for our
experiment directory:� �

$ gprofng display text -header mxv.1.thr.er
 	
The above command prints the following information. Note that some

of the lay-out and the information has been modified. Directory paths have
been replaced <apath> for example. Textual changes are marked with the
‘<’ and ‘>’ symbols.

Experiment: mxv.1.thr.er

No errors

No warnings

Archive command ‘ /usr/bin/gp-archive -n -a on --outfile

<apath>/archive.log <apath>/mxv.1.thr.er’

Target command (64-bit): ’./mxv-pthreads -m 8000 -n 4000 -t 1’

Process pid 2750071, ppid 2750069, pgrp 2749860, sid 2742080

Current working directory: <apath>

Collector version: ‘2.40.00’; experiment version 12.4 (64-bit)

Host ‘<the-host-name>’, OS ‘Linux <version>’, page size 4096,

architecture ‘x86_64’

4 CPUs, clock speed 2294 MHz.

Memory: 3506491 pages @ 4096 = 13697 MB.

Data collection parameters:

Clock-profiling, interval = 997 microsecs.

Periodic sampling, 1 secs.

Follow descendant processes from: fork|exec|combo

Experiment started <date and time>

Experiment Ended: 9.801216173

Data Collection Duration: 9.801216173

The output above may assist in troubleshooting, or to verify some
of the operational conditions and we recommend to include this command
when generating a profile.

Related to this command there is a useful option to record comment(s)
in an experiment. To this end, use the ‘-C’ option on the gprofng collect
app tool to specify a comment string. Up to ten comment lines can be
included. These comments are displayed with the header command on the
gprofng display text tool.

Chapter 3: A Mini Tutorial 21

The overview command displays information on the experiment(s)
and also shows a summary of the values for the metric(s) used. This is an
example how to use it on the newly created experiment directory:� �

$ gprofng display text -overview mxv.1.thr.er
 	
Experiment(s):

Experiment :mxv.1.thr.er

Target : ’./mxv-pthreads -m 8000 -n 4000 -t 1’

Host : <hostname> (<ISA>, Linux <version>)

Start Time : <date and time>

Duration : 9.801 Seconds

Metrics:

Experiment Duration (Seconds): [9.801]

Clock Profiling

[X]Total CPU Time - totalcpu (Seconds): [*9.703]

Notes: ’*’ indicates hot metrics, ’[X]’ indicates currently enabled

metrics.

The metrics command can be used to change selections. The

metric_list command lists all available metrics.

This command provides a dashboard overview that helps to easily
identify where the time is spent and in case hardware event counters are
used, it shows their total values.

3.1.14 Control the Sampling Frequency

So far we did not go into details on the frequency of the sampling process,
but in some cases it is useful to change the default of 10 milliseconds.

The advantage of increasing the sampling frequency is that functions
that do not take much time per invocation are more accurately captured.
The downside is that more data is gathered. This has an impact on the
overhead of the collection process and more disk space is required.

In general this is not an immediate concern, but with heavily threaded
applications that run for an extended period of time, increasing the frequency
may have a more noticeable impact.

The -p option on the gprofng collect app tool is used to enable or
disable clock based profiling, or to explicitly set the sampling rate. This
option takes one of the following keywords:

off Disable clock based profiling.

on Enable clock based profiling with a per thread sampling interval
of 10 ms. This is the default.

lo Enable clock based profiling with a per thread sampling interval
of 100 ms.

22 GNU gprofng

hi Enable clock based profiling with a per thread sampling interval
of 1 ms.

value Enable clock based profiling with a per thread sampling interval
of value.

It may seem unnecessary to have an option to disable clock based
profiling, but there is a good reason to support this. By default, clock
profiling is enabled when conducting hardware event counter experiments
(See Section 3.4 [Profile Hardware Event Counters], page 34). With the -p
off option, this can be disabled.

If an explicit value is set for the sampling, the number can be an
integer or a floating-point number. A suffix of ‘u’ for microseconds, or ‘m’
for milliseconds is supported. If no suffix is used, the value is assumed to be
in milliseconds.

For example, the following command sets the sampling rate to 5123.4
microseconds:� �

$ gprofng collect app -p 5123.4u ./mxv-pthreads -m 8000 -n 4000 -t 1
 	
If the value is smaller than the clock profiling minimum, a warning

message is issued and it is set to the minimum. In case it is not a multiple
of the clock profiling resolution, it is silently rounded down to the nearest
multiple of the clock resolution. If the value exceeds the clock profiling
maximum, is negative, or zero, an error is reported.

Note that the header command echoes the sampling rate used.

3.1.15 Information on Load Objects

It may happen that the function view shows a function that is not known to
the user. This can easily happen with library functions for example. Luckily
there are three commands that come in handy then.

These commands are objects, fsingle, and fsummary. They pro-
vide details on load objects (See Section 7.6 [Load Objects and Functions],
page 62).

The objects command lists all load objects that have been referenced
during the performance experiment. Below we show the command and the
result for our profile job. Like before, some path names in the output have
been shortened and replaced by the <apath> symbol that represents an
absolute directory path.� �

$ gprofng display text -objects mxv.1.thr.er
 	
The output includes the name and path of the target executable:

<Unknown> (<Unknown>)

<mxv-pthreads> (<apath>/mxv-pthreads)

Chapter 3: A Mini Tutorial 23

<libdl-2.28.so> (/usr/lib64/libdl-2.28.so)

<librt-2.28.so> (/usr/lib64/librt-2.28.so)

<libc-2.28.so> (/usr/lib64/libc-2.28.so)

<libpthread-2.28.so> (/usr/lib64/libpthread-2.28.so)

<libm-2.28.so> (/usr/lib64/libm-2.28.so)

<libgp-collector.so> (/usr/lib64/gprofng/libgp-collector.so)

<ld-2.28.so> (/usr/lib64/ld-2.28.so)

<DYNAMIC_FUNCTIONS> (DYNAMIC_FUNCTIONS)

The fsingle command may be used to get more details on a specific
entry in the function view, say. For example, the command below provides
additional information on the pthread_create function shown in the func-
tion overview.� �

$ gprofng display text -fsingle pthread_create mxv.1.thr.er
 	
Below the output from this command. It has been somewhat modified

to match the display requirements.
+ gprofng display text -fsingle pthread_create mxv.1.thr.er

pthread_create

Exclusive Total CPU Time: 0. (0. %)

Inclusive Total CPU Time: 0.001 (0.0%)

Size: 258

PC Address: 8:0x00049f60

Source File: (unknown)

Object File: (unknown)

Load Object: /usr/lib64/gprofng/libgp-collector.so

Mangled Name:

Aliases:

In this table we not only see how much time was spent in this function,
we also see where it originates from. In addition to this, the size and start
address are given as well. If the source code location is known it is also
shown here.

The related fsummary command displays the same information as
fsingle, but for all functions in the function overview, including <Total>:� �

$ gprofng display text -fsummary mxv.1.thr.er
 	
Functions sorted by metric: Exclusive Total CPU Time

<Total>

Exclusive Total CPU Time: 9.703 (100.0%)

Inclusive Total CPU Time: 9.703 (100.0%)

Size: 0

PC Address: 1:0x00000000

Source File: (unknown)

Object File: (unknown)

Load Object: <Total>

Mangled Name:

24 GNU gprofng

Aliases:

mxv_core

Exclusive Total CPU Time: 9.226 (95.1%)

Inclusive Total CPU Time: 9.226 (95.1%)

Size: 80

PC Address: 2:0x00001d56

Source File: <apath>/src/mxv.c

Object File: mxv.1.thr.er/archives/mxv-pthreads_ss_pf53V__5

Load Object: <apath>/mxv-pthreads

Mangled Name:

Aliases:

... etc ...

3.2 Support for Multithreading
In this chapter the support for multithreading is introduced and discussed.
As is shown below, nothing needs to be changed when collecting the perfor-
mance data.

The difference is that additional commands are available to get more
information on the multithreading details, plus that several filters allow the
user to zoom in on specific threads.

3.2.1 Creating a Multithreading Experiment

We demonstrate the support for multithreading using the same code and
settings as before, but this time 2 threads are used:� �

$ exe=mxv-pthreads

$ m=8000

$ n=4000

$ gprofng collect app -O mxv.2.thr.er ./$exe -m $m -n $n -t 2
 	
First of all, in as far as gprofng is concerned, no changes are needed.

Nothing special is needed to profile a multithreaded job when using gprofng.

The same is true when displaying the performance results. The same
commands that were used before work unmodified. For example, this is all
that is needed to get a function overview:� �

$ gprofng display text -limit 5 -functions mxv.2.thr.er
 	
This produces the following familiar looking output:

Print limit set to 5

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Incl. Total Name

CPU CPU

Chapter 3: A Mini Tutorial 25

sec. % sec. %

9.464 100.00 9.464 100.00 <Total>

8.961 94.69 8.961 94.69 mxv_core

0.224 2.37 0.469 4.95 init_data

0.105 1.11 0.177 1.88 erand48_r

0.073 0.77 0.073 0.77 __drand48_iterate

3.2.2 Commands Specific to Multithreading

The function overview shown above shows the results aggregated over all
the threads. The interesting new element is that we can also look at the
performance data for the individual threads.

The thread_list command displays how many threads have been
used:� �

$ gprofng display text -thread_list mxv.2.thr.er
 	
This produces the following output, showing that three threads have

been used:
Exp Sel Total

=== === =====

1 all 3

The output confirms there is one experiment and that by default all
threads are selected.

It may seem surprising to see three threads here, since we used the
-t 2 option, but it is common for a Pthreads program to use one additional
thread. Typically, there is one main thread that runs from start to finish. It
handles the sequential portions of the code, as well as thread management
related tasks. It is no different in the example code. At some point, the main
thread creates and activates the two threads that perform the multiplication
of the matrix with the vector. Upon completion of this computation, the
main thread continues.

The threads command is simple, yet very powerful. It shows the
total value of the metrics for each thread.� �

$ gprofng display text -threads mxv.2.thr.er
 	
The command above produces the following overview:

Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

9.464 100.00 <Total>

4.547 48.05 Process 1, Thread 3

4.414 46.64 Process 1, Thread 2

0.502 5.31 Process 1, Thread 1

26 GNU gprofng

The first line gives the total CPU time accumulated over the threads
selected. This is followed by the metric value(s) for each thread.

From this it is clear that the main thread is responsible for a little
over 5% of the total CPU time, while the other two threads take 47-48%
each.

This view is ideally suited to verify if there are any load balancing
issues and also to find the most time consuming thread(s).

While useful, often more information than this is needed. This is
where the thread selection filter comes in. Through the thread_select com-
mand, one or more threads may be selected. See Section 7.5 [The Selection
List], page 60, how to define the selection list.

Since it is most common to use this command in a script, we do so
as well here. Below the script we are using:� �

Define the metrics

metrics e.%totalcpu

Limit the output to 5 lines

limit 5

Get the function overview for thread 1

thread_select 1

functions

Get the function overview for thread 2

thread_select 2

functions

Get the function overview for thread 3

thread_select 3

functions
 	
The definition of the metrics and the output limit have been shown

and explained earlier. The new command to focus on is thread_select.

This command takes a list (See Section 7.5 [The Selection List],
page 60) to select specific threads. In this case, the individual thread num-
bers that were obtained earlier with the thread_list command are selected.

This restricts the output of the functions command to the thread
number(s) specified. This means that the script above shows which func-
tion(s) each thread executes and how much CPU time they consumed. Both
the exclusive timings and their percentages are given.

Note that technically this command is a filter and persistent. The
selection remains active until changed through another thread selection com-
mand, or when it is reset with the ‘all’ selection list.

This is the relevant part of the output for the first thread:
Exp Sel Total

=== === =====

1 1 3

Functions sorted by metric: Exclusive Total CPU Time

Chapter 3: A Mini Tutorial 27

Excl. Total Name

CPU

sec. %

0.502 100.00 <Total>

0.224 44.64 init_data

0.105 20.83 erand48_r

0.073 14.48 __drand48_iterate

0.067 13.29 drand48

As usual, the comment lines are echoed. This is followed by a confir-
mation of the selection. The first table shows that one experiment is loaded
and that thread 1 out of the three threads has been selected. What is dis-
played next is the function overview for this particular thread. Due to the
limit 5 command, there are only five functions in this list.

Clearly, this thread handles the data initialization part and as we
know from the call tree output, function init_data executes the 3 other
functions shown in this profile.

