
GNU gprofng
The next generation profiling tool for Linux
version 1.0 (last updated 22 February 2022)

Ruud van der Pas

This document is the manual for gprofng, last updated 22 February 2022.

Copyright c© 2022 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with no Front-Cover texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation
License.”

i

Table of Contents

1 Introduction . 1

2 A Brief Overview of gprofng 3
2.1 Main Features . 3
2.2 Sampling versus Tracing . 3
2.3 Steps Needed to Create a Profile . 4

3 A Mini Tutorial . 7
3.1 Getting Started . 7

3.1.1 The Example Program . 7
3.1.2 A First Profile . 7
3.1.3 The Source Code View . 9
3.1.4 The Disassembly View . 11
3.1.5 Display and Define the Metrics . 13
3.1.6 A First Customization of the Output . 13
3.1.7 Name the Experiment Directory . 14
3.1.8 Control the Number of Lines in the Output 15
3.1.9 Sorting the Performance Data . 15
3.1.10 Scripting . 15
3.1.11 A More Elaborate Example . 15
3.1.12 The Call Tree . 17
3.1.13 More Information on the Experiment . 18
3.1.14 Control the Sampling Frequency . 20
3.1.15 Information on Load Objects . 20

3.2 Support for Multithreading . 22
3.2.1 Creating a Multithreading Experiment . 22
3.2.2 Commands Specific to Multithreading . 23

3.3 Viewing Multiple Experiments . 29
3.3.1 Aggregation of Experiments . 29
3.3.2 Comparison of Experiments . 30

3.4 Profile Hardware Event Counters . 32
3.4.1 Getting Information on the Counters Supported 32
3.4.2 Examples Using Hardware Event Counters 35

3.5 Java Profiling . 43

4 Terminology . 45
4.1 The Program Counter . 45
4.2 Inclusive and Exclusive Metrics . 45
4.3 Metric Definitions . 45
4.4 The Viewmode . 46

ii

4.5 The Selection List . 46
4.6 Load Objects and Functions . 47
4.7 The Concept of a CPU in gprofng . 48
4.8 Hardware Event Counters Explained . 48
4.9 What is <apath>? . 49

5 Other Document Formats . 51

Index . 53

1

1 Introduction

The gprofng tool is the next generation profiler for Linux. It consists of
various commands to generate and display profile information.

This manual starts with a tutorial how to create and interpret a profile.
This part is highly practical and has the goal to get users up to speed as
quickly as possible. As soon as possible, we would like to show you how to
get your first profile on your screen.

This is followed by more examples, covering many of the features. At
the end of this tutorial, you should feel confident enough to tackle the more
complex tasks.

In a future update a more formal reference manual will be included as
well. Since even in this tutorial we use certain terminology, we have included
a chapter with descriptions at the end. In case you encounter unfamiliar
wordings or terminology, please check this chapter.

One word of caution. In several cases we had to somewhat tweak the
screen output in order to make it fit. This is why the output may look
somewhat different when you try things yourself.

For now, we wish you a smooth profiling experience with gprofng and
good luck tackling performance bottlenecks.

3

2 A Brief Overview of gprofng

Before we cover this tool in quite some detail, we start with a brief overview
of what it is, and the main features. Since we know that many of you would
like to get started rightaway, already in this first chapter we explain the
basics of profiling with gprofng.

2.1 Main Features
These are the main features of the gprofng tool:

• Profiling is supported for an application written in C, C++, Java, or
Scala.

• Shared libraries are supported. The information is presented at the
instruction level.

• The following multithreading programming models are supported:
Pthreads, OpenMP, and Java threads.

• This tool works with unmodified production level executables. There is
no need to recompile the code, but if the -g option has been used when
building the application, source line level information is available.

• The focus is on support for code generated with the gcc compiler, but
there is some limited support for the icc compiler as well. Future
improvements and enhancements will focus on gcc though.

• Processors from Intel, AMD, and Arm are supported, but the level of
support depends on the architectural details. In particular, hardware
event counters may not be supported.

• Several views into the data are supported. For example, a function
overview where the time is spent, but also a source line, disassembly,
call tree and a caller-callees overview are available.

• Through filters, the user can zoom in on an area of interest.

• Two or more profiles can be aggregated, or used in a comparison. This
comparison can be obtained at the function, source line, and disassembly
level.

• Through a scripting language, and customization of the metrics shown,
the generation and creation of a profile can be fully automated and
provide tailored output.

2.2 Sampling versus Tracing
A key difference with some other profiling tools is that the main data col-
lection command gprofng collect app mostly uses Program Counter (PC)
sampling under the hood.

With sampling, the executable is stopped at regular intervals. Each time
it is halted, key information is gathered and stored. This includes the Pro-
gram Counter that keeps track of where the execution is. Hence the name.

4 GNU gprofng

Together with operational data, this information is stored in the experi-
ment directory and can be viewed in the second phase.

For example, the PC information is used to derive where the program
was when it was halted. Since the sampling interval is known, it is relatively
easy to derive how much time was spent in the various parts of the program.

The opposite technique is generally referred to as tracing. With trac-
ing, the target is instrumented with specific calls that collect the requested
information.

These are some of the pros and cons of PC sampling verus tracing:

• Since there is no need to recompile, existing executables can be used
and the profile measures the behaviour of exactly the same executable
that is used in production runs.

With sampling, one inherently profiles a different executable because
the calls to the instrumentation library may affect the compiler opti-
mizations and run time behaviour.

• With sampling, there are very few restrictions on what can be profiled
and even without access to the source code, a basic profile can be made.

• A downside of sampling is that, depending on the sampling frequency,
small functions may be missed or not captured accurately. Although
this is rare, this may happen and is the reason why the user has control
over the sampling rate.

• While tracing produces precise information, sampling is statistical in na-
ture. As a result, small variations may occur across seemingly identical
runs. We have not observed more than a few percent deviation though.
Especially if the target job executed for a sufficiently long time.

• With sampling, it is not possible to get an accurate count how often
functions are called.

2.3 Steps Needed to Create a Profile
Creating a profile takes two steps. First the profile data needs to be gener-
ated. This is followed by a viewing step to create a report from the infor-
mation that has been gathered.

Every gprofng command starts with gprofng, the name of the driver.
This is followed by a keyword to define the high level functionality. Depend-
ing on this keyword, a third qualifier may be needed to further narrow down
the request. This combination is then followed by options that are specific
to the functionality desired.

The command to gather, or “collect”, the performance data is called
gprofng collect app. Aside from numerous options, this command takes
the name of the target executable as an input parameter.

Upon completion of the run, the performance data can be found in the
newly created experiment directory.

Chapter 2: A Brief Overview of gprofng 5

Unless explicitly specified otherwise, a default name for this directory is
chosen. The name is test.<n>.er where n is the first integer number not
in use yet for such a name.

For example, the first time gprofng collect app is invoked, an experi-
ment directory with the name test.1.er is created.

Upon a subsequent invocation of gprofng collect app in the same di-
rectory, an experiment directory with the name test.2.er will be created,
and so forth.

Note that gprofng collect app supports an option to explicitly name
the experiment directory. Outside of the restriction that the name of this
directory has to end with .er, any valid directory name can be used for this.

Now that we have the performance data, the next step is to display it.

The most commonly used command to view the performance information
is gprofng display text. This is a very extensive and customizable tool
that produces the information in ASCII format.

Another option is to use gprofng display html. This tool generates
a directory with files in html format. These can be viewed in a browser,
allowing for easy navigation through the profile data.

7

3 A Mini Tutorial

In this chapter we present and discuss the main functionality of gprofng.
This will be a practical approach, using an example code to generate profile
data and show how to get various performance reports.

3.1 Getting Started
The information presented here provides a good and common basis for many
profiling tasks, but there are more features that you may want to leverage.