Below are the overviews for threads 2 and 3 respectively. It is seen
that all of the CPU time is spent in function mxv_core and that this time
is approximately the same for both threads.

Get the function overview for thread 2

Exp Sel Total

=== === =====

1 2 3

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

4.414 100.00 <Total>

4.414 100.00 mxv_core

0. 0. <static>@0x48630 (<libgp-collector.so>)

0. 0. driver_mxv

0. 0. start_thread

Get the function overview for thread 3

Exp Sel Total

=== === =====

1 3 3

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

4.547 100.00 <Total>

4.547 100.00 mxv_core

0. 0. <static>@0x48630 (<libgp-collector.so>)

0. 0. driver_mxv

0. 0. start_thread

28 GNU gprofng

When analyzing the performance of a multithreaded application, it
is sometimes useful to know whether threads have mostly executed on the
same core, say, or if they have wandered across multiple cores. This sort of
stickiness is usually referred to as thread affinity.

Similar to the commands for the threads, there are several commands
related to the usage of the cores, or CPUs as they are called in gprofng (See
Section 7.7 [The Concept of a CPU in gprofng], page 62).

Similar to the thread_list command, the cpu_list command dis-
plays how many CPUs have been used. The equivalent of the threads
threads command, is the cpus command, which shows the numbers of the
CPUs that were used and the metric values for each one of them. Both
commands are demonstrated below.� �

$ gprofng display text -cpu_list -cpus mxv.2.thr.er
 	
This command produces the following output:

+ gprofng display text -cpu_list -cpus mxv.2.thr.er

Exp Sel Total

=== === =====

1 all 4

Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

9.464 100.00 <Total>

4.414 46.64 CPU 2

2.696 28.49 CPU 0

1.851 19.56 CPU 1

0.502 5.31 CPU 3

The first table shows that there is only one experiment and that all
of the four CPUs have been selected. The second table shows the exclusive
metrics for each of the CPUs that have been used.

As also echoed in the output, the data is sorted with respect to the
exclusive CPU time, but it is very easy to sort the data by the CPU id by
using the sort command:� �

$ gprofng display text -cpu_list -sort name -cpus mxv.2.thr.er
 	
With the sort added, the output is as follows:

Exp Sel Total

=== === =====

1 all 4

Current Sort Metric: Name (name)

Objects sorted by metric: Name

Chapter 3: A Mini Tutorial 29

Excl. Total Name

CPU

sec. %

9.464 100.00 <Total>

2.696 28.49 CPU 0

1.851 19.56 CPU 1

4.414 46.64 CPU 2

0.502 5.31 CPU 3

While the table with thread times shown earlier may point at a load
imbalance in the application, this overview has a different purpose.

For example, we see that 4 CPUs have been used, but we know that
the application uses 3 threads only. We will now demonstrate how filters
can be used to help answer the question why 4 CPUs are used, while the
application has 3 threads only. This means that at least one thread has
executed on more than one CPU.

Recall the thread level timings:
Excl. Total Name

CPU

sec. %

9.464 100.00 <Total>

4.547 48.05 Process 1, Thread 3

4.414 46.64 Process 1, Thread 2

0.502 5.31 Process 1, Thread 1

Compared to the CPU timings above, it seems very likely that thread
3 has used more than one CPU, because the thread and CPU timings are
the same for both other threads.

The command below selects thread number 3 and then requests the
CPU utilization for this thread:� �

$ gprofng display text -thread_select 3 -sort name -cpus mxv.2.thr.er
 	
The output shown below confirms that thread 3 is selected and then

displays the CPU(s) that have been used by this thread:
Exp Sel Total

=== === =====

1 3 3

Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

4.547 100.00 <Total>

2.696 59.29 CPU 0

1.851 40.71 CPU 1

The results show that this thread has used CPU 0 nearly 60% of the
time and CPU 1 for the remaining 40%.

30 GNU gprofng

To confirm that this is the only thread that has used more than one
CPU, the same approach can be used for threads 1 and 2:

$ gprofng display text -thread_select 1 -cpus mxv.2.thr.er

Exp Sel Total

=== === =====

1 1 3

Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

0.502 100.00 <Total>

0.502 100.00 CPU 3

$ gprofng display text -thread_select 2 -cpus mxv.2.thr.er

Exp Sel Total

=== === =====

1 2 3

Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

4.414 100.00 <Total>

4.414 100.00 CPU 2

The output above shows that indeed threads 1 and 2 each have used a single
CPU only.

3.3 View Multiple Experiments
One thing we did not cover sofar is that gprofng fully supports the analysis
of multiple experiments. The gprofng display text tool accepts a list of
experiments. The data can either be aggregated across the experiments, or
used in a comparison.

The default is to aggregate the metric values across the experiments
that have been loaded. The compare command can be used to enable the
comparison of results.

In this section both modes are illustrated with an example.

3.3.1 Aggregation of Experiments

If the data for multiple experiments is aggregrated, the gprofng display
text tool shows the combined results. For example, below is the script
to show the function view for the data aggregated over two experiments,
drop the first experiment and then show the function view fo the second
experiment only. We will call it my-script-agg.

Chapter 3: A Mini Tutorial 31� �
Define the metrics

metrics e.%totalcpu

Limit the output to 5 lines

limit 5

Get the list with experiments

experiment_list

Get the function overview for all

functions

Drop the first experiment

drop_exp mxv.2.thr.er

Get the function overview for exp #2

functions
 	
With the exception of the experiment_list command, all commands

used have been discussed earlier.

The experiment_list command provides a list of the experiments
that have been loaded. This may be used to get the experiment IDs and to
verify the correct experiments are loaded for the aggregation.

Below is an example that loads two experiments and uses the above script
to display different function views.� �

$ gprofng display text -script my-script-agg mxv.2.thr.er mxv.4.thr.er
 	
This produces the following output:

Define the metrics

Current metrics: e.%totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Limit the output to 5 lines

Print limit set to 5

Get the list with experiments

ID Sel PID Experiment

== === ======= ============

1 yes 1339450 mxv.2.thr.er

2 yes 3579561 mxv.4.thr.er

Get the function overview for all

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

20.567 100.00 <Total>

19.553 95.07 mxv_core

0.474 2.30 init_data

0.198 0.96 erand48_r

0.149 0.72 drand48

Drop the first experiment

Experiment mxv.2.thr.er has been dropped

32 GNU gprofng

Get the function overview for exp #2

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

11.104 100.00 <Total>

10.592 95.39 mxv_core

0.249 2.24 init_data

0.094 0.84 erand48_r

0.082 0.74 drand48

The first five lines should look familiar. The five lines following echo
the comment line in the script and show the overview of the experiments.
This confirms two experiments have been loaded and that both are active.
This is followed by the function overview. The timings have been summed
up and the percentages are adjusted accordingly.

3.3.2 Comparison of Experiments

The support for multiple experiments really shines in comparison mode.
In comparison mode, the data for the various experiments is shown side by
side, as illustrated below where we compare the results for the multithreaded
experiments using two and four threads respectively.

This feature is controlled through the compare command.

The comparison mode is enabled through compare on and with
compare off it is disabled again. In addition to ‘on’, or ‘off’, this com-
mand also supports the ‘delta’ and ‘ratio’ keywords.

This is the script that will be used in our example. It sets the com-
parison mode to ‘on’:

Define the metrics

metrics e.%totalcpu

Limit the output to 5 lines

limit 5

Set the comparison mode to differences

compare on

Get the function overview

functions

Assuming this script file is called my-script-comp, this is how it is
used to display the differences:� �

$ gprofng display text -script my-script-comp mxv.2.thr.er mxv.4.thr.er
 	
This produces the output shown below. The data for the first experiment is
shown as absolute numbers. The timings for the other experiment are shown
as a delta relative to these reference numbers:

mxv.2.thr.er mxv.4.thr.er

Chapter 3: A Mini Tutorial 33

Excl. Total Excl. Total Name

CPU CPU

sec. % sec. %

9.464 100.00 11.104 100.00 <Total>

8.961 94.69 10.592 95.39 mxv_core

0.224 2.37 0.249 2.24 init_data

0.105 1.11 0.094 0.84 erand48_r

0.073 0.77 0.060 0.54 __drand48_iterate

This table is already helpful to more easily compare (two) profiles,
but there is more that we can do here.

By default, in comparison mode, all measured values are shown. Of-
ten profiling is about comparing performance data. It is therefore sometimes
more useful to look at differences or ratios, using one experiment as a refer-
ence.

The values shown are relative to this difference. For example if a ratio
is below one, it means the reference value was higher.

In the example below, we use the same two experiments used in the
comparison above. The script is also nearly identical. The only change is
that we now use the ‘delta’ keyword.

As before, the number of lines is restricted to 5 and we focus on the
exclusive timings plus percentages. For the comparison part we are interested
in the differences.

This is the script that produces such an overview:
Define the metrics

metrics e.%totalcpu

Limit the output to 5 lines

limit 5

Set the comparison mode to differences

compare delta

Get the function overview

functions

Assuming this script file is called my-script-comp2, this is how we
get the table displayed on our screen:� �

$ gprofng display text -script my-script-comp2 mxv.2.thr.er mxv.4.thr.er
 	
Leaving out some of the lines printed, but we have seen before, we

get the following table:
mxv.2.thr.er mxv.4.thr.er

Excl. Total Excl. Total Name

CPU CPU

sec. % delta %

9.464 100.00 +1.640 100.00 <Total>

8.961 94.69 +1.631 95.39 mxv_core

0.224 2.37 +0.025 2.24 init_data

0.105 1.11 -0.011 0.84 erand48_r

0.073 0.77 -0.013 0.54 __drand48_iterate

34 GNU gprofng

It is now easier to see that the CPU times for the most time consuming
functions in this code are practically the same.

It is also possible to show ratio’s through the compare ratio com-
mand. The first colum is used as a reference and the values for the other
columns with metrics are derived by dividing the value by the reference. The
result for such a comparison is shown below:

mxv.2.thr.er mxv.4.thr.er

Excl. Total Excl. Total CPU Name

CPU

sec. % ratio %

9.464 100.00 x 1.173 100.00 <Total>

8.961 94.69 x 1.182 95.39 mxv_core

0.224 2.37 x 1.111 2.24 init_data

0.105 1.11 x 0.895 0.84 erand48_r

0.073 0.77 x 0.822 0.54 __drand48_iterate

Note that the comparison feature is supported at the function, source,
and disassembly level. There is no practical limit on the number of experi-
ments that can be used in a comparison.

3.4 Profile Hardware Event Counters
Many processors provide a set of hardware event counters and gprofng pro-
vides support for this feature. See Section 7.8 [Hardware Event Counters
Explained], page 63, for those readers that are not familiar with such coun-
ters and like to learn more.

In this section we explain how to get the details on the event counter
support for the processor used in the experiment(s), and show several exam-
ples.

3.4.1 Getting Information on the Counters Supported

The first step is to check if the processor used for the experiments is sup-
ported by gprofng. The -h option on gprofng collect app will show the
event counter information:� �

$ gprofng collect app -h
 	
In case the counters are supported, a list with the events is printed.

Otherwise, a warning message will be issued.

For example, below we show this command and the output on an Intel
Xeon Platinum 8167M (aka “Skylake”) processor. The output has been split
into several sections and each section is commented upon separately.

Run "gprofng collect app --help" for a usage message.

Specifying HW counters on ‘Intel Arch PerfMon v2 on Family 6 Model 85’

(cpuver=2499):

Chapter 3: A Mini Tutorial 35

-h {auto|lo|on|hi}

turn on default set of HW counters at the specified rate

-h <ctr_def> [-h <ctr_def>]...

-h <ctr_def>[,<ctr_def>]...

specify HW counter profiling for up to 4 HW counters

The first line shows how to get a usage overview. This is followed
by some information on the target processor. The next five lines explain in
what ways the -h option can be used to define the events to be monitored.

The first version shown above enables a default set of counters. This
default depends on the processor this command is executed on. The keyword
following the -h option defines the sampling rate:

auto Match the sample rate of used by clock profiling. If the latter is
disabled, Use a per thread sampling rate of approximately 100
samples per second. This setting is the default and preferred.

on Use a per thread sampling rate of approximately 100 samples
per second.

lo Use a per thread sampling rate of approximately 10 samples per
second.

hi Use a per thread sampling rate of approximately 1000 samples
per second.

The second and third variant define the events to be monitored. Note
that the number of simultaneous events supported is printed. In this case
we can monitor four events in a single profiling job.

It is a matter of preference whether you like to use the -h option for
each event, or use it once, followed by a comma separated list.

There is one slight catch though. The counter definition below has
mandatory comma (,) between the event and the rate. While a default can
be used for the rate, the comma cannot be omitted. This may result in a
somewhat awkward counter definition in case the default sampling rate is
used.

For example, the following two commands are equivalent. Note the
double comma in the second command. This is not a typo.� �

$ gprofng collect app -h cycles -h insts ...

$ gprofng collect app -h cycles,,insts ...
 	
In the first command this comma is not needed, because a comma

(“,”) immediately followed by white space may be omitted.

This is why we prefer the this syntax and in the remainder will use
the first version of this command.

The counter definition takes an event name, plus optionally one or
more attributes, followed by a comma, and optionally the sampling rate.
The output section below shows the formal definition.

36 GNU gprofng� �
<ctr_def> == <ctr>[[~<attr>=<val>]...],[<rate>]
 	
The printed help then explains this syntax. Below we have summa-

rized and expanded this output:

<ctr> The counter name must be selected from the available counters
listed as part of the output printed with the -h option. On most
systems, if a counter is not listed, it may still be specified by its
numeric value.

~<attr>=<val>
This is an optional attribute that depends on the processor.
The list of supported attributes is printed in the output. Exam-
ples of attributes are “user”, or “system”. The value can given
in decimal or hexadecimal format. Multiple attributes may be
specified, and each must be preceded by a ~.

<rate>

The sampling rate is one of the following:

auto This is the default and matches the rate used by
clock profiling. If clock profiling is disabled, use
‘on’.

on Set the per thread maximum sampling rate to ~100
samples/second

lo Set the per thread maximum sampling rate to ~10
samples/second

hi Set the per thread maximum sampling rate to ~1000
samples/second

<interval>
Define the sampling interval. See Section 3.1.14
[Control the Sampling Frequency], page 21, how to
define this.

After the section with the formal definition of events and counters,
a processor specific list is displayed. This part starts with an overview of
the default set of counters and the aliased names supported on this specific
processor.

Default set of HW counters:

-h cycles,,insts,,llm

Aliases for most useful HW counters:

alias raw name type units regs description

cycles unhalted-core-cycles CPU-cycles 0123 CPU Cycles

Chapter 3: A Mini Tutorial 37

insts instruction-retired events 0123 Instructions Executed

llm llc-misses events 0123 Last-Level Cache Misses

br_msp branch-misses-retired events 0123 Branch Mispredict

br_ins branch-instruction-retired events 0123 Branch Instructions

The definitions given above may or may not be available on other processors.

The table above shows the default set of counters defined for this
processor, and the aliases. For each alias the full “raw” name is given, plus
the unit of the number returned by the counter (CPU cycles, or a raw count),
the hardware counter the event is allowed to be mapped onto, and a short
description.

The last part of the output contains all the events that can be moni-
tored:

Raw HW counters:

name type units regs description

unhalted-core-cycles CPU-cycles 0123

unhalted-reference-cycles events 0123

instruction-retired events 0123

llc-reference events 0123

llc-misses events 0123

branch-instruction-retired events 0123

branch-misses-retired events 0123

ld_blocks.store_forward events 0123

ld_blocks.no_sr events 0123

ld_blocks_partial.address_alias events 0123

dtlb_load_misses.miss_causes_a_walk events 0123

dtlb_load_misses.walk_completed_4k events 0123

<many lines deleted>

l2_lines_out.silent events 0123

l2_lines_out.non_silent events 0123

l2_lines_out.useless_hwpf events 0123

sq_misc.split_lock events 0123

As can be seen, these names are not always easy to correlate to a
specific event of interest. The processor manual should provide more clarity
on this.

3.4.2 Examples Using Hardware Event Counters

The previous section may give the impression that these counters are hard
to use, but as we will show now, in practice it is quite simple.

With the information from the -h option, we can easily set up our
first event counter experiment.

We start by using the default set of counters defined for our processor
and we use 2 threads:

38 GNU gprofng� �
$ exe=mxv-pthreads

$ m=8000

$ n=4000

$ exp=mxv.hwc.def.2.thr.er

$ gprofng collect app -O $exp -h auto ./$exe -m $m -n $n -t 2
 	
The new option here is -h auto. The auto keyword enables hardware

event counter profiling and selects the default set of counters defined for this
processor.

As before, we can display the information, but there is one practical
hurdle to take. Unless we like to view all metrics recorded, we would need to
know the names of the events that have been enabled. This is tedious and
also not portable in case we would like to repeat this experiment on another
processor.

This is where the special hwc metric comes very handy. It automati-
cally expands to the active set of events used.

With this, it is very easy to display the event counter values. Note
that although the regular clock based profiling was enabled, we only want
to see the counter values. We also request to see the percentages and limit
the output to the first 5 lines:� �

$ exp=mxv.hwc.def.2.thr.er

$ gprofng display text -metrics e.%hwc -limit 5 -functions $exp
 	
Current metrics: e.%cycles:e+%insts:e+%llm:name

Current Sort Metric: Exclusive CPU Cycles (e.%cycles)

Print limit set to 5

Functions sorted by metric: Exclusive CPU Cycles

Excl. CPU Excl. Instructions Excl. Last-Level Name

Cycles Executed Cache Misses

sec. % % %

2.691 100.00 7906475309 100.00 122658983 100.00 <Total>

2.598 96.54 7432724378 94.01 121745696 99.26 mxv_core

0.035 1.31 188860269 2.39 70084 0.06 erand48_r

0.026 0.95 73623396 0.93 763116 0.62 init_data

0.018 0.66 76824434 0.97 40040 0.03 drand48

As we have seen before, the first few lines echo the settings. This
includes a list with the hardware event counters used by default.

The table that follows makes it very easy to get an overview where
the time is spent and how many of the target events have occurred.

As before, we can drill down deeper and see the same metrics at
the source line and instruction level. Other than using hwc in the metrics
definitions, nothing has changed compared to the previous examples:

Chapter 3: A Mini Tutorial 39� �
$ exp=mxv.hwc.def.2.thr.er

$ gprofng display text -metrics e.hwc -source mxv_core $exp
 	
This is the relevant part of the output. Since the lines get very long,

we have somewhat modified the lay-out:

Excl. CPU Excl. Excl.

Cycles Instructions Last-Level

sec. Executed Cache Misses

<Function: mxv_core>

0. 0 0 32. void __attribute__ ((noinline))

mxv_core(...)

0. 0 0 33. {

0. 0 0 34. for (uint64_t i=...) {

0. 0 0 35. double row_sum = 0.0;

1.872 7291879319 88150571 36. for (int64_t j=0; j<n; j++)

0.725 140845059 33595125 37. row_sum += A[i][j]*b[j];

0. 0 0 38. c[i] = row_sum;

39. }

0. 0 0 40. }

In a smiliar way we can display the event counter values at the instruc-
tion level. Again we have modified the lay-out due to page width limitations:� �

$ exp=mxv.hwc.def.2.thr.er

$ gprofng display text -metrics e.hwc -disasm mxv_core $exp
 	
Excl. CPU Excl. Excl.

Cycles Instructions Last-Level

sec. Executed Cache Misses

<Function: mxv_core>

0. 0 0 [33] 4021ba: mov 0x8(%rsp),%r10

34. for (uint64_t i=...) {

0. 0 0 [34] 4021bf: cmp %rsi,%rdi

0. 0 0 [34] 4021c2: jbe 0x37

0. 0 0 [34] 4021c4: ret

35. double row_sum = 0.0;

36. for (int64_t j=0; j<n; j++)

37. row_sum += A[i][j]*b[j];

0. 0 0 [37] 4021c5: mov (%r8,%rdi,8),%rdx

0. 0 0 [36] 4021c9: mov $0x0,%eax

0. 0 0 [35] 4021ce: pxor %xmm1,%xmm1

0.002 12804230 321394 [37] 4021d2: movsd (%rdx,%rax,8),%xmm0

0.141 60819025 3866677 [37] 4021d7: mulsd (%r9,%rax,8),%xmm0

0.582 67221804 29407054 [37] 4021dd: addsd %xmm0,%xmm1

1.871 7279075109 87989870 [36] 4021e1: add $0x1,%rax

0.002 12804210 80351 [36] 4021e5: cmp %rax,%rcx

0. 0 0 [36] 4021e8: jne 0xffffffffffffffea

38. c[i] = row_sum;

0. 0 0 [38] 4021ea: movsd %xmm1,(%r10,%rdi,8)

0. 0 0 [34] 4021f0: add $0x1,%rdi

40 GNU gprofng

0. 0 0 [34] 4021f4: cmp %rdi,%rsi

0. 0 0 [34] 4021f7: jb 0xd

0. 0 0 [35] 4021f9: pxor %xmm1,%xmm1

0. 0 0 [36] 4021fd: test %rcx,%rcx

0. 0 80350 [36] 402200: jne 0xffffffffffffffc5

0. 0 0 [36] 402202: jmp 0xffffffffffffffe8

39. }

40. }

0. 0 0 [40] 402204: ret

So far we have used the default settings for the event counters. It is
quite straightforward to select specific counters. For sake of the example,
let’s assume we would like to count how many branch instructions and retired
memory load instructions that missed in the L1 cache have been executed.
We also want to count these events with a high resolution.

This is the command to do so:� �
$ exe=mxv-pthreads

$ m=8000

$ n=4000

$ exp=mxv.hwc.sel.2.thr.er

$ hwc1=br_ins,hi

$ hwc2=mem_load_retired.l1_miss,hi

$ gprofng collect app -O $exp -h $hwc1 -h $hwc2 $exe -m $m -n $n -t 2
 	
As before, we get a table with the event counts. Due to the very long

name for the second counter, we have somewhat modified the output.� �
$ gprofng display text -limit 10 -functions mxv.hwc.sel.2.thr.er
 	
Functions sorted by metric: Exclusive Total CPU Time

Excl. Incl. Excl. Branch Excl. Name

Total Total Instructions mem_load_retired.l1_miss

CPU sec. CPU sec. Events

2.597 2.597 1305305319 4021340 <Total>

2.481 2.481 1233233242 3982327 mxv_core

0.040 0.107 19019012 9003 init_data

0.028 0.052 23023048 15006 erand48_r

0.024 0.024 19019008 9004 __drand48_iterate

0.015 0.067 11011009 2998 drand48

0.008 0.010 0 3002 _int_malloc

0.001 0.001 0 0 brk

0.001 0.002 0 0 sysmalloc

0. 0.001 0 0 __default_morecore

When using event counters, the values could be very large and it is
not easy to compare the numbers. As we will show next, the ratio feature
is very useful when comparing such profiles.

To demonstrate this, we have set up another event counter experiment
where we would like to compare the number of last level cache miss and the

Chapter 3: A Mini Tutorial 41

number of branch instructions executed when using a single thread, or two
threads.

These are the commands used to generate the experiment directories:� �
$ exe=./mxv-pthreads

$ m=8000

$ n=4000

$ exp1=mxv.hwc.comp.1.thr.er

$ exp2=mxv.hwc.comp.2.thr.er

$ gprofng collect app -O $exp1 -h llm -h br_ins $exe -m $m -n $n -t 1

$ gprofng collect app -O $exp2 -h llm -h br_ins $exe -m $m -n $n -t 2
 	
The following script has been used to get the tables. Due to lay-out

restrictions, we have to create two tables, one for each counter.� �
Limit the output to 5 lines

limit 5

Define the metrics

metrics name:e.llm

Set the comparison to ratio

compare ratio

functions

Define the metrics

metrics name:e.br_ins

Set the comparison to ratio

compare ratio

functions
 	
Note that we print the name of the function first, followed by the

counter data. The new element is that we set the comparison mode to
ratio. This divides the data in a column by its counterpart in the reference
experiment.