These are covered in subsequent sections in this chapter.

3.1.1 The Example Program

Throughout this guide we use the same example C code that implements
the multiplication of a vector of length n by an m by n matrix. The result
is stored in a vector of length m. The algorithm has been parallelized using
Posix Threads, or Pthreads for short.

The code was built using the gcc compiler and the name of the executable
is mxv-pthreads.exe.

The matrix sizes can be set through the -m and -n options. The number
of threads is set with the -t option. To increase the duration of the run, the
multiplication is executed repeatedly.

This is an example that multiplies a 3000 by 2000 matrix with a vector
of length 2000 using 2 threads:

$./mxv-pthreads.exe -m 3000 -n 2000 -t 2

mxv: error check passed - rows = 3000 columns = 2000 threads = 2

$

The program performs an internal check to verify the results are correct.
The result of this check is printed, followed by the matrix sizes and the
number of threads used.

3.1.2 A First Profile

The first step is to collect the performance data. It is important to remember
that much more information is gathered than may be shown by default.
Often a single data collection run is sufficient to get a lot of insight.

The gprofng collect app command is used for the data collection.
Nothing needs to be changed in the way the application is executed. The
only difference is that it is now run under control of the tool, as shown below:� �

$ gprofng collect app ./mxv.pthreads.exe -m 3000 -n 2000 -t 1
 	
This command produces the following output:
Creating experiment database test.1.er (Process ID: 2416504) ...

mxv: error check passed - rows = 3000 columns = 2000 threads = 1

8 GNU gprofng

We see the message that a directory with the name test.1.er has been
created. The application then completes as usual and we have our first
experiment directory that can be analyzed.

The tool we use for this is called gprofng display text. It takes the
name of the experiment directory as an argument.

If invoked this way, the tool starts in the interactive interpreter mode.
While in this environment, commands can be given and the tool responds.
This is illustrated below:

$ gprofng display text test.1.er

Warning: History and command editing is not supported on this system.

(gp-display-text) quit

$

While useful in certain cases, we prefer to use this tool in command line
mode, by specifying the commands to be issued when invoking the tool. The
way to do this is to prepend the command with a hyphen (-) if used on the
command line.

For example, with the functions command we request a list of the
functions that have been executed and their respective CPU times:� �

$ gprofng display text -functions test.1.er
 	
$ gprofng display text -functions test.1.er

Functions sorted by metric: Exclusive Total CPU Time

Excl. Incl. Name

Total Total

CPU sec. CPU sec.

2.272 2.272 <Total>

2.160 2.160 mxv_core

0.047 0.103 init_data

0.030 0.043 erand48_r

0.013 0.013 __drand48_iterate

0.013 0.056 drand48

0.008 0.010 _int_malloc

0.001 0.001 brk

0.001 0.002 sysmalloc

0. 0.001 __default_morecore

0. 0.113 __libc_start_main

0. 0.010 allocate_data

0. 2.160 collector_root

0. 2.160 driver_mxv

0. 0.113 main

0. 0.010 malloc

0. 0.001 sbrk

As easy and simple as these steps are, we do have a first profile of our
program! There are three columns. The first two contain the Total CPU
Time, which is the sum of the user and system time. See Section 4.2 [Inclu-

Chapter 3: A Mini Tutorial 9

sive and Exclusive Metrics], page 45, for an explanation of “exclusive” and
“inclusive” times.

The first line echoes the metric that is used to sort the output. By default,
this is the exclusive CPU time, but the sort metric can be changed by the
user.

We then see three columns with the exclusive and inclusive CPU times,
plus the name of the function.

The function with the name <Total> is not a user function, but is intro-
duced by gprofng and is used to display the accumulated metric values. In
this case, we see that the total CPU time of this job was 2.272 seconds.

With 2.160 seconds, function mxv_core is the most time consuming func-
tion. It is also a leaf function.

The next function in the list is init_data. Although the CPU time spent
in this part is negligible, this is an interesting entry because the inclusive
CPU time of 0.103 seconds is higher than the exclusive CPU time of 0.047
seconds. Clearly it is calling another function, or even more than one func-
tion. See Section 3.1.12 [The Call Tree], page 17, for the details how to get
more information on this.

The function collector_root does not look familiar. It is one of the
internal functions used by gprofng collect app and can be ignored. While
the inclusive time is high, the exclusive time is zero. This means it doesn’t
contribute to the performance.

The question is how we know where this function originates from? There
is a very useful command to get more details on a function. See Section 3.1.15
[Information on Load Objects], page 20.

3.1.3 The Source Code View

In general, you would like to focus the tuning efforts on the most time
consuming part(s) of the program. In this case that is easy, since 2.160
seconds on a total of 2.272 seconds is spent in function mxv_core. That is
95% of the total and it is time to dig deeper and look at the time distribution
at the source code level.

The source command is used to accomplish this. It takes the name of
the function, not the source filename, as an argument. This is demonstrated
below, where the gprofng display text command is used to show the an-
notated source listing of function mxv_core.

Please note that the source code has to be compiled with the -g option
in order for the source code feature to work. Otherwise the location can not
be determined.� �

$ gprofng display text -source mxv_core test.1.er
 	
The slightly modified output is as follows:
Source file: <apath>/mxv.c

10 GNU gprofng

Object file: mxv-pthreads.exe (found as test.1.er/archives/...)

Load Object: mxv-pthreads.exe (found as test.1.er/archives/...)

Excl. Incl.

Total Total

CPU sec. CPU sec.

<lines deleted>

<Function: mxv_core>

0. 0. 32. void __attribute__ ((noinline))

mxv_core (

uint64_t row_index_start,

uint64_t row_index_end,

uint64_t m, uint64_t n,

double **restrict A,

double *restrict b,

double *restrict c)

0. 0. 33. {

0. 0. 34. for (uint64_t i=row_index_start;

i<=row_index_end; i++) {

0. 0. 35. double row_sum = 0.0;

1.687 1.687 36. for (int64_t j=0; j<n; j++)

0.473 0.473 37. row_sum += A[i][j]*b[j];

0. 0. 38. c[i] = row_sum;

39. }

0. 0. 40. }

The first three lines provide information on the location of the source
file, the object file and the load object (See Section 4.6 [Load Objects and
Functions], page 47).

Function mxv_core is part of a source file that has other functions as
well. These functions will be shown, but without timing information. They
have been removed in the output shown above.

This is followed by the annotated source code listing. The selected metrics
are shown first, followed by a source line number, and the source code. The
most time consuming line(s) are marked with the ## symbol. In this way
they are easier to find.

What we see is that all of the time is spent in lines 36-37.

A related command sometimes comes handy as well. It is called lines
and displays a list of the source lines and their metrics, ordered according to
the current sort metric (See Section 3.1.9 [Sorting the Performance Data],
page 15).

Below the command and the output. For lay-out reasons, only the top 10
is shown here and the last part of the text on some lines has been replaced
by dots.� �

$ gprofng display text -lines test.1.er
 	

Chapter 3: A Mini Tutorial 11

Lines sorted by metric: Exclusive Total CPU Time

Excl. Incl. Name

Total Total

CPU sec. CPU sec.

2.272 2.272 <Total>

1.687 1.687 mxv_core, line 36 in "mxv.c"

0.473 0.473 mxv_core, line 37 in "mxv.c"

0.032 0.088 init_data, line 72 in "manage_data.c"

0.030 0.043 <Function: erand48_r, instructions without line numbers>

0.013 0.013 <Function: __drand48_iterate, instructions without ...>

0.013 0.056 <Function: drand48, instructions without line numbers>

0.012 0.012 init_data, line 77 in "manage_data.c"

0.008 0.010 <Function: _int_malloc, instructions without ...>

0.003 0.003 init_data, line 71 in "manage_data.c"

What this overview immediately highlights is that the next most time
consuming source line takes 0.032 seconds only. With an inclusive time of
0.088 seconds, it is also clear that this branch of the code does not impact
the performance.

3.1.4 The Disassembly View

The source view is very useful to obtain more insight where the time is spent,
but sometimes this is not sufficient. This is when the disassembly view comes
in. It is activated with the disasm command and as with the source view, it
displays an annotated listing. In this case it shows the instructions with the
metrics, interleaved with the source lines. The instructions have a reference
in square brackets ([and]) to the source line they correspond to.

This is what we get for our example:� �
$ gprofng display text -disasm mxv_core test.1.er
 	
Source file: <apath>/mxv.c

Object file: mxv-pthreads.exe (found as test.1.er/archives/...)

Load Object: mxv-pthreads.exe (found as test.1.er/archives/...)

Excl. Incl.

Total Total

CPU sec. CPU sec.

<lines deleted>

32. void __attribute__ ((noinline))

mxv_core (

uint64_t row_index_start,

uint64_t row_index_end,

uint64_t m, uint64_t n,

double **restrict A,

double *restrict b,

double *restrict c)

33. {

12 GNU gprofng

<Function: mxv_core>

0. 0. [33] 4021ba: mov 0x8(%rsp),%r10

34. for (uint64_t i=row_index_start;

i<=row_index_end; i++) {

0. 0. [34] 4021bf: cmp %rsi,%rdi

0. 0. [34] 4021c2: jbe 0x37

0. 0. [34] 4021c4: ret

35. double row_sum = 0.0;

36. for (int64_t j=0; j<n; j++)

37. row_sum += A[i][j]*b[j];

0. 0. [37] 4021c5: mov (%r8,%rdi,8),%rdx

0. 0. [36] 4021c9: mov $0x0,%eax

0. 0. [35] 4021ce: pxor %xmm1,%xmm1

0.002 0.002 [37] 4021d2: movsd (%rdx,%rax,8),%xmm0

0.096 0.096 [37] 4021d7: mulsd (%r9,%rax,8),%xmm0

0.375 0.375 [37] 4021dd: addsd %xmm0,%xmm1

1.683 1.683 [36] 4021e1: add $0x1,%rax

0.004 0.004 [36] 4021e5: cmp %rax,%rcx

0. 0. [36] 4021e8: jne 0xffffffffffffffea

38. c[i] = row_sum;

0. 0. [38] 4021ea: movsd %xmm1,(%r10,%rdi,8)

0. 0. [34] 4021f0: add $0x1,%rdi

0. 0. [34] 4021f4: cmp %rdi,%rsi

0. 0. [34] 4021f7: jb 0xd

0. 0. [35] 4021f9: pxor %xmm1,%xmm1

0. 0. [36] 4021fd: test %rcx,%rcx

0. 0. [36] 402200: jne 0xffffffffffffffc5

0. 0. [36] 402202: jmp 0xffffffffffffffe8

39. }

40. }

0. 0. [40] 402204: ret

For each instruction, the timing values are given and we can exactly
which ones are the most expensive. As with the source level view, the most
expensive instructions are market with the ## symbol.

As illustrated below and similar to the lines command, we can get an
overview of the instructions executed by using the pcs command.

Below the command and the output, which again has been restricted to 10
lines:� �

$ gprofng display text -pcs test.1.er
 	
PCs sorted by metric: Exclusive Total CPU Time

Excl. Incl. Name

Total Total

CPU sec. CPU sec.

2.272 2.272 <Total>

1.683 1.683 mxv_core + 0x00000027, line 36 in "mxv.c"

0.375 0.375 mxv_core + 0x00000023, line 37 in "mxv.c"

0.096 0.096 mxv_core + 0x0000001D, line 37 in "mxv.c"

Chapter 3: A Mini Tutorial 13

0.027 0.027 init_data + 0x000000BD, line 72 in "manage_data.c"

0.012 0.012 init_data + 0x00000117, line 77 in "manage_data.c"

0.008 0.008 _int_malloc + 0x00000A45

0.007 0.007 erand48_r + 0x00000062

0.006 0.006 drand48 + 0x00000000

0.005 0.005 __drand48_iterate + 0x00000005

3.1.5 Display and Define the Metrics

The default metrics shown by gprofng display text are useful, but there
is more recorded than displayed. We can customize the values shown by
defining the metrics ourselves.

There are two commands related to changing the metrics shown: metric_
list and metrics.

The first command shows the metrics in use, plus all the metrics that
have been stored as part of the experiment. The second command may be
used to define the metric list.

In our example we get the following values for the metrics:� �
$ gprofng display text -metric_list test.1.er
 	
Current metrics: e.totalcpu:i.totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.totalcpu)

Available metrics:

Exclusive Total CPU Time: e.%totalcpu

Inclusive Total CPU Time: i.%totalcpu

Size: size

PC Address: address

Name: name

This shows the metrics currently in use, the metric that is used to sort
the data and all the metrics that have been recorded, but are not necessarily
shown.

In this case, the default metrics are set to the exclusive and inclusive
total CPU times, plus the name of the function, or load object.

The metrics command is used to define the metrics that need to be
displayed.

For example, to display the exclusive total CPU time, both as a number
and a percentage, use the following metric definition: e.%totalcpu

Since the metrics can be tailored for different views, there is a way to reset
them to the default. This is done through the special keyword default.

3.1.6 A First Customization of the Output

With the information just given, we can customize the function overview.
For sake of the example, we would like to display the name of the function
first, followed by the exclusive CPU time, given as an absolute number and
a percentage.

14 GNU gprofng

Note that the commands are parsed in order of appearance. This is why
we need to define the metrics before requesting the function overview:� �

$ gprofng display text -metrics name:e.%totalcpu -functions test.1.er
 	
Current metrics: name:e.%totalcpu

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Functions sorted by metric: Exclusive Total CPU Time

Name Excl. Total

CPU

sec. %

<Total> 2.272 100.00

mxv_core 2.160 95.04

init_data 0.047 2.06

erand48_r 0.030 1.32

__drand48_iterate 0.013 0.57

drand48 0.013 0.57

_int_malloc 0.008 0.35

brk 0.001 0.04

sysmalloc 0.001 0.04

__default_morecore 0. 0.

__libc_start_main 0. 0.

allocate_data 0. 0.

collector_root 0. 0.

driver_mxv 0. 0.

main 0. 0.

malloc 0. 0.

sbrk 0. 0.

This was a first and simple example how to customize the output. Note
that we did not rerun our profiling job and merely modified the display
settings. Below we will show other and also more advanced examples of
customization.

3.1.7 Name the Experiment Directory

When using gprofng collect app, the default names for experiments work
fine, but they are quite generic. It is often more convenient to select a
more descriptive name. For example, one that reflects conditions for the
experiment conducted.

For this, the mutually exclusive -o and -O options come in handy. Both
may be used to provide a name for the experiment directory, but the be-
haviour of gprofng collect app is different.

With the -o option, an existing experiment directory is not overwritten.
You either need to explicitly remove an existing directory first, or use a name
that is not in use yet.

This is in contrast with the behaviour for the -O option. Any existing
(experiment) directory with the same name is silently overwritten.

Chapter 3: A Mini Tutorial 15

Be aware that the name of the experiment directory has to end with .er.

3.1.8 Control the Number of Lines in the Output

The limit <n> command can be used to control the number of lines printed
in various overviews, including the function view, but it also takes effect for
other display commands, like lines.

The argument <n> should be a positive integer number. It sets the num-
ber of lines in the function view. A value of zero resets the limit to the
default.

Be aware that the pseudo-function <Total> counts as a regular function.
For example limit 10 displays nine user level functions.

3.1.9 Sorting the Performance Data

The sort <key> command sets the key to be used when sorting the perfor-
mance data.