This is the command using this script and the two experiment direc-
tories as input:� �

$ gprofng display text -script my-script-comp-counters \

mxv.hwc.comp.1.thr.er \

mxv.hwc.comp.2.thr.er
 	
By design, we get two tables, one for each counter:

Functions sorted by metric: Exclusive Last-Level Cache Misses

mxv.hwc.comp.1.thr.er mxv.hwc.comp.2.thr.er

Name Excl. Last-Level Excl. Last-Level

Cache Misses Cache Misses

ratio

<Total> 122709276 x 0.788

42 GNU gprofng

mxv_core 121796001 x 0.787

init_data 723064 x 1.055

erand48_r 100111 x 0.500

drand48 60065 x 1.167

Functions sorted by metric: Exclusive Branch Instructions

mxv.hwc.comp.1.thr.er mxv.hwc.comp.2.thr.er

Name Excl. Branch Excl. Branch

Instructions Instructions

ratio

<Total> 1307307316 x 0.997

mxv_core 1235235239 x 0.997

erand48_r 23023033 x 0.957

drand48 20020009 x 0.600

__drand48_iterate 17017028 x 0.882

A ratio less than one in the second column, means that this counter
value was smaller than the value from the reference experiment shown in the
first column.

This kind of presentation of the results makes it much easier to quickly
interpret the data.

We conclude this section with thread-level event counter overviews,
but before we go into this, there is an important metric we need to mention.

In case it is known how many instructions and CPU cycles have been
executed, the value for the IPC (“Instructions Per Clockycle”) can be com-
puted. See Section 7.8 [Hardware Event Counters Explained], page 63. This
is a derived metric that gives an indication how well the processor is utilized.
The inverse of the IPC is called CPI.

The gprofng display text command automatically computes the
IPC and CPI values if an experiment contains the event counter values for
the instructions and CPU cycles executed. These are part of the metric list
and can be displayed, just like any other metric.

This can be verified through the metric_list command. If we go
back to our earlier experiment with the default event counters, we get the
following result.� �

$ gprofng display text -metric_list mxv.hwc.def.2.thr.er
 	
Current metrics: e.totalcpu:i.totalcpu:e.cycles:e+insts:e+llm:name

Current Sort Metric: Exclusive Total CPU Time (e.totalcpu)

Available metrics:

Exclusive Total CPU Time: e.%totalcpu

Inclusive Total CPU Time: i.%totalcpu

Exclusive CPU Cycles: e.+%cycles

Inclusive CPU Cycles: i.+%cycles

Exclusive Instructions Executed: e+%insts

Inclusive Instructions Executed: i+%insts

Chapter 3: A Mini Tutorial 43

Exclusive Last-Level Cache Misses: e+%llm

Inclusive Last-Level Cache Misses: i+%llm

Exclusive Instructions Per Cycle: e+IPC

Inclusive Instructions Per Cycle: i+IPC

Exclusive Cycles Per Instruction: e+CPI

Inclusive Cycles Per Instruction: i+CPI

Size: size

PC Address: address

Name: name

Among the other metrics, we see the new metrics for the IPC and
CPI listed.

In the script below, we use this information and add the IPC and
CPI to the metrics to be displayed. We also use a the thread filter to display
these values for the individual threads.

This is the complete script we have used. Other than a different
selection of the metrics, there are no new features.� �

Define the metrics

metrics e.insts:e.%cycles:e.IPC:e.CPI

Sort with respect to cycles

sort e.cycles

Limit the output to 5 lines

limit 5

Get the function overview for all threads

functions

Get the function overview for thread 1

thread_select 1

functions

Get the function overview for thread 2

thread_select 2

functions

Get the function overview for thread 3

thread_select 3

functions
 	
In the metrics definition on the second line, we explicitly request the

counter values for the instructions (e.insts) and CPU cycles (e.cycles)
executed. These names can be found in output from the metric_list
command above. In addition to these metrics, we also request the IPC and
CPI to be shown.

As before, we used the limit command to control the number of
functions displayed. We then request an overview for all the threads, followed
by three sets of two commands to select a thread and display the function
overview.

The script above is used as follows:

44 GNU gprofng� �
$ gprofng display text -script my-script-ipc mxv.hwc.def.2.thr.er
 	

This script produces four tables. We list them separately below, and have
left out the additional output.

The first table shows the accumulated values across the three threads that
have been active.

Functions sorted by metric: Exclusive CPU Cycles

Excl. Excl. CPU Excl. Excl. Name

Instructions Cycles IPC CPI

Executed sec. %

7906475309 2.691 100.00 1.473 0.679 <Total>

7432724378 2.598 96.54 1.434 0.697 mxv_core

188860269 0.035 1.31 2.682 0.373 erand48_r

73623396 0.026 0.95 1.438 0.696 init_data

76824434 0.018 0.66 2.182 0.458 drand48

This shows that IPC of this program is completely dominated by function
mxv_core. It has a fairly low IPC value of 1.43.

The next table is for thread 1 and shows the values for the main thread.
Exp Sel Total

=== === =====

1 1 3

Functions sorted by metric: Exclusive CPU Cycles

Excl. Excl. CPU Excl. Excl. Name

Instructions Cycles IPC CPI

Executed sec. %

473750931 0.093 100.00 2.552 0.392 <Total>

188860269 0.035 37.93 2.682 0.373 erand48_r

73623396 0.026 27.59 1.438 0.696 init_data

76824434 0.018 18.97 2.182 0.458 drand48

134442832 0.013 13.79 5.250 0.190 __drand48_iterate

Although this thread hardly uses any CPU cycles, the overall IPC of 2.55 is
not all that bad.

Last, we show the tables for threads 2 and 3:
Exp Sel Total

=== === =====

1 2 3

Functions sorted by metric: Exclusive CPU Cycles

Excl. Excl. CPU Excl. Excl. Name

Instructions Cycles IPC CPI

Executed sec. %

3716362189 1.298 100.00 1.435 0.697 <Total>

3716362189 1.298 100.00 1.435 0.697 mxv_core

0 0. 0. 0. 0. collector_root

0 0. 0. 0. 0. driver_mxv

Chapter 3: A Mini Tutorial 45

Exp Sel Total

=== === =====

1 3 3

Functions sorted by metric: Exclusive CPU Cycles

Excl. Excl. CPU Excl. Excl. Name

Instructions Cycles IPC CPI

Executed sec. %

3716362189 1.300 100.00 1.433 0.698 <Total>

3716362189 1.300 100.00 1.433 0.698 mxv_core

0 0. 0. 0. 0. collector_root

0 0. 0. 0. 0. driver_mxv

It is seen that both execute the same number of instructions and take
about the same number of CPU cycles. As a result, the IPC is the same for
both threads.

3.5 Java Profiling
The gprofng collect app command supports Java profiling. The -j on
option can be used for this, but since this feature is enabled by default, there
is no need to set this explicitly. Java profiling may be disabled through the
-j off option.

The program is compiled as usual and the experiment directory is
created similar to what we have seen before. The only difference with a
C/C++ application is that the program has to be explicitly executed by java.

For example, this is how to generate the experiment data for a Java
program that has the source code stored in file Pi.java:� �

$ javac Pi.java

$ gprofng collect app -j on -O pi.demo.er java Pi < pi.in
 	
Regarding which java is selected to generate the data, gprofng first

looks for the JDK in the path set in either the JDK_HOME environment
variable, or in the JAVA_PATH environment variable. If neither of these
variables is set, it checks for a JDK in the search path (set in the PATH
environment variable). If there is no JDK in this path, it checks for the java
executable in /usr/java/bin/java.

In case additional options need to be passed on to the JVM, the
-J <string> option can be used. The string with the option(s) has to be
delimited by quotation marks in case there is more than one argument.

The gprofng display text command may be used to view the per-
formance data. There is no need for any special options and the same com-
mands as previously discussed are supported.

The viewmode command See Section 7.4 [The Viewmode], page 60,
is very useful to examine the call stacks.

46 GNU gprofng

For example, this is how one can see the native call stacks. For lay-out
purposes we have restricted the list to the first five entries:� �

$ gprofng display text -limit 5 -viewmode machine -calltree pi.demo.er
 	
Print limit set to 5

Viewmode set to machine

Functions Call Tree. Metric: Attributed Total CPU Time

Attr. Name

Total

CPU sec.

1.381 +-<Total>

1.171 +-Pi.calculatePi(double)

0.110 +-collector_root

0.110 | +-JavaMain

0.070 | +-jni_CallStaticVoidMethod

Note that the selection of the viewmode is echoed in the output.

47

4 The gprofng Tools

Several tools are included in gprofng. In subsequent chapters these are dis-
cussed in detail. Below a brief description is given, followed by an overview
of the environment variables that are supported.

4.1 Tools Overview
The following tools are supported by gprofng:

gprofng collect app
Collects the performance data and stores the results in an ex-
periment directory. There are many options on this tool, but
quite often the defaults are sufficient. An experiment directory
is required for the subsequent analysis of the results.

gprofng display text
Generates performance reports in ASCII format. Commandline
options, and/or commands in a script file are used to control the
contents and lay-out of the generated report(s).

gprofng display html
Takes one or more experiment directories and generates a di-
rectory with HTML files. Starting from the index.html file, the
performance data may be examined in a browser.

gprofng display src
Displays the source code, interleaved with the disassembled in-
structions.

gprofng archive
Archives an experiment directory by (optionally) including
source code and object files, as well as the shared libraries that
have been used.

4.2 The gprofng.rc file with default settings
The gprofng.rc file is used to define default settings for the gprofng
display text and gprofng display src tools, but the user can override
these defaults through local configuration files.

There are three files that are checked when the tool starts up. The
first file has pre-defined settings and comes with the installation, but through
a hidden file called .gprofng.rc, the user can (re)define the defaults:

These are the locations and files that are checked upon starting the
above mentioned tools:

1. The system-wide filename is called gprofng.rc and is located in the
top level /etc directory.

If gprofng has been built from the source, this file is in subdirectory etc
in the top level installation directory.

48 GNU gprofng

2. The user’s home directory may have a hidden file called .gprofng.rc.

3. The directory where gprofng display text (or gprofng display src)
is invoked from may have a hidden file called .gprofng.rc.

The settings of each file override the settings of the file(s) read before
it. Defaults in the system-wide file are overruled by the file in the user home
directory (if any) and any settings in the .gprofng.rc file in the current
directory override those.

Note that the settings in these files only affect the defaults. Unlike
the commands used in a script file, they are not commands for the tools.

The .gprofng.rc configuration files can contain the addpath,
compare, dthresh, name, pathmap, printmode, sthresh, and viewmode
commands as described in this user guide.

They can also contain the following commands, which cannot be used
on either the command line, or in a script file:

dmetrics metric-spec
Specify the default metrics to be displayed or printed in the
function list. The syntax and use of the metric list is described
in section Section 7.3 [Metric Definitions], page 59. The order
of the metric keywords in the list determines the order in which
the metrics are presented.

Default metrics for the callers-callees list are derived from
the function list default metrics by adding the corresponding
attributed metric before the first occurrence of each metric name
in the list.

dsort metric-spec
Specify the default metric by which the function list is sorted.
The sort metric is the first metric in this list that matches a
metric in any loaded experiment, subject to the following con-
ditions:

• If the entry in metric-spec has a visibility string of an ex-
clamation point (‘!’), the first metric whose name matches
is used, regardless of whether it is visible.

• If the entry in metric-spec has any other visibility string,
the first visible metric whose name matches is used.

The syntax and use of the metric list is described in section
Section 7.3 [Metric Definitions], page 59. The default sort met-
ric for the callers-callees list is the attributed metric corre-
sponding to the default sort metric for the function list.

en_desc {on | off | =regex}
Set the mode for reading descendant experiments to ‘on’ (enable
all descendants) or ‘off’ to disable all descendants. If ‘=’regex
is used, enable data from those experiments whose executable
name matches the regular expression.

Chapter 4: The gprofng Tools 49

The default setting is ‘on’ to follow all descendants. In read-
ing experiments with descendants, any sub-experiments that
contain little or no performance data are ignored by gprofng
display text.

4.3 Filters
Various filter commands are supported by gprofng display text. Thanks
to the use of filters, the user can zoom in on a certain area of interest. With
filters, it is possible to select one or more threads to focus on, define a window
in time, select specific call stacks, etc.

While already powerful by themselves, filters may be combined to
further narrow down the view into the data.

It is important to note that filters are persistent. A filter is active
until it is reset. This means that successive filter commands increasingly
narrow down the view until one or more are reset.

An example is the following:� �
$ gprofng display text -thread_select 1 -functions \

-cpu_select 2 -functions ...
 	
This command selects thread 1 and requests the function view for this

thread. The third (cpu_select 2) command adds the constraint that only
the events on CPU 2 are to be selected. This means that the next function
view selects events that were executed by thread 1 and have been running
on CPU 2.