The key is a valid metric definition, but the visibility field (See Section 4.3
[Metric Definitions], page 45) in the metric definition is ignored since this
does not affect the outcome of the sorting operation. For example if we set
the sort key to e.totalcpu, the values will be sorted in descending order
with respect to the exclusive total CPU time.

The data can be sorted in reverse order by prepending the metric defini-
tion with a minus (-) sign. For example sort -e.totalcpu.

A default metric for the sort operation has been defined and since this is
a persistent command, this default can be restored with default as the key.

3.1.10 Scripting

As is probably clear by now, the list with commands for gprofng display
text can be very long. This is tedious and also error prone. Luckily, there
is an easier and more elegant way to control the behaviour of this tool.

Through the script command, the name of a file with commands can
be passed in. These commands are parsed and executed as if they appeared
on the command line in the same order as encountered in the file. The
commands in this script file can actually be mixed with commands on the
command line.

The difference between the commands in the script file and those used
on the command line is that the latter require a leading dash (-) symbol.

Comment lines are supported. They need to start with the # symbol.

3.1.11 A More Elaborate Example

With the information presented so far, we can customize our data gathering
and display commands.

As an example, to reflect the name of the algorithm and the number of
threads that were used in the experiment, we select mxv.1.thr.er as the

16 GNU gprofng

name of the experiment directory. All we then need to do is to add the -O
option followed by this name on the command line when running gprofng
collect app:� �

$ exe=mxv-pthreads.exe

$ m=3000

$ n=2000

$ gprofng collect app -O mxv.1.thr.er ./$exe -m $m -n $n -t 1
 	
The commands to generate the profile are put into a file that we simply

call my-script:

$ cat my-script

This is my first gprofng script

Set the metrics

metrics i.%totalcpu:e.%totalcpu:name

Use the exclusive time to sort

sort e.totalcpu

Limit the function list to 5 lines

limit 5

Show the function list

functions

This script file is then specified as input to the gprofng display text
command that is used to display the performance information stored in
mxv.1.thr.er:� �

$ gprofng display text -script my-script mxv.1.thr.er
 	
The command above produces the following output:

This is my first gprofng script

Set the metrics

Current metrics: i.%totalcpu:e.%totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Use the exclusive time to sort

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Limit the function list to 5 lines

Print limit set to 5

Show the function list

Functions sorted by metric: Exclusive Total CPU Time

Incl. Total Excl. Total Name

CPU CPU

sec. % sec. %

2.272 100.00 2.272 100.00 <Total>

2.159 95.00 2.159 95.00 mxv_core

0.102 4.48 0.054 2.37 init_data

0.035 1.54 0.025 1.10 erand48_r

0.048 2.11 0.013 0.57 drand48

Chapter 3: A Mini Tutorial 17

In the first part of the output, our comment lines in the script file are
shown. These are interleaved with an acknowledgement message for the
commands.

This is followed by a profile consisting of 5 lines only. For both metrics,
the percentages plus the timings are given. The numbers are sorted with
respect to the exclusive total CPU time.

It is now immediately clear that function mxv_core is responsbile for 95%
of the CPU time and init_data takes 4.5% only.

This is also where we see sampling in action. Although this is exactly
the same job we profiled before, the timings are somewhat different, but the
differences are very small.

3.1.12 The Call Tree

The call tree shows the dynamic hierarchy of the application by displaying
the functions executed and their parent. It helps to find the most expensive
path in the program.

This feature is enabled through the calltree command. This is how to
get this tree for our current experiment:� �

$ gprofng display text -calltree mxv.1.thr.er
 	
This displays the following structure:

Functions Call Tree. Metric: Attributed Total CPU Time

Attr. Name

Total

CPU sec.

2.272 +-<Total>

2.159 +-collector_root

2.159 | +-driver_mxv

2.159 | +-mxv_core

0.114 +-__libc_start_main

0.114 +-main

0.102 +-init_data

0.048 | +-drand48

0.035 | +-erand48_r

0.010 | +-__drand48_iterate

0.011 +-allocate_data

0.011 | +-malloc

0.011 | +-_int_malloc

0.001 | +-sysmalloc

0.001 +-check_results

0.001 +-malloc

0.001 +-_int_malloc

At first sight this may not be what you expected and some explanation
is in place.

18 GNU gprofng

First of all, function collector_root is internal to gprofng and should
be hidden to the user. This is part of a planned future enhancement.

Recall that the objects and fsingle commands are very useful to find
out more about load objects in general, but also to help identify an unknown
entry in the function overview. See Section 4.6 [Load Objects and Functions],
page 47.

Another thing to note is that there are two main branches. The one
under collector_root and the second one under __libc_start_main. This
reflects the fact that we are executing a parallel program. Even though we
only used one thread for this run, this is still executed in a separate path.

The main, sequential part of the program is displayed under main and
shows the functions called and the time they took.

There are two things worth noting for the call tree feature:

• This is a dynamic tree and since sampling is used, it most likely looks
slighlty different across seemingly identical profile runs. In case the run
times are short, it is worth considering to use a high resolution through
the -p option. For example to use -p hi to increase the sampling rate.

• In case hardware event counters have been enabled (See Section 3.4 [Pro-
file Hardware Event Counters], page 32), these values are also displayed
in the call tree view.

3.1.13 More Information on the Experiment

The experiment directory not only contains performance related data. Sev-
eral system characteristics, the actually command executed, and some global
performance statistics can be displayed.

The header command displays information about the experiment(s). For
example, this is the command to extract this data from for our experiment
directory:� �

$ gprofng display text -header mxv.1.thr.er
 	
The above command prints the following information. Note that some of

the lay-out and the information has been modified. The textual changes are
marked with the < and > symbols.

Experiment: mxv.1.thr.er

No errors

No warnings

Archive command ‘gp-archive -n -a on

--outfile <exp_dir>/archive.log <exp_dir>’

Target command (64-bit): ’./mxv-pthreads.exe -m 3000 -n 2000 -t 1’

Process pid 30591, ppid 30589, pgrp 30551, sid 30468

Current working directory: <cwd>

Collector version: ‘2.36.50’; experiment version 12.4 (64-bit)

Host ‘<hostname>’, OS ‘Linux <version>’, page size 4096,

Chapter 3: A Mini Tutorial 19

architecture ‘x86_64’

16 CPUs, clock speed 1995 MHz.

Memory: 30871514 pages @ 4096 = 120591 MB.

Data collection parameters:

Clock-profiling, interval = 997 microsecs.

Periodic sampling, 1 secs.

Follow descendant processes from: fork|exec|combo

Experiment started <date and time>

Experiment Ended: 2.293162658

Data Collection Duration: 2.293162658

The output above may assist in troubleshooting, or to verify some of the
operational conditions and we recommand to include this command when
generating a profile.

Related to this command there is a useful option to record your own
comment(s) in an experiment. To this end, use the -C option on the gprofng
collect app tool to specify a comment string. Up to ten comment lines can
be included. These comments are displayed with the header command on
the gprofng display text tool.

The overview command displays information on the experiment(s) and
also shows a summary of the values for the metric(s) used. This is an example
how to use it on our newly created experiment directory:� �

$ gprofng display text -overview mxv.1.thr.er
 	
Experiment(s):

Experiment :mxv.1.thr.er

Target : ’./mxv-pthreads.exe -m 3000 -n 2000 -t 1’

Host : <hostname> (<ISA>, Linux <version>)

Start Time : <date and time>

Duration : 2.293 Seconds

Metrics:

Experiment Duration (Seconds): [2.293]

Clock Profiling

[X]Total CPU Time - totalcpu (Seconds): [*2.272]

Notes: ’*’ indicates hot metrics, ’[X]’ indicates currently enabled

metrics.

The metrics command can be used to change selections. The

metric_list command lists all available metrics.

This command provides a dashboard overview that helps to easily identify
where the time is spent and in case hardware event counters are used, it
shows their total values.

20 GNU gprofng

3.1.14 Control the Sampling Frequency

So far we did not talk about the frequency of the sampling process, but in
some cases it is useful to change the default of 10 milliseconds.

The advantage of increasing the sampling frequency is that functions that
do not take much time per invocation are more accurately captured. The
downside is that more data is gathered. This has an impact on the overhead
of the collection process and more disk space is required.

In general this is not an immediate concern, but with heavily threaded
applications that run for an extended period of time, increasing the frequency
may have a more noticeable impact.

The -p option on the gprofng collect app tool is used to enable or
disable clock based profiling, or to explicitly set the sampling rate. This
option takes one of the following keywords:

off Disable clock based profiling.

on Enable clock based profiling with a per thread sampling interval
of 10 ms. This is the default.

lo Enable clock based profiling with a per thread sampling interval
of 100 ms.

hi Enable clock based profiling with a per thread sampling interval
of 1 ms.

<value> Enable clock based profiling with a per thread sampling interval
of <value>.

One may wonder why there is an option to disable clock based profiling.
This is because by default, it is enabled when conducting hardware event
counter experiments (See Section 3.4 [Profile Hardware Event Counters],
page 32). With the -p off option, this can be disabled.

If an explicit value is set for the sampling, the number can be an integer or
a floating-point number. A suffix of u for microseconds, or m for milliseconds
is supported. If no suffix is used, the value is assumed to be in milliseconds.

If the value is smaller than the clock profiling minimum, a warning mes-
sage is issued and it is set to the minimum. In case it is not a multiple of the
clock profiling resolution, it is silently rounded down to the nearest multiple
of the clock resolution.

If the value exceeds the clock profiling maximum, is negative, or zero, an
error is reported.

Note that the header command echoes the sampling rate used.

3.1.15 Information on Load Objects

It may happen that the function list contains a function that is not known to
the user. This can easily happen with library functions for example. Luckily
there are three commands that come in handy then.

Chapter 3: A Mini Tutorial 21

These commands are objects, fsingle, and fsummary. They provide de-
tails on load objects (See Section 4.6 [Load Objects and Functions], page 47).

The objects command lists all load objects that have been referenced
during the performance experiment. Below we show the command and the
result for our profile job. Like before, the (long) path names in the output
have been shortened and replaced by the <apath> symbol that represents
an absolute directory path.� �

$ gprofng display text -objects mxv.1.thr.er
 	
The output includes the name and path of the target executable:

<Unknown> (<Unknown>)

<mxv-pthreads.exe> (<apath>/mxv-pthreads.exe)

<librt-2.17.so> (/usr/lib64/librt-2.17.so)

<libdl-2.17.so> (/usr/lib64/libdl-2.17.so)

<libbfd-2.36.50.20210505.so> (<apath>/libbfd-2.36.50 <etc>)

<libopcodes-2.36.50.20210505.so> (<apath>/libopcodes-2. <etc>)

<libc-2.17.so> (/usr/lib64/libc-2.17.so)

<libpthread-2.17.so> (/usr/lib64/libpthread-2.17.so)

<libm-2.17.so> (/usr/lib64/libm-2.17.so)

<libgp-collector.so> (<apath>/libgp-collector.so)

<ld-2.17.so> (/usr/lib64/ld-2.17.so)

<DYNAMIC_FUNCTIONS> (DYNAMIC_FUNCTIONS)

The fsingle command may be used to get more details on a specific
entry in the function view, say. For example, the command below provides
additional information on the collector_root function shown in the func-
tion overview.� �

$ gprofng display text -fsingle collector_root mxv.1.thr.er
 	
Below the output from this command. It has been somewhat modified to

match the display requirements.

collector_root

Exclusive Total CPU Time: 0. (0. %)

Inclusive Total CPU Time: 2.159 (95.0%)

Size: 401

PC Address: 10:0x0001db60

Source File: <apath>/dispatcher.c

Object File: mxv.1.thr.er/archives/libgp-collector.so_HpzZ6wMR-3b

Load Object: <apath>/libgp-collector.so

Mangled Name:

Aliases:

In this table we not only see how much time was spent in this function,
we also see where it originates from. In addition to this, the size and start
address are given as well. If the source code location is known it is also
shown here.

22 GNU gprofng

The related fsummary command displays the same information as
fsingle, but for all functions in the function overview, including <Total>:� �

$ gprofng display text -fsummary mxv.1.thr.er
 	
Functions sorted by metric: Exclusive Total CPU Time

<Total>

Exclusive Total CPU Time: 2.272 (100.0%)

Inclusive Total CPU Time: 2.272 (100.0%)

Size: 0

PC Address: 1:0x00000000

Source File: (unknown)

Object File: (unknown)

Load Object: <Total>

Mangled Name:

Aliases:

mxv_core

Exclusive Total CPU Time: 2.159 (95.0%)

Inclusive Total CPU Time: 2.159 (95.0%)

Size: 75

PC Address: 2:0x000021ba

Source File: <apath>/mxv.c

Object File: mxv.1.thr.er/archives/mxv-pthreads.exe_hRxWdccbJPc

Load Object: <apath>/mxv-pthreads.exe

Mangled Name:

Aliases:

... etc ...

3.2 Support for Multithreading
In this chapter we introduce and discuss the support for multithreading. As
is shown below, nothing needs to be changed when collecting the performance
data.

The difference is that additional commands are available to get more
information on the parallel environment, plus that several filters allow the
user to zoom in on specific threads.

3.2.1 Creating a Multithreading Experiment

We demonstrate the support for multithreading using the same code and
settings as before, but this time we use 2 threads:

Chapter 3: A Mini Tutorial 23� �
$ exe=mxv-pthreads.exe

$ m=3000

$ n=2000

$ gprofng collect app -O mxv.2.thr.er ./$exe -m $m -n $n -t 2
 	
First of all, note that we did not change anything, other than setting the

number of threads to 2. Nothing special is needed to profile a multithreaded
job when using gprofng.

The same is true when displaying the performance results. The same
commands that we used before work unmodified. For example, this is all
that is needed to get a function overview:� �

$ gpprofng display text -limit 10 -functions mxv.2.thr.er
 	
This produces the following familiar looking output:

Print limit set to 10

Functions sorted by metric: Exclusive Total CPU Time

Excl. Incl. Name

Total Total

CPU sec. CPU sec.

2.268 2.268 <Total>

2.155 2.155 mxv_core

0.044 0.103 init_data

0.030 0.046 erand48_r

0.016 0.016 __drand48_iterate

0.013 0.059 drand48

0.008 0.011 _int_malloc

0.003 0.003 brk

0. 0.003 __default_morecore

0. 0.114 __libc_start_main

3.2.2 Commands Specific to Multithreading

The function overview shown above shows the results aggregated over all
the threads. The interesting new element is that we can also look at the
performance data for the individual threads.

The thread_list command displays how many threads have been used:� �
$ gprofng display text -thread_list mxv.2.thr.er
 	

This produces the following output, showing that three threads have been
used:

Exp Sel Total

=== === =====

1 all 3

24 GNU gprofng

The output confirms there is one experiment and that by default all
threads are selected.

It may seem surprising to see three threads here, since we used the -t
2 option, but it is common for a Pthreads program to use one additional
thread. This is typically the thread that runs from start to finish and handles
the sequential portions of the code, as well as takes care of managing the
threads.

It is no different in our example code. At some point, the main thread
creates and activates the two threads that perform the multiplication of the
matrix with the vector. Upon completion of this computation, the main
thread continues.

The threads command is simple, yet very powerful. It shows the total
value of the metrics for each thread. To make it easier to interpret the data,
we modify the metrics to include percentages:� �

$ gprofng display text -metrics e.%totalcpu -threads mxv.2.thr.er
 	
The command above produces the following overview:

Current metrics: e.%totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

2.258 100.00 <Total>

1.075 47.59 Process 1, Thread 3

1.070 47.37 Process 1, Thread 2

0.114 5.03 Process 1, Thread 1

The first line gives the total CPU time accumulated over the threads
selected. This is followed by the metric value(s) for each thread.