In contrast with this single command line, the two commands below look
similar, but behave very differently:� �

$ gprofng display text -thread_select 1 -functions ...

$ gprofng display text -cpu_select 2 -functions ...
 	
The first command displays the function view for thread 1. The

second command shows the function view for CPU 2 for all threads that
have been running on this CPU.

As the following example demonstrates, things get a little more tricky
in case a script file is used. Consider the following script file:

thread_select 1

functions

cpu_select 2

functions

This script file displays the function view for thread 1 first. This is
followed by those functions that were executed by thread 1 and have been
run on CPU 2.

50 GNU gprofng

If however, the script should behave like the two command line in-
vocations shown above, the thread selection filter needs to be reset before
CPU 2 is selected:

thread_select 1

functions

Reset the thread selection filter:

thread_select all

cpu_select 2

functions

In general, filters behave differently than commands or options. In
particular there may be an interaction between different filter definitions.

For example, as explained above, in the first script file the thread_
select and cpu_select commands interact.

For a list of all the predefined filters see [Predefined Filters], page 55.

4.4 Supported Environment Variables
Various environment variables are supported. We refer to the man page for
gprofng(1) for an overview and description (See Section A.1 [Man page for
gprofng], page 67).

51

5 Performance Data Collection

The gprofng collect app command is used to gather the application per-
formance data while the application executes. At regular intervals, program
execution is halted and the required data is recorded. An experiment di-
rectory is created when the tool starts. This directory is used to store the
relevant information and forms the basis for a subsequent analysis with one
of the viewing tools.

5.1 The gprofng collect app command
This is the command to collect the performance information for the target
application. The usage is as follows:� �

$ gprofng collect app [OPTION(S)] TARGET [TARGET_ARGUMENTS]
 	
Options to the command are passed in first. This is followed by the name
of the target, which is typically a binary executable or a script, followed by
any options that may be required by the target.

53

6 View the Performance Information

Various tools to view the performance data stored in one or more experiment
directories are available. In this chapter, these will all be covered in detail.

6.1 The gprofng display text Tool
This tool displays the performance information in ASCII format. It supports
a variety of views into the data recorded. These views can be specified in
two ways and both may be used simultaneously:

• Command line options start with a dash (‘-’) symbol and may take an
argument.

• Options may also be included in a file, the “script file”. In this case, the
dash symbol should not be included. Multiple script files can be used
on the same command line.

While they may appear as an option, they are really commands and
this is why they will be referred to as commands in the documentation.

As a general rule, the order of options matters and if the same option,
or command, occurs multiple times, the rightmost setting is selected.

6.1.1 The gprofng display text Commands

The most commonly used commands are documented in the man page for
this tool (See Section A.3 [gprofng display text], page 74). In this section
we list and describe all other commands that are supported.

Commands that List Experiment Details

experiment_ids
For each experiment that has been loaded, show the totals of the
metrics recorded, plus some other operational characteristics like
the name of the executable, PID, etc. The top line contains the
accumulated totals for the metrics.

experiment_list
Display the list of experiments that are loaded. Each experiment
is listed with an index, which is used when selecting samples,
threads, or LWPs, and a process id (PID), which can be used
for advanced filtering.

cpu_list

Display the total number of CPUs that have been used during
the experiment(s).

cpus

Show a list of CPUs that were used by the application, along
with the metrics that have been recorded. The CPUs are rep-

54 GNU gprofng

resented by a CPU number and show the Total CPU time by
default.

Note that since the data is sorted with respect to the default
metric, it may be useful to use the sort name command to show
the list sorted with respect to the CPU id.

GCEvents

This commands is for Java applications only. It shows any
Garbage Collection (GC) events that have occurred while the
application was executing..

lwp_list

Displays the list of LWPs processed during the experiment(s).

processes
For each experiment that has been loaded, this command dis-
plays a list of processes that were created by the application,
along with their metrics. The processes are represented by pro-
cess ID (PID) numbers and show the Total CPU time metric
by default. If additional metrics are recorded in an experiment,
these are shown as well.

samples

Display a list of sample points and their metrics, which reflect
the microstates recorded at each sample point in the loaded
experiment. The samples are represented by sample numbers
and show the Total CPU time by default. Other metrics might
also be displayed if enabled.

sample_list
For each experiment loaded, display the list of samples currently
selected.

seconds

Show each second of the profiling run that was captured in the
experiment, along with the metrics collected in that second. The
seconds view differs from the samples view in that it shows pe-
riodic samples that occur every second beginning at 0 and the
interval cannot be changed.

The seconds view lists the seconds of execution with the Total
CPU time by default. Other metrics might also be displayed if
the metrics are present in the loaded experiments.

threads

Show a list of threads and their metrics. The threads are rep-
resented by a process and thread pair and show the Total CPU
time by default. Other metrics might also be displayed by de-
fault if the metrics are present in the loaded experiment.

Chapter 6: View the Performance Information 55

thread_list
Display the list of threads currently selected for the analysis.

The commands below are for use in scripts and interactive mode only. They
are not allowed on the command line.

add_exp exp-name
Add the named experiment to the current session.

drop_exp exp-name
Drop the named experiment from the current session.

open_exp exp-name
Drop all loaded experiments from the session, and then load the
named experiment.

Commands that Affect Listings and Output

dthresh value
Specify the threshold percentage for highlighting metrics in the
annotated disassembly code. If the value of any metric is equal
to or greater than value as a percentage of the maximum value of
that metric for any instruction line in the file, the line on which
the metrics occur has a ‘##’ marker inserted at the beginning of
the line. The default is 75.

printmode {text | html | single-char}
Set the print mode. If the keyword is text, printing will be done
in tabular form using plain text. In case the html keyword is
selected, the output is formatted as an HTML table.

Alternatively, single-char may be used in a delimiter separated
list, with the single character single-char as the delimiter.

The printmode setting is used only for those commands that
generate tables, such as functions. The setting is ignored for
other printing commands, including those showing source and
disassembly listings.

sthresh value
Specify the threshold percentage for highlighting metrics in the
annotated source code. If the value of any metric is equal to or
greater than value (as a percentage) of the maximum value of
that metric for any source line in the file, the line on which the
metrics occur has a ‘##’ marker inserted at the beginning of the
line. The default is 75.

Predefined Filters

The filters below use a list, the selection list, to define a sequence of numbers.
See Section 7.5 [The Selection List], page 60. Note that this selection is
persistent, but the filter can be reset by using ‘all’ as the selection-list.

56 GNU gprofng

cpu_select selection-list
Select the CPU ids specified in the selection-list.

lwp_select selection-list
Select the LWPs specified in the selection-list.

sample_select selection-list
thread_select selection-list

Select a series of threads, or just one, to be used in subsequent
views. The selection-list consists of a sequence of comma sepa-
rated numbers. This may include a range of the form ‘n-m’.

Commands to Set and Change Search Paths

addpath path-list
Append path-list to the current setpath settings. Note that
multiple addpath commands can be used in .gprofng.rc files,
and will be concatenated.

pathmap old-prefix new-prefix
If a file cannot be found using the path list set by addpath, or
the setpath command, one or more path remappings may be
set with the pathmap command.

With path mapping, the user can specify how to replace the
leading component in a full path by a different string.

With this command, any path name for a source file, object
file, or shared object that begins with the prefix specified with
old-prefix, the old prefix is replaced by the prefix specified with
new-prefix. The resulting path is used to find the file.

For example, if a source file located in directory /tmp is shown in
the gprofng display text output, but should instead be taken
from /home/demo, the following pathmap command redefines the
path:

$ gprofng diplay text -pathmap /tmp /home/demo -source ...

Note that multiple pathmap commands can be supplied, and
each is tried until the file is found.

setpath path-list
Set the path used to find source and object files. The path is
defined through the path-list keyword. It is a colon separated
list of directories, jar files, or zip files. If any directory has a
colon character in it, escape it with a backslash (‘\’).

The special directory name $expts, refers to the set of current
experiments in the order in which they were loaded. You can
abbreviate it with a single ‘$’ character.

The default path is ‘$expts:..’ which is the directories of the
loaded experiments and the current working directory.

Chapter 6: View the Performance Information 57

Use setpath with no argument to display the current path.

Note that setpath commands are not allowed .gprofng.rc con-
figuration files.

59

7 Terminology

Throughout this manual, certain terminology specific to profiling tools, or
gprofng, or even to this document only, is used. In this chapter this termi-
nology is explained in detail.

7.1 The Program Counter
The Program Counter, or PC for short, keeps track where program execution
is. The address of the next instruction to be executed is stored in a special
purpose register in the processor, or core.

The PC is sometimes also referred to as the instruction pointer, but
we will use Program Counter or PC throughout this document.

7.2 Inclusive and Exclusive Metrics
In the remainder, these two concepts occur quite often and for lack of a
better place, they are explained here.

The inclusive value for a metric includes all values that are part of
the dynamic extent of the target function. For example if function A calls
functions B and C, the inclusive CPU time for A includes the CPU time spent
in B and C.

In contrast with this, the exclusive value for a metric is computed by
excluding the metric values used by other functions called. In our imaginary
example, the exclusive CPU time for function A is the time spent outside
calling functions B and C.

In case of a leaf function, the inclusive and exclusive values for the
metric are the same since by definition, it is not calling any other function(s).

Why do we use these two different values? The inclusive metric shows
the most expensive path, in terms of this metric, in the application. For
example, if the metric is cache misses, the function with the highest inclusive
metric tells you where most of the cache misses come from.

Within this branch of the application, the exclusive metric points to
the functions that contribute and help to identify which part(s) to consider
for further analysis.

7.3 Metric Definitions
The metrics displayed in the various views are highly customizable. In this
section it is explained how to construct the metrics definition(s).

The metrics command takes a colon (‘:’) separated list,
where each item in the list consists of the following three fields:
<flavor><visibility><metric-name>.

60 GNU gprofng

The <flavor> field is either ‘e’ for “exclusive”, and/or ‘i’ for “inclu-
sive”. The <metric-name> field is the name of the metric and the <visibility>
field consists of one ore more characters from the following table:

. Show the metric as time. This applies to timing metrics and
hardware event counters that measure cycles. Interpret as ‘+’
for other metrics.

% Show the metric as a percentage of the total value for this metric.

+ Show the metric as an absolute value. For hardware event coun-
ters this is the event count. Interpret as ‘.’ for timing metrics.

! Do not show any metric value. Cannot be used with other visibil-
ity characters. This visibility is meant to be used in a dmetrics
command to set default metrics that override the built-in visi-
bility defaults for each type of metric.

Both the <flavor> and <visibility> strings may have more
than one character. If both strings have more than one character,
the <flavor> string is expanded first. For example, ie.%user is
first expanded to i.%user:e.%user, which is then expanded into
i.user:i%user:e.user:e%user.

7.4 The Viewmode
There are different ways to view a call stack in Java. In gprofng, this is
called the viewmode and the setting is controlled through a command with
the same name.

The viewmode command takes one of the following keywords:

user This is the default and shows the Java call stacks for Java
threads. No call stacks for any housekeeping threads are shown.
The function list contains a function <JVM-System> that rep-
resents the aggregated time from non-Java threads. When the
JVM software does not report a Java call stack, time is reported
against the function <no Java callstack recorded>.

expert Show the Java call stacks for Java threads when the Java code
from the user is executed and machine call stacks when JVM
code is executed, or when the JVM software does not report a
Java call stack. Show the machine call stacks for housekeeping
threads.

machine Show the actual native call stacks for all threads.

7.5 The Selection List
Several commands allow the user to specify a sequence of numbers called the
selection list. Such a list may for example be used to select specific threads
from all the threads that have been used when conducting the experiment(s).

Chapter 7: Terminology 61

A selection list (or “list” in the remainder of this section) can be
a single number, a contiguous range of numbers with the start and end
numbers separated by a hyphen (‘-’), a comma-separated list of numbers
and ranges, or the all keyword that resets the filter. Lists must not
contain spaces.

Each list can optionally be preceded by an experiment list with a
similar format, separated from the list by a colon (:). If no experiment list
is included, the list applies to all experiments.

Multiple lists can be concatenated by separating the individual lists
by a plus sign.

These are some examples of various filters using a list:

thread_select 1
Select thread 1 from all experiments.

thread_select all:1
Select thread 1 from all experiments.

thread_select 1:all
Select all the threads from the first experiment loaded.

thread_select 1:2+3:4
Select thread 2 from experiment 1 and thread 4 from experiment
3.

cpu_select all:1,3,5
Selects cores 1, 3, and 5 from all experiments.

cpu_select 1,2:all
Select all cores from experiments 1 and 2.