From this it is clear that the main thread is responsible for 5% of the
total CPU time, while the other two threads take 47% each.

This view is ideally suited to verify if there any load balancing issues and
also to find the most time consuming thread(s).

While useful, often more information than this is needed. This is where
the thread selection filter comes in. Through the thread_select command,
one or more threads may be selected (See Section 4.5 [The Selection List],
page 46, how to define the selection list).

Since it is most common to use this command in a script, we do so as
well here. Below the script we are using:

Chapter 3: A Mini Tutorial 25� �
Define the metrics

metrics e.%totalcpu

Limit the output to 10 lines

limit 10

Get the function overview for thread 1

thread_select 1

functions

Get the function overview for thread 2

thread_select 2

functions

Get the function overview for thread 3

thread_select 3

functions
 	
The definition of the metrics and the output limiter has been shown and

explained before and will be ignored. The new command we focus on is
thread_select.

This command takes a list (See Section 4.5 [The Selection List], page 46)
to select specific threads. In this case we simply use the individual thread
numbers that we obtained with the thread_list command earlier.

This restricts the output of the functions command to the thread num-
ber(s) specified. This means that the script above shows which function(s)
each thread executes and how much CPU time they consumed. Both the
timings and their percentages are given.

This is the relevant part of the output for the first thread:
Get the function overview for thread 1

Exp Sel Total

=== === =====

1 1 3

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

0.114 100.00 <Total>

0.051 44.74 init_data

0.028 24.56 erand48_r

0.017 14.91 __drand48_iterate

0.010 8.77 _int_malloc

0.008 7.02 drand48

0. 0. __libc_start_main

0. 0. allocate_data

0. 0. main

0. 0. malloc

As usual, the comment lines are echoed. This is followed by a confirma-
tion of our selection. We see that indeed thread 1 has been selected. What
is displayed next is the function overview for this particular thread. Due to
the limit 10 command, there are ten entries in this list.

26 GNU gprofng

Below are the overviews for threads 2 and 3 respectively. We see that
all of the CPU time is spent in function mxv_core and that this time is
approximately the same for both threads.

Get the function overview for thread 2

Exp Sel Total

=== === =====

1 2 3

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

1.072 100.00 <Total>

1.072 100.00 mxv_core

0. 0. collector_root

0. 0. driver_mxv

Get the function overview for thread 3

Exp Sel Total

=== === =====

1 3 3

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

1.076 100.00 <Total>

1.076 100.00 mxv_core

0. 0. collector_root

0. 0. driver_mxv

When analyzing the performance of a multithreaded application, it is
sometimes useful to know whether threads have mostly executed on the
same core, say, or if they have wandered across multiple cores. This sort of
stickiness is usually referred to as thread affinity.

Similar to the commands for the threads, there are several commands
related to the usage of the cores, or CPUs as they are called in gprofng
(See Section 4.7 [The Concept of a CPU in gprofng], page 48).

In order to have some more interesting data to look at, we created a new
experiment, this time using 8 threads:� �

$ exe=mxv-pthreads.exe

$ m=3000

$ n=2000

$ gprofng collect app -O mxv.8.thr.er ./$exe -m $m -n $n -t 8
 	
Similar to the thread_list command, the cpu_list command displays

how many CPUs have been used. The equivalent of the threads threads
command, is the cpus command, which shows the CPU numbers that were

Chapter 3: A Mini Tutorial 27

used and how much time was spent on each of them. Both are demonstrated
below.� �

$ gprofng display text -metrics e.%totalcpu -cpu_list -cpus mxv.8.thr.er
 	
This command produces the following output:

Current metrics: e.%totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Exp Sel Total

=== === =====

1 all 10

Objects sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

2.310 100.00 <Total>

0.286 12.39 CPU 7

0.284 12.30 CPU 13

0.282 12.21 CPU 5

0.280 12.13 CPU 14

0.266 11.52 CPU 9

0.265 11.48 CPU 2

0.264 11.44 CPU 11

0.194 8.42 CPU 0

0.114 4.92 CPU 1

0.074 3.19 CPU 15

What we see in this table is that a total of 10 CPUs have been used. This
is followed by a list with all the CPU numbers that have been used during
the run. For each CPU it is shown how much time was spent on it.

While the table with thread times shown earlier may point at a load
imbalance in the application, this overview has a different purpose.

For example, we see that 10 CPUs have been used, but we know that
the application uses 9 threads only. This means that at least one thread has
executed on more than one CPU. In itself this is not something to worry
about, but warrants a deeper investigation.

Honesty dictates that next we performed a pre-analysis to find out which
thread(s) have been running on more than one CPU. We found this to be
thread 7. It has executed on CPUs 0 and 15.

With this knowledge, we wrote the script shown below. It zooms in on
the behaviour of thread 7.

28 GNU gprofng� �
Define the metrics

metrics e.%totalcpu

Limit the output to 10 lines

limit 10

functions

Get the function overview for CPU 0

cpu_select 0

functions

Get the function overview for CPU 15

cpu_select 15

functions
 	
From the earlier shown threads overview, we know that thread 7 has used

0.268 seconds of CPU time..

By selecting CPUs 0 and 15, respectively, we get the following function
overviews:

Get the function overview for CPU 0

Exp Sel Total

=== === =====

1 0 10

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

0.194 100.00 <Total>

0.194 100.00 mxv_core

0. 0. collector_root

0. 0. driver_mxv

Get the function overview for CPU 15

Exp Sel Total

=== === =====

1 15 10

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

sec. %

0.074 100.00 <Total>

0.074 100.00 mxv_core

0. 0. collector_root

0. 0. driver_mxv

This shows that thread 7 spent 0.194 seconds on CPU 0 and 0.074
seconds on CPU 15.

Chapter 3: A Mini Tutorial 29

3.3 Viewing Multiple Experiments
One thing we did not cover sofar is that gprofng fully supports the analysis
of multiple experiments. The gprofng display text tool accepts a list of
experiments. The data can either be aggregated across the experiments, or
used in a comparison.

Mention experiment_list

3.3.1 Aggregation of Experiments

By default, the data for multiple experiments is aggregrated and the display
commands shows these combined results.

For example, we can aggregate the data for our single and dual thread
experiments. Below is the script we used for this:� �

Define the metrics

metrics e.%totalcpu

Limit the output to 10 lines

limit 10

Get the list with experiments

experiment_list

Get the function overview

functions
 	
With the exception of the experiment_list command, all commands

used have been discussed earlier.

The experiment_list command provides a list of the experiments that
have been loaded. This is is used to verify we are looking at the experiments
we intend to aggregate.� �

$ gprofng display text -script my-script-agg mxv.1.thr.er mxv.2.thr.er
 	
With the command above, we get the following output:
Define the metrics

Current metrics: e.%totalcpu:name

Current Sort Metric: Exclusive Total CPU Time (e.%totalcpu)

Limit the output to 10 lines

Print limit set to 10

Get the list with experiments

ID Sel PID Experiment

== === ===== ============

1 yes 30591 mxv.1.thr.er

2 yes 11629 mxv.2.thr.er

Get the function overview

Functions sorted by metric: Exclusive Total CPU Time

Excl. Total Name

CPU

30 GNU gprofng

sec. %

4.533 100.00 <Total>

4.306 94.99 mxv_core

0.105 2.31 init_data

0.053 1.17 erand48_r

0.027 0.59 __drand48_iterate

0.021 0.46 _int_malloc

0.021 0.46 drand48

0.001 0.02 sysmalloc

0. 0. __libc_start_main

0. 0. allocate_data

The first five lines should look familiar. The five lines following, echo the
comment line in the script and show the overview of the experiments. This
confirms two experiments have been loaded and that both are active.