Recall that there are several list commands that show the mapping
between the numbers and the targets.

For example, the experiment_list command shows the name(s) of
the experiment(s) loaded and the associated number. In this example it is
used to get this information for a range of experiments:� �

$ gprofng display text -experiment_list mxv.?.thr.er
 	
This is the output, showing for each experiment the ID, the PID, and the
name:

ID Sel PID Experiment

== === ======= ============

1 yes 2750071 mxv.1.thr.er

2 yes 1339450 mxv.2.thr.er

3 yes 3579561 mxv.4.thr.er

62 GNU gprofng

7.6 Load Objects and Functions
An application consists of various components. The source code files are
compiled into object files. These are then glued together at link time to
form the executable. During execution, the program may also dynamically
load objects.

A load object is defined to be an executable, or shared object. A
shared library is an example of a load object in gprofng.

Each load object, contains a text section with the instructions gen-
erated by the compiler, a data section for data, and various symbol tables.
All load objects must contain an ELF symbol table, which gives the names
and addresses of all the globally known functions in that object.

Load objects compiled with the -g option contain additional symbolic
information that can augment the ELF symbol table and provide informa-
tion about functions that are not global, additional information about object
modules from which the functions came, and line number information relat-
ing addresses to source lines.

The term function is used to describe a set of instructions that rep-
resent a high-level operation described in the source code. The term also
covers methods as used in C++ and in the Java programming language.

In the gprofng context, functions are provided in source code for-
mat. Normally their names appear in the symbol table representing a set of
addresses. If the Program Counter (PC) is within that set, the program is
executing within that function.

In principle, any address within the text segment of a load object can
be mapped to a function. Exactly the same mapping is used for the leaf PC
and all the other PCs on the call stack.

Most of the functions correspond directly to the source model of the
program, but there are exceptions. This topic is however outside of the scope
of this guide.

7.7 The Concept of a CPU in gprofng
In gprofng, there is the concept of a CPU. Admittedly, this is not the best
word to describe what is meant here and may be replaced in the future.

The word CPU is used in many of the displays. In the context of
gprofng, it is meant to denote a part of the processor that is capable of
executing instructions and with its own state, like the program counter.

For example, on a contemporary processor, a CPU could be a core.
In case hardware threads are supported within a core, a CPU is one of those
hardware threads.

To see which CPUs have been used in the experiment, use the cpu
command in gprofng display text.

Chapter 7: Terminology 63

7.8 Hardware Event Counters Explained
For quite a number of years now, many microprocessors have supported
hardware event counters.

On the hardware side, this means that in the processor there are one
or more registers dedicated to count certain activities, or “events”. Examples
of such events are the number of instructions executed, or the number of
cache misses at level 2 in the memory hierarchy.

While there is a limited set of such registers, the user can map events
onto them. In case more than one register is available, this allows for the
simultaenous measurement of various events.

A simple, yet powerful, example is to simultaneously count the num-
ber of CPU cycles and the number of instructions excuted. These two num-
bers can then be used to compute the IPC value. IPC stands for “Instruc-
tions Per Clockcycle” and each processor has a maximum. For example, if
this maximum number is 2, it means the processor is capable of executing
two instructions every clock cycle.

Whether this is actually achieved, depends on several factors, includ-
ing the instruction characteristics. However, in case the IPC value is well
below this maximum in a time critical part of the application and this cannot
be easily explained, further investigation is probably warranted.

A related metric is called CPI, or “Clockcycles Per Instruction”. It is
the inverse of the CPI and can be compared against the theoretical value(s) of
the target instruction(s). A significant difference may point at a bottleneck.

One thing to keep in mind is that the value returned by a counter
can either be the number of times the event occured, or a CPU cycle count.
In case of the latter it is possible to convert this number to time.

This is often easier to interpret than a simple count, but there is one
caveat to keep in mind. The CPU frequency may not have been constant
while the experimen was recorded and this impacts the time reported.

These event counters, or “counters” for short, provide great insight
into what happens deep inside the processor. In case higher level information
does not provide the insight needed, the counters provide the information to
get to the bottom of a performance problem.

There are some things to consider though.

• The event definitions and names vary across processors and it may even
happen that some events change with an update. Unfortunately and
this is luckily rare, there are sometimes bugs causing the wrong count
to be returned.

In gprofng, some of the processor specific event names have an alias
name. For example insts measures the instructions executed. These
aliases not only makes it easier to identify the functionality, but also
provide portability of certain events across processors.

64 GNU gprofng

• Another complexity is that there are typically many events one can
monitor. There may up to hundreds of events available and it could re-
quire several experiments to zoom in on the root cause of a performance
problem.

• There may be restrictions regarding the mapping of event(s) onto the
counters. For example, certain events may be restricted to specific coun-
ters only. As a result, one may have to conduct additional experiments
to cover all the events of interest.

• The names of the events may also not be easy to interpret. In such
cases, the description can be found in the architecture manual for the
processor.

Despite these drawbacks, hardware event counters are extremely use-
ful and may even turn out to be indispensable.

7.9 What is <apath>?
In most cases, gprofng shows the absolute pathnames of directories. These
tend to be rather long, causing display issues in this document.

Instead of wrapping these long pathnames over multiple lines, we
decided to represent them by the <apath> symbol, which stands for “an
absolute pathname”.

Note that different occurrences of <apath> may represent different
absolute pathnames.

65

8 Other Document Formats

This chapter is applicable when building gprofng from the binutils source.

This document is written in Texinfo and the source text is made
available as part of the binutils distribution. The file name is gprofng.texi
and can be found in subdirectory gprofng/doc of the top level binutils
directory.

The default installation procedure creates a file in the info format
and stores it in the documentation section of binutils. This source file can
however also be used to generate the document in the html and pdf formats.
These may be easier to read and search.

To generate this documentation file in a different format, go to the
directory that was used to build the tools. The make file to build the other
formats is in the gprofng/doc subdirectory.

For example, if you have set the build directory to be <my-build-dir>,
go to subdirectory <my-build-dir>/gprofng/doc.

This subdirectory has a single filed called Makefile that can be used
to build the documentation in various formats. We recommend to use these
commands.

There are four commands to generate the documentation in the html
or pdf format. It is assumed that you are in directory gprofng/doc under
the main directory <my-build-dir>.

make html Create the html file in the current directory.

make pdf Create the pdf file in the current directory.

make install-html
Create and install the html file in the binutils documentation
directory.

make install-pdf
Creat and install the pdf file in the binutils documentation di-
rectory.

For example, to install this document in the binutils documentation
directory, the commands below may be executed. In this notation, <format>
is one of html, or pdf:

$ cd <my-build-dir>/gprofng/doc

$ make install-<format>

The binutils installation directory is either the default /usr/local or
the one that has been set with the --prefix option as part of the configure
command. In this example we symbolize this location with <install>.

The documentation directory is <install>/share/doc/gprofng in
case html or pdf is selected and <install>/share/info for the file in the
info format.

Some things to note:

66 GNU gprofng

• For the pdf file to be generated, the texi2dvi tool is required. It is for
example available as part of the texinfo-tex package.

• Instead of generating a single file in the html format, it is also possible
to create a directory with individual files for the various chapters. To
do so, remove the use of --no-split in variable MAKEINFOHTML in the
make file in the <my-build-dir/gprofng/doc directory.

67

Appendix A The gprofng Man Pages

In this appendix the man pages for the various gprofng tools are listed.

A.1 Man page for gprofng

NAME

gprofng - The driver for the gprofng application profiling tool

SYNOPSIS

gprofng [option(s)] action [qualifier] [option(s)] target [options]

DESCRIPTION

This is the driver for the gprofng tools suite to gather and analyze
performance data.

The driver executes the action specified. An example of an action is
‘collect’ to collect performance data. Depending on the action, a
qualifier may be needed to further define the command. The last item
is the target that the command applies to.

There are three places where options are supported. The driver supports
options. These can be found below. The action, possibly in combination
with the qualifier also supports options. A description of these can be
found in the man page for the command. Any options needed to execute
the target command should follow the target name.

For example, to collect performance data for an application called a.out
and store the results in experiment directory ‘mydata.er’, the following
command may be used:

$ gprofng collect app -o mydata.er a.out -t 2

In this example, the action is ‘collect’, the qualifier is ‘app’, the single
argument to the command is -o mydata.er and the target is a.out.
The target command is invoked with the ‘-t 2’ option.

If gprofng is executed without any additional option, action, or target,
a usage overview is printed.

OPTIONS

--version
Print the version number and exit.

--help Print usage information and exit.

ENVIRONMENT

The following environment variables are supported:

68 GNU gprofng

‘GPROFNG_MAX_CALL_STACK_DEPTH’
Set the depth of the call stack (default is 256).

‘GPROFNG_USE_JAVA_OPTIONS’
May be set when profiling a C/C++ application that uses
dlopen() to execute Java code.

‘GPROFNG_ALLOW_CORE_DUMP’
Set this variable to allow a core file to be generated; other-
wise an error report is created on /tmp.

‘GPROFNG_ARCHIVE’
Use this variable to define the settings for automatic archiv-
ing upon experiment recording completion.

‘GPROFNG_ARCHIVE_COMMON_DIR’
Set this variable to the location of the common archive.

‘GPROFNG_JAVA_MAX_CALL_STACK_DEPTH’
Set the depth of the Java call stack; the default is 256; set
to 0 to disable capturing of call stacks.

‘GPROFNG_JAVA_NATIVE_MAX_CALL_STACK_DEPTH’
Set the depth of the Java native call stack; the default is
256; set to 0 to disable capturing of call stacks (JNI and
assembly call stacks are not captured).

NOTES

The gprofng driver supports the following commands.

Collect performance data:

gprofng collect app
Collect application performance data.

Display the performance results:

gprofng display text
Display the performance data in ASCII format.

gprofng display html
Generate an HTML file from one or more experiments.

Miscellaneous commands:

gprofng display src
Display source or disassembly with compiler annotations.

gprofng archive
Include binaries and source code in an experiment directory.

Appendix A: The gprofng Man Pages 69

It is also possible to invoke the lower level commands directly, but since
these are subject to change, in particular the options, we recommend to
use the driver.

SEEALSO

gp-archive(1), gp-collect-app(1), gp-display-html(1), gp-display-src(1),
gp-display-text(1)

Each gprofng command also supports the --help option. This lists the
options and a short description for each option.

For example this displays the options supported on the gprofng
collect app command:

$ gprofng collect app --help

The user guide for gprofng is maintained as a Texinfo manual. If the
info and gprofng programs are correctly installed, the command info
gprofng should give access to this document.

COPYRIGHT

Copyright c© 2022-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

70 GNU gprofng

A.2 Man page for gprofng collect app

NAME

gprofng collect app - Collect performance data for the target program

SYNOPSIS

gprofng collect app [option(s)] target [option(s)]

DESCRIPTION

Collect performance data on the target program. In addition to Pro-
gram Counter (PC) sampling, hardware event counters and various trac-
ing options are supported.

For example, this command collects performance data for an executable
called ‘a.out’ and stores the data collected in an experiment directory
with the name ‘example.er’.

$ gprofng collect app -o example.er ./a.out

OPTIONS

--version
Print the version number and exit.

--help

Print usage information and exit.

-p {off|on|lo|hi|<value>}
Disable (off) or enable (on) clock-profiling using a default
sampling granularity, or enable clock-profiling implicitly by
setting the sampling granularity (lo, hi, or a specific value
in ms). By default, clock profiling is enabled (‘-p on’).

-h {<ctr_def>...,<ctr_n_def>}
Enable hardware event counter profiling and select the
counter(s). To see the supported counters on this system,
use the ‘-h’ option without other arguments.

-o <exp_name>
Specify the name for the experiment directory. The name
has to end with ‘.er’ and may contain an absolute path
(e.g. /tmp/experiment.er).

-O <exp_name>
This is the same as the ‘-o’ option, but unlike this option,
silently overwrites an existing experiment directory with the
same name.

Appendix A: The gprofng Man Pages 71

-C <comment_string>
Add up to 10 comment strings to the experiment. These
comments appear in the notes section of the header and
can be retrieved with the gprofng display text command
using the ‘-header’ option.

-j {on|off|<path>}
Controls Java profiling when the target is a JVM machine.
The allowed values of this option are: enable (on), disable
(off) Java profiling when the target program is a JVM, or
set ‘<path>’ to a non-default JVM. The default is ‘-j on’

on Record profiling data for the JVM machine,
and recognize methods compiled by the Java
HotSpot virtual machine. Also record Java call
stacks. The default is ‘-j on’.

off Does not record Java profiling data. Profiling
data for native call stacks is still recorded.

<path> Records profiling data for the JVM, and use the
JVM as installed in <path>.

-J <jvm-options>
Specifies additional options to be passed to the JVM used.
The jvm-options list must be enclosed in quotation marks if
it contains more than one option. The items in the list need
to be separated by spaces or tab. Each item is passed as a
separate option to the JVM. Note that this option implies
‘-j on’.

-t <duration>[m|s]
Collects data for the specified duration. The duration can
be a single number, optionally followed by either ‘m’ to spec-
ify minutes, or ‘s’ to specify seconds, which is the default.

The duration can also two numbers separated by minus (-)
sign. If a single number is given, data is collected from the
start of the run until the given time. If two numbers are
given, data is collected from the first time to the second. If
the second time is zero, data is collected until the end of
the run. If two non-zero numbers are given, the first must
be less than the second.

-n

This is used for a dry run. Several run-time settings are dis-
played, but the target is not executed and no performance
data is collected.

-F {off|on|=regex}
Control whether descendant processes should have their
data recorded. To disable/enable this feature, use

72 GNU gprofng

‘off’/‘on’. Use ‘=’regex to record data on those processes
whose executable name matches the regular expression.
Only the basename of the executable is used, not the full
path. If spaces or characters interpreted by the shell are
used, enclose the regex in single quotes. The default is ‘-F
on’.

-a {off|on|ldobjects|src|usedldobjects|usedsrc}
Specify archiving of binaries and other files. In addition to
disable this feature (off), or enable archiving off all loadob-
jects and sources (on), the other op tions support a more
refined selection.

All of these options enable archiving, but the keyword con-
trols what exactly is selected: all load objects (ldobjects),
all source files (src), the loadobjects asscoiated with a pro-
gram counter (usedldobjects), or the source files associ-
ated with a program counter (usedsrc). The default is ‘-a
ldobjects’.

-S {off|on|<seconds>}
Disable (off), or enable (on) periodic sampling of process-
wide resource utilization. By default, sampling occurs every
second. Use the <seconds> option to change this. The de-
fault is ‘-S on’.

-y <signal>[,r]
Controls recording of data with the signal named <signal>,
referred to as the pause-resume signal. Whenever the given
signal is delivered to the process, switch between paused (no
data is recorded) and resumed (data is recorded) states.

By default, data collection begins in the paused state. If the
optional ‘r’ is given, data collection begins in the resumed
state and data collection begins immediately.

SIGUSR1 or SIGUSR2 are recommended for this use, but
any signal that is not used by the target can be used.

-l <signal>
Specify a signal that will trigger a sample of process-wide
resource utilization. When the named <signal> is delivered
to the process, a sample is recorded.

The signal can be specified using the full name, without the
initial letters SIG, or the signal number. Note that the kill
command can be used to deliver a signal.

If both the ‘-l’ and ‘-y’ options are used, the signal must
be different.

Appendix A: The gprofng Man Pages 73

-s <option>[,<API>]
Enable synchronization wait tracing, where <option> is used
to define the specifics of the tracing (on, off, <threshold>,
or all). The API is selected through the setting for <API>:
‘n’ selects native/Pthreads, ‘j’ selects Java, and ‘nj’ selects
both. The default is ‘-s off’.

-H {off|on}
Disable (off), or enable (on) heap tracing. The default is
‘-H off’.

-i {off|on}
Disable (off), or enable (on) I/O tracing. The default is ‘-i
off’.

NOTES

Any executable in the ELF (Executable and Linkable Format) object
format can be used for profiling with gprofng. If debug information is
available, gprofng can provide more details, but this is not a require-
ment.

SEEALSO

gprofng(1), gp-archive(1), gp-display-html(1), gp-display-src(1), gp-
display-text(1)

The user guide for gprofng is maintained as a Texinfo manual. If the
info and gprofng programs are correctly installed, the command info
gprofng should give access to this document.

COPYRIGHT

Copyright c© 2022-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

74 GNU gprofng

A.3 Man page for gprofng display text

NAME

gprofng display text - Display the performance data in plain text format

SYNOPSIS

gprofng display text [option(s)] [commands] [-script script-file] ex-
periment(s)

DESCRIPTION

Print a plain text version of the various displays supported by gprofng.

The input consists of one or more experiment directories. Through
commands, the user controls the output.

There is a rich set of commands to control the display of the data. The
‘NOTES’ section lists the most common ones. The gprofng user guide
lists all the commands supported.

Commands specified on the command line need to be prepended with
the dash (’-’) symbol.

In this example, a function overview will be shown, followed by the
source code listing of function ‘my-func’, annotated with the perfor-
mance metrics that have been recorded during the data collection and
stored in experiment directory ‘my-exp.er’:

$ gprofng display text -functions -source my-func my-exp.er

Instead of, or in addition to, specifying these commands on the com-
mand line, commands may also be included in a file called the script-file.

Note that the commands are processed and interpreted from left to
right, so the order matters.

If this tool is invoked without options, commands, or a script file, it
starts in interpreter mode. The user can then issue the commands
interactively. The session is terminated with the exit command in the
interpreter.

OPTIONS

--version
Print the version number and exit.

--help

Print usage information and exit.

-script script-file
Execute the commands stored in the script file. This feature
may be combined with commands specified at the command
line.

Appendix A: The gprofng Man Pages 75

NOTES

Many commands are supported. Below, the more common ones are
listed in mostly alphabetical order, because sometimes it is more logical
to swap the order of two entries.

callers-callees
In a callers-callees panel, it is shown which function(s) call
the target function (the callers) and what functions it is
calling (the callees). This command prints the callers-
callees panel for each of the functions, in the order specified
by the function sort metric.

calltree Display the dynamic call graph from the experiment,
showing the hierarchical metrics at each level.

compare {on | off | delta | ratio}
By default, the results for multiple experiments are aggre-
gated. This command changes this to enable the compar-
ison of experiments for certain views (e.g. the function
view). The first experiment specified is defined to be the
reference. The following options are supported:

on For each experiment specified on the command
line, print the values for the metrics that have
been activated for the experiment.

off Disable the comparison of experiments. This is
the default.

delta Print the values for the reference experiment.
The results for the other experiments are shown
as a delta relative to the reference (current-
reference).

ratio Print the values for the reference experiment.
The results for the other experiments are
shown as a ratio relative to the reference
(current/reference).

disasm function-name
List the source code and instructions for the function speci-
fied. The instructions are annotated with the metrics used.

fsingle function-name [‘n’]
Write a summary panel for the specified function. The op-
tional parameter n is needed for those cases where several
functions have the same name.

fsummary Write a summary panel for each function in the function
list.

76 GNU gprofng

functions
Display a list of all functions executed. For each function
the used metrics (e.g. the CPU time) ar shown.

header Shows several operational characteristics of the experi-
ment(s) specified on the command line.

limit n Limit the output to n lines.

lines Write a list of source lines and their metrics, ordered by
the current sort metric.

metric_list
Display the currently selected metrics in the function view
and a list of all the metrics available for the target experi-
ment(s).

metrics metric-spec
Define the metrics to be displayed in the function and
callers-callees overviews.

The metric-spec can either be the keyword ‘default’ to
restore the default metrics selection, or a colon separated
list with metrics.

The gprofng user guide has more details how to define met-
rics.

name {short | long | mangled}[:{soname | nosoname}]
Specify whether to use the short, long, or mangled form
of function names. Optionally, the load object that the
function is part of can be included in the output by adding
the soname keyword. It can also be ommitted (nosoname),
which is the default.

Whether there is an actual difference between these types
of names depends on the language.

Note that there should be no (white)space to the left and
right of the colon (‘:’).

overview Shows a summary of the recorded performance data for
the experiment(s) specified on the command line.

pcs Write a list of program counters (PCs) and their metrics,
ordered by the current sort metric.

sort metric-spec
Sort the function list on the metric-spec given.

The data can be sorted in reverse order by prepending the
metric definition with a minus (‘-’) sign.

For example sort -e.totalcpu.

Appendix A: The gprofng Man Pages 77

A default metric for the sort operation has been defined
and since this is a persistent command, this default can be
restored with default as the key (sort default).

source function-name
List the source code for the function specified, annotated
with the metrics used.

viewmode {user | expert | machine}
This command is only relevant for Java programs. For all
other languages supported, the viewmode setting has no
effect.

The following options are supported:

user Show the Java call stacks for Java threads,
but do not show housekeeping threads.
The function view includes a function
called ‘<JVM-System>’. This represents the
aggregated time from non-Java threads. In
case the JVM software does not report a Java
call stack, time is reported against the function
‘<no Java callstack recorded>’.

expert Show the Java call stacks for Java threads when
the user Java code is executed, and machine call
stacks when JVM code is executed, or when the
JVM software does not report a Java call stack.
Show the machine call stacks for housekeeping
threads.

machine Show the actual native call stacks for all
threads. This is the view mode for C, C++,
and Fortran.

SEEALSO

gprofng(1), gp-archive(1), gp-collect-app(1), gp-display-html(1), gp-
display-src(1)

The user guide for gprofng is maintained as a Texinfo manual. If the
info and gprofng programs are correctly installed, the command info
gprofng should give access to this document.

COPYRIGHT

Copyright c© 2022-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover

78 GNU gprofng

Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

Appendix A: The gprofng Man Pages 79

A.4 Man page for gprofng display html

NAME

gprofng display html - Generate an HTML based directory structure to
browse the profiles

SYNOPSIS

gprofng display html [option(s)] experiment(s)

DESCRIPTION

Process one or more experiments to generate a directory containing the
index.html file that may be used to browse the experiment data.

OPTIONS

--version
Print the version number and exit.

--help

Print usage information and exit.

--verbose {on|off}
Enable (‘on’) or disable (‘off)’ verbose mode. The default
is ‘off’.

--debug {on|s|m|l|xl|off}
-d {on|s|m|l|xl|off}

Control the printing of run time information to assist with
troubleshooting, or further development of this tool. The
keyword is case insensitive. A setting of ‘on’ gives a mod-
est amount of information. The keywords ‘s’, ‘m’, ‘l’, and
‘xl’ give an increasing amount of information, while ‘off’
disables the printing of debug information. This is also the
default.

Note that currently ‘on’, ‘s’, ‘m’, and ‘l’ are equivalent. This
is expected to change in future updates.

---highlight-percentage value
-hp value

Set a percentage value in the interval [0,100] to select and
color code source lines, as well as instructions, that are
within this percentage of the maximum metric value(s).
The default is 90 (%).

A value of zero ‘(-hp 0)’ disables this feature.

80 GNU gprofng

--output dirname
-o dirname

Use dirname as the directory name to store the HTML files
in. The default name is ‘display.<n>.html’ with <n> the
first positive integer number not in use. An existing direc-
tory with the same name is not overwritten.

--overwrite dirname
-O dirname

Use dirname as the directory name to store the HTML files
in.

--quiet {on|off}
-q {on|off}

Control the display of all warning, debug and verbose mes-
sages. If set to ‘on’, the settings for verbose, warnings and
debug are ignored. By default the quiet mode is disabled
(‘-q off’).

--warnings {on|off}
-w {on|off}

Enable (‘on’), or disable (‘off’) run time warning messages
from the tool. By default these are enabled.

NOTES

When setting a directory name for the HTML files to be stored in, make
sure that umask is set to the correct access permissions.

Regardless of the setting for the warning messages, any warnings are
accessible through the main index.html page.

SEEALSO

gprofng(1), gp-archive(1), gp-collect-app(1), gp-display-src(1),
gp-display-text(1)

The user guide for gprofng is maintained as a Texinfo manual. If the
info and gprofng programs are correctly installed, the command info
gprofng should give access to this document.

COPYRIGHT

Copyright c© 2022-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

Appendix A: The gprofng Man Pages 81

A.5 Man page for gprofng display src

NAME

gprofng display src - Display the source code, optionally interleaved with
the disassembly of the target object

SYNOPSIS

gprofng display src [option(s)] target file

DESCRIPTION

Display the source code listing, or source code interleaved with disas-
sembly code, as extracted from the target file (an executable, shared
object, object file, or a Java .class file).