This is followed by the function overview. The timings have been summed
up and the percentages are adjusted accordingly. For example, the total
accumulated time is indeed 2.272 + 2.261 = 4.533 seconds.

3.3.2 Comparison of Experiments

The support for multiple experiments really shines in comparison mode.
This feature is enabled through the command compare on and is disabled
by setting compare off.

In comparison mode, the data for the various experiments is shown side by
side, as illustrated below where we compare the results for the multithreaded
experiments using one and two threads respectively:� �

$ gprofng display text -compare on -functions mxv.1.thr.er mxv.2.thr.er
 	
This produces the following output:

Functions sorted by metric: Exclusive Total CPU Time

mxv.1.thr.er mxv.2.thr.er mxv.1.thr.er mxv.2.thr.er

Excl. Total Excl. Total Incl. Total Incl. Total Name

CPU CPU CPU CPU

sec. sec. sec. sec.

2.272 2.261 2.272 2.261 <Total>

2.159 2.148 2.159 2.148 mxv_core

0.054 0.051 0.102 0.104 init_data

0.025 0.028 0.035 0.045 erand48_r

0.013 0.008 0.048 0.053 drand48

0.011 0.010 0.012 0.010 _int_malloc

0.010 0.017 0.010 0.017 __drand48_iterate

0.001 0. 0.001 0. sysmalloc

0. 0. 0.114 0.114 __libc_start_main

0. 0. 0.011 0.010 allocate_data

0. 0. 0.001 0. check_results

0. 0. 2.159 2.148 collector_root

0. 0. 2.159 2.148 driver_mxv

Chapter 3: A Mini Tutorial 31

0. 0. 0.114 0.114 main

0. 0. 0.012 0.010 malloc

This table is already helpful to more easily compare (two) profiles, but
there is more that we can do here.

By default, in comparison mode, all measured values are shown. Often
profiling is about comparing performance data. It is therefore more useful
to look at differences, or ratios, using one experiment as a reference.

The values shown are relative to this difference. For example if a ratio is
below one, it means the reference value was higher.

This feature is supported on the compare command. In addition to on,
or off, this command also supports delta, or ratio.

Usage of one of these two keywords enables the comparison feature and
shows either the difference, or the ratio, relative to the reference data.

In the example below, we use the same two experiments used in the
comparison above, but as before, the number of lines is restricted to 10 and
we focus on the exclusive timings plus percentages. For the comparison part
we are interested in the differences.

This is the script that produces such an overview:� �
Define the metrics

metrics e.%totalcpu

Limit the output to 10 lines

limit 10

Set the comparison mode to differences

compare delta

Get the function overview

functions
 	
Assuming this script file is called my-script-comp, this is how we get the

table displayed on our screen:� �
$ gprofng display text -script my-script-comp mxv.1.thr.er mxv.2.thr.er
 	

Leaving out some of the lines printed, but we have seen before, we get
the following table:

mxv.1.thr.er mxv.2.thr.er

Excl. Total Excl. Total Name

CPU CPU

sec. % delta %

2.272 100.00 -0.011 100.00 <Total>

2.159 95.00 -0.011 94.97 mxv_core

0.054 2.37 -0.003 2.25 init_data

0.025 1.10 +0.003 1.23 erand48_r

0.013 0.57 -0.005 0.35 drand48

0.011 0.48 -0.001 0.44 _int_malloc

0.010 0.44 +0.007 0.75 __drand48_iterate

32 GNU gprofng

0.001 0.04 -0.001 0. sysmalloc

0. 0. +0. 0. __libc_start_main

0. 0. +0. 0. allocate_data

It is now easy to see that the CPU times for the most time consuming
functions in this code are practically the same.

While in this case we used the delta as a comparison,

Note that the comparison feature is supported at the function, source, and
disassembly level. There is no practical limit on the number of experiments
that can be used in a comparison.

3.4 Profile Hardware Event Counters
Many processors provide a set of hardware event counters and gprofng pro-
vides support for this feature. See Section 4.8 [Hardware Event Counters
Explained], page 48, for those readers that are not familiar with such coun-
ters and like to learn more.

In this section we explain how to get the details on the event counter
support for the processor used in the experiment(s), and show several exam-
ples.

3.4.1 Getting Information on the Counters Supported

The first step is to check if the processor used for the experiments is sup-
ported by gprofng.

The -h option on gprofng collect app will show the event counter in-
formation:� �

$ gprofng collect app -h
 	
In case the counters are supported, a list with the events is printed.

Otherwise, a warning message will be issued.

For example, below we show this command and the output on an Intel
Xeon Platinum 8167M (aka “Skylake”) processor. The output has been split
into several sections and each section is commented upon separately.

Run "gprofng collect app --help" for a usage message.

Specifying HW counters on ‘Intel Arch PerfMon v2 on Family 6 Model 85’

(cpuver=2499):

-h {auto|lo|on|hi}

turn on default set of HW counters at the specified rate

-h <ctr_def> [-h <ctr_def>]...

-h <ctr_def>[,<ctr_def>]...

specify HW counter profiling for up to 4 HW counters

The first line shows how to get a usage overview. This is followed by
some information on the target processor.

Chapter 3: A Mini Tutorial 33

The next five lines explain in what ways the -h option can be used to
define the events to be monitored.

The first version shown above enables a default set of counters. This
default depends on the processor this command is executed on. The keyword
following the -h option defines the sampling rate:

auto Match the sample rate of used by clock profiling. If the latter is
disabled, Use a per thread sampling rate of approximately 100
samples per second. This setting is the default and preferred.

on Use a per thread sampling rate of approximately 100 samples
per second.

lo Use a per thread sampling rate of approximately 10 samples per
second.

hi Use a per thread sampling rate of approximately 1000 samples
per second.

The second and third variant define the events to be monitored. Note
that the number of simultaneous events supported is printed. In this case
we can monitor four events in a single profiling job.

It is a matter of preference whether you like to use the -h option for each
event, or use it once, followed by a comma separated list.

There is one slight catch though. The counter definition below has
mandatory comma (,) between the event and the rate. While a default
can be used for the rate, the comma cannot be omitted. This may result in
a somewhat awkward counter definition in case the default sampling rate is
used.

For example, the following two commands are equivalent. Note the double
comma in the second command. This is not a typo.� �

$ gprofng collect app -h cycles -h insts ...

$ gprofng collect app -h cycles,,insts ...
 	
In the first command this comma is not needed, because a comma (“,”)

immediately followed by white space may be omitted.

This is why we prefer the this syntax and in the remainder will use the
first version of this command.

The counter definition takes an event name, plus optionally one or more
attributes, followed by a comma, and optionally the sampling rate. The
output section below shows the formal definition.� �

<ctr_def> == <ctr>[[~<attr>=<val>]...],[<rate>]
 	
The printed help then explains this syntax. Below we have summarized

and expanded this output:

34 GNU gprofng

<ctr> The counter name must be selected from the available counters
listed as part of the output printed with the -h option. On most
systems, if a counter is not listed, it may still be specified by its
numeric value.

~<attr>=<val>
This is an optional attribute that depends on the processor.
The list of supported attributes is printed in the output. Exam-
ples of attributes are “user”, or “system”. The value can given
in decimal or hexadecimal format. Multiple attributes may be
specified, and each must be preceded by a ~.

<rate>

The sampling rate is one of the following:

auto This is the default and matches the rate used by
clock profiling. If clock profiling is disabled, use on.

on Set the per thread maximum sampling rate to ~100
samples/second

lo Set the per thread maximum sampling rate to ~10
samples/second

hi Set the per thread maximum sampling rate to ~1000
samples/second

<interval>
Define the sampling interval. See Section 3.1.14
[Control the Sampling Frequency], page 20, how to
define this.