For example, this command displays the source code and disassembly
listing for a function called ‘mxv_core’ that is part of object file ‘mxv.o’:

$ gprofng display src -disasm mxv_core mxv.o

To list the source code and disassembly for all the functions in this file,
use the following command:

$ gprofng display src -disasm all -1 mxv.o

The target file is the name of an executable, a shared object, an object
file (.o), or a Java .class file.

If no options are given, the source code listing of the target file is shown.
This is equivalent to ‘-source all -1’. If this information is not avail-
able, a message to this extent is printed.

OPTIONS

--version
Print the version number and exit.

--help

Print usage information and exit.

-functions
List all the functions from the given object.

-source item tag
Show the source code for item in target file. The tag is used
to differentiate in case there are multiple occurences with
the same name. See the ‘NOTES’ section for the definition of
item and tag.

-disasm item tag
Include the disassembly in the source listing. The default
listing does not include the disassembly. If the source code

82 GNU gprofng

is not available, show a listing of the disassembly only. See
the ‘NOTES’ section for the definition of item and tag.

-outfile filename
Write results to file filename. A dash (-) writes to stdout.
This is also the default. Note that this option only affects
those options included to the right of this option.

NOTES

Use item to specify the name of a function, or of a source or object file
that was used to build the executable, or shared object.

The tag is an index used to determine which item is being referred to
when multiple functions have the same name. It is required, but will be
ignored if not necessary to resolve the function.

The item may also be specified in the form ‘function‘file‘’, in which
case the source or disassembly of the named function in the source
context of the named file will be used.

The special item and tag combination ‘all -1’, is used to indicate gen-
erating the source, or disassembly, for all functions in the target file.

SEEALSO

gprofng(1), gp-archive(1), gp-collect-app(1), gp-display-html(1), gp-
display-text(1)

The user guide for gprofng is maintained as a Texinfo manual. If the
info and gprofng programs are correctly installed, the command info
gprofng should give access to this document.

COPYRIGHT

Copyright c© 2022-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

Appendix A: The gprofng Man Pages 83

A.6 Man page for gprofng archive

NAME

gprofng archive - Archive gprofng experiment data

SYNOPSIS

gprofng archive [option(s)] experiment

DESCRIPTION

Archive the associated application binaries and source files in a gprofng
experiment to make it self contained and portable.

By default, the binaries are archived, but the application source files
are not archived. Use this tool to change this and afterwards archive
additional components.

OPTIONS

--version
Print the version number and exit.

--help

Print usage information and exit.

-a {off|on|ldobjects|src|usedldobjects|usedsrc}
Specify archiving of binaries and other files. In addition to
disable this feature (off), or enable archiving off all loadob-
jects and sources (on), the other op tions support a more
refined selection.

All of these options enable archiving, but the keyword con-
trols what exactly is selected: all load objects (ldobjects),
all source files (src), the loadobjects asscoiated with a pro-
gram counter (usedldobjects), or the source files associ-
ated with a program counter (usedsrc). The default is ‘-a
ldobjects’.

-n

Archive the named experiment only, not any of its descen-
dants.

-m regex

Archive only those source, object, and debug info files whose
full path name matches the given POSIX compliant regex
regular expression.

-q

84 GNU gprofng

Do not write any warnings to stderr. Warnings are incor-
porated into the .archive file in the experiment directory.
They are shown in the output of gprofng display text.

-F

Force writing or rewriting of the archive. This is ignored
with the ‘-n’ or ‘-m’ option, or if this is a subexperiment.

-d path

The path is the absolute path path to a common archive,
which is a directory that contains archived files. If the di-
rectory does not exist, then it will be created. Files are
saved in the common archive directory, and a symbolic link
is created in the experiment archive.

NOTES

Default archiving does not occur in case the application profiled termi-
nates prematurely, or if archiving is disabled when collecting the perfor-
mance data. In such cases, this tool can be used to afterwards archive
the information, but it has to be run on the same system where the
profiling data was recorded.

Some Java applications store shared objects in jar files. By default,
such shared objects are not automatically archived. To archive shared
objects contained in jar files, the addpath directive in an .er.rc file. The
addpath directive should give the path to the jar file, including the jar
file itself. The .er.rc file should be saved in the user home directory or
parent of the experiment directory.

SEEALSO

gprofng(1), gp-collect-app(1), gp-display-html(1), gp-display-src(1), gp-
display-text(1)

The user guide for gprofng is maintained as a Texinfo manual. If the
info and gprofng programs are correctly installed, the command info
gprofng should give access to this document.

COPYRIGHT

Copyright c© 2022-2023 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

85

Index

C
Command line mode . 8
Commands . 53
Commands, add_exp 55
Commands, addpath 56
Commands, callers-callees 75
Commands, calltree 18, 75
Commands, compare 30, 32, 34, 40, 75
Commands, cpu_list 28, 53
Commands, cpu_select 56
Commands, cpus 28, 53
Commands, disasm 12, 75, 81
Commands, dmetrics 48
Commands, drop_exp 55
Commands, dsort . 48
Commands, dthresh 55
Commands, en_desc 48
Commands, experiment_ids 53
Commands, experiment_list . . 31, 53, 61
Commands, fsingle 19, 22, 23, 75
Commands, fsummary 22, 23, 75
Commands, functions 8, 76, 81
Commands, GCEvents 54
Commands, header 20, 22, 76
Commands, limit 16, 43, 76
Commands, lines 11, 76
Commands, lwp_list 54
Commands, lwp_select 56
Commands, metric_list . . . 14, 42, 43, 76
Commands, metrics 14, 59, 76
Commands, name . 76
Commands, objects 19, 22
Commands, open_exp 55
Commands, outfile 82
Commands, overview 20, 76
Commands, pathmap 56
Commands, pcs . 13, 76
Commands, printmode 55
Commands, processes 54
Commands, sample-select 56
Commands, sample_list 54
Commands, samples 54
Commands, script 16, 74
Commands, seconds 54
Commands, setpath 56
Commands, sort 16, 28, 76
Commands, source 10, 77, 81
Commands, sthresh 55

Commands, thread_list 25, 55
Commands, thread_select 26, 56
Commands, threads 25, 54
Commands, viewmode 45, 60, 77
Compare experiments 32
CPI . 63
CPU . 62

D
Default metrics . 14

E
ELF . 62
Environment variables 68
Exclusive metric . 59
Experiment directory 5, 51

F
Filters, Intro . 49
Filters, Persistence . 49
Filters, Reset to default 61
Filters, Thread selection 26
Flavor field . 59
Function . 62

G
gprofng, archive . 47
gprofng, collect app 47
gprofng, display html 5, 47
gprofng, display src 47
gprofng, display text 5, 47
gprofng.rc . 47

86 GNU gprofng

H
Hardware event counters, alias name . . . 63
Hardware event counters,
auto option . 38

Hardware event counters,
counter definition 35

Hardware event counters, CPI 42
Hardware event counters, description . . 63
Hardware event counters, hwc metric . . . 38
Hardware event counters, IPC 42
Hardware event counters, variable

CPU frequency . 63

I
Inclusive metric . 59
Instruction level metrics 12
Instruction pointer . 59
Interpreter mode . 8
IPC . 63

J
Java profiling, -j on/off 45
Java profiling, -J <string> 45
Java profiling, <JVM-System> 60
Java profiling, <no Java

callstack recorded> 60
Java profiling, different view modes 45
Java profiling, JAVA_PATH 45
Java profiling, JDK_HOME 45

L
Leaf function . 59
List specification . 60
Load object . 62
Load objects . 22

M
Metric name field . 59
Metrics, Flavor field 59
Metrics, Metric name field 59
Metrics, Reset to default 14
Metrics, Visibility field 16, 59
Miscellaneous , ## . 11
Miscellaneous, <apath> 22
Miscellaneous, <Total> 9
mxv-pthreads . 7

O
Options, --debug . 79
Options, --help 67, 70, 74, 79, 81, 83
Options, --highlight-percentage 79
Options, --output . 80
Options, --overwrite 80
Options, --quiet . 80
Options, --verbose 79
Options, --version . . 67, 70, 74, 79, 81, 83
Options, --warnings 80
Options, -a . 72, 83
Options, -addpath . 56
Options, -callers-callees 75
Options, -calltree 18, 75
Options, -compare 30, 32, 34, 40, 75
Options, -cpu_list 28, 53
Options, -cpu_select 56
Options, -cpus . 28, 53
Options, -C . 20, 71
Options, -d . 79, 84
Options, -disasm 12, 75, 81
Options, -dthresh . 55
Options, -experiment_ids 53
Options, -experiment_list 31, 53, 61
Options, -fsingle 19, 22, 23, 75
Options, -fsummary 22, 23, 75
Options, -functions 8, 76, 81
Options, -F . 71, 84
Options, -GCEvents 54
Options, -h . 34, 38, 70
Options, -header 20, 22, 76
Options, -hp . 79
Options, -H . 73
Options, -i . 73
Options, -j . 45, 71
Options, -J . 45, 71
Options, -l . 72
Options, -limit 16, 43, 76
Options, -lines 11, 76
Options, -lwp_list 54
Options, -lwp_select 56
Options, -m . 83
Options, -metric_list 14, 42, 43, 76
Options, -metrics 14, 59, 76
Options, -n . 71, 83
Options, -name . 76
Options, -o . 15, 70, 80
Options, -objects 19, 22
Options, -outfile . 82
Options, -overview 20, 76
Options, -O 15, 17, 70, 80
Options, -p . 19, 21, 70

Index 87

Options, -pathmap . 56

Options, -pcs . 13, 76

Options, -printmode 55

Options, -processes 54

Options, -q . 80, 83

Options, -s . 73

Options, -sample-select 56

Options, -sample_list 54

Options, -samples . 54

Options, -script 16, 74

Options, -seconds . 54

Options, -setpath . 56

Options, -sort 16, 28, 76

Options, -source 10, 77, 81

Options, -sthresh . 55

Options, -S . 72

Options, -t . 71

Options, -thread_list 25, 55

Options, -thread_select 26, 56

Options, -threads 25, 54

Options, -viewmode 45, 60, 77

Options, -w . 80

Options, -y . 72

P
PC . 59, 62
PC sampling . 3
Posix Threads . 7
Program Counter 59, 62
Program Counter sampling 3
Pthreads . 7

S
Sampling frequency . 21
Sampling interval 21, 22
Script files . 16
Selection list . 60
Sort, Reset to default 16, 76
Sort, Reverse order 16, 76
Source level metrics 10

T
texi2dvi . 66
Thread affinity . 28
Total CPU time . 9

V
Viewmode . 60
Visibility field . 59

	1 Introduction
	2 A Brief Overview of
	Main Features
	Sampling versus Tracing
	Steps Needed to Create a Profile

	3 A Mini Tutorial
	Getting Started
	The Example Program
	A First Profile
	The Source Code View
	The Disassembly View
	Display and Define the Metrics
	Customization of the Output
	Name the Experiment Directory
	Control the Number of Lines in the Output
	Sorting the Performance Data
	Scripting
	A More Elaborate Example
	The Call Tree
	More Information on the Experiment
	Control the Sampling Frequency
	Information on Load Objects

	Support for Multithreading
	Creating a Multithreading Experiment
	Commands Specific to Multithreading

	View Multiple Experiments
	Aggregation of Experiments
	Comparison of Experiments

	Profile Hardware Event Counters
	Getting Information on the Counters Supported
	Examples Using Hardware Event Counters

	Java Profiling

	4 The gprofng Tools
	Tools Overview
	The gprofng.rc file with default settings
	Filters
	Supported Environment Variables

	5 Performance Data Collection
	The command

	6 View the Performance Information
	The gprofng display text Tool
	The gprofng display text Commands
	Commands that List Experiment Details
	Commands that Affect Listings and Output
	Predefined Filters
	Commands to Set and Change Search Paths

	7 Terminology
	The Program Counter
	Inclusive and Exclusive Metrics
	Metric Definitions
	The Viewmode
	The Selection List
	Load Objects and Functions
	The Concept of a CPU in
	Hardware Event Counters Explained
	What is <apath>?

	8 Other Document Formats
	A The Man Pages
	Man page for gprofng
	Man page for gprofng collect app
	Man page for gprofng display text
	Man page for gprofng display html
	Man page for gprofng display src
	Man page for gprofng archive

	Index