After the section with the formal definition of events and counters, a
processor specific list is displayed. This part starts with an overview of
the default set of counters and the aliased names supported on this specific
processor.

Default set of HW counters:

-h cycles,,insts,,llm

Aliases for most useful HW counters:

alias raw name type units regs description

cycles unhalted-core-cycles CPU-cycles 0123 CPU Cycles

insts instruction-retired events 0123 Instructions Executed

llm llc-misses events 0123 Last-Level Cache Misses

br_msp branch-misses-retired events 0123 Branch Mispredict

br_ins branch-instruction-retired events 0123 Branch Instructions

The definitions given above may or may not be available on other pro-
cessors, but we try to maximize the overlap across alias sets.

Chapter 3: A Mini Tutorial 35

The table above shows the default set of counters defined for this proces-
sor, and the aliases. For each alias the full “raw” name is given, plus the
unit of the number returned by the counter (CPU cycles, or a raw count),
the hardware counter the event is allowed to be mapped onto, and a short
description.

The last part of the output contains all the events that can be monitored:

Raw HW counters:

name type units regs description

unhalted-core-cycles CPU-cycles 0123

unhalted-reference-cycles events 0123

instruction-retired events 0123

llc-reference events 0123

llc-misses events 0123

branch-instruction-retired events 0123

branch-misses-retired events 0123

ld_blocks.store_forward events 0123

ld_blocks.no_sr events 0123

ld_blocks_partial.address_alias events 0123

dtlb_load_misses.miss_causes_a_walk events 0123

dtlb_load_misses.walk_completed_4k events 0123

<many lines deleted>

l2_lines_out.silent events 0123

l2_lines_out.non_silent events 0123

l2_lines_out.useless_hwpf events 0123

sq_misc.split_lock events 0123

See Chapter 19 of the "Intel 64 and IA-32 Architectures Software

Developer’s Manual Volume 3B: System Programming Guide"

As can be seen, these names are not always easy to correlate to a specific
event of interest. The processor manual should provide more clarity on this.

3.4.2 Examples Using Hardware Event Counters

The previous section may give the impression that these counters are hard
to use, but as we will show now, in practice it is quite simple.

With the information from the -h option, we can easily set up our first
event counter experiment.

We start by using the default set of counters defined for our processor
and we use 2 threads:

36 GNU gprofng� �
$ exe=mxv-pthreads.exe

$ m=3000

$ n=2000

$ exp=mxv.hwc.def.2.thr.er

$ gprofng collect app -O $exp -h auto ./$exe -m $m -n $n -t 2
 	
The new option here is -h auto. The auto keyword enables hardware

event counter profiling and selects the default set of counters defined for this
processor.

As before, we can display the information, but there is one practical
hurdle to take. Unless we like to view all metrics recorded, we would need to
know the names of the events that have been enabled. This is tedious and
also not portable in case we would like to repeat this experiment on another
processor.

This is where the special hwc metric comes very handy. It automatically
expands to the active set of events used.

With this, it is very easy to display the event counter values. Note that
although the regular clock based profiling was enabled, we only want to see
the counter values. We also request to see the percentages and limit the
output to the first 5 lines:� �

$ exp=mxv.hwc.def.2.thr.er

$ gprofng display text -metrics e.%hwc -limit 5 -functions $exp
 	
Current metrics: e.%cycles:e+%insts:e+%llm:name

Current Sort Metric: Exclusive CPU Cycles (e.%cycles)

Print limit set to 5

Functions sorted by metric: Exclusive CPU Cycles

Excl. CPU Excl. Instructions Excl. Last-Level Name

Cycles Executed Cache Misses

sec. % % %

2.691 100.00 7906475309 100.00 122658983 100.00 <Total>

2.598 96.54 7432724378 94.01 121745696 99.26 mxv_core

0.035 1.31 188860269 2.39 70084 0.06 erand48_r

0.026 0.95 73623396 0.93 763116 0.62 init_data

0.018 0.66 76824434 0.97 40040 0.03 drand48

As we have seen before, the first few lines echo the settings. This includes
a list with the hardware event counters used by default.

The table that follows makes it very easy to get an overview where the
time is spent and how many of the target events have occurred.

As before, we can drill down deeper and see the same metrics at the source
line and instruction level. Other than using hwc in the metrics definitions,
nothing has changed compared to the previous examples:

Chapter 3: A Mini Tutorial 37� �
$ exp=mxv.hwc.def.2.thr.er

$ gprofng display text -metrics e.hwc -source mxv_core $exp
 	
This is the relevant part of the output. Since the lines get very long, we

have somewhat modified the lay-out:

Excl. CPU Excl. Excl.

Cycles Instructions Last-Level

sec. Executed Cache Misses

<Function: mxv_core>

0. 0 0 32. void __attribute__ ((noinline))

mxv_core(...)

0. 0 0 33. {

0. 0 0 34. for (uint64_t i=...) {

0. 0 0 35. double row_sum = 0.0;

1.872 7291879319 88150571 36. for (int64_t j=0; j<n; j++)

0.725 140845059 33595125 37. row_sum += A[i][j]*b[j];

0. 0 0 38. c[i] = row_sum;

39. }

0. 0 0 40. }

In a smiliar way we can display the event counter values at the instruction
level. Again we have modified the lay-out due to page width limitations:� �

$ exp=mxv.hwc.def.2.thr.er

$ gprofng display text -metrics e.hwc -disasm mxv_core $exp
 	
Excl. CPU Excl. Excl.

Cycles Instructions Last-Level

sec. Executed Cache Misses

<Function: mxv_core>

0. 0 0 [33] 4021ba: mov 0x8(%rsp),%r10

34. for (uint64_t i=...) {

0. 0 0 [34] 4021bf: cmp %rsi,%rdi

0. 0 0 [34] 4021c2: jbe 0x37

0. 0 0 [34] 4021c4: ret

35. double row_sum = 0.0;

36. for (int64_t j=0; j<n; j++)

37. row_sum += A[i][j]*b[j];

0. 0 0 [37] 4021c5: mov (%r8,%rdi,8),%rdx

0. 0 0 [36] 4021c9: mov $0x0,%eax

0. 0 0 [35] 4021ce: pxor %xmm1,%xmm1

0.002 12804230 321394 [37] 4021d2: movsd (%rdx,%rax,8),%xmm0

0.141 60819025 3866677 [37] 4021d7: mulsd (%r9,%rax,8),%xmm0

0.582 67221804 29407054 [37] 4021dd: addsd %xmm0,%xmm1

1.871 7279075109 87989870 [36] 4021e1: add $0x1,%rax

0.002 12804210 80351 [36] 4021e5: cmp %rax,%rcx

0. 0 0 [36] 4021e8: jne 0xffffffffffffffea

38. c[i] = row_sum;

0. 0 0 [38] 4021ea: movsd %xmm1,(%r10,%rdi,8)

0. 0 0 [34] 4021f0: add $0x1,%rdi

38 GNU gprofng

0. 0 0 [34] 4021f4: cmp %rdi,%rsi

0. 0 0 [34] 4021f7: jb 0xd

0. 0 0 [35] 4021f9: pxor %xmm1,%xmm1

0. 0 0 [36] 4021fd: test %rcx,%rcx

0. 0 80350 [36] 402200: jne 0xffffffffffffffc5

0. 0 0 [36] 402202: jmp 0xffffffffffffffe8

39. }

40. }

0. 0 0 [40] 402204: ret

So far we have used the default settings for the event counters. It is quite
straightforward to select specific counters. For sake of the example, let’s
assume we would like to count how many branch instructions and retired
memory load instructions that missed in the L1 cache have been executed.
We also want to count these events with a high resolution.

This is the command to do so:� �
$ exe=mxv-pthreads.exe

$ m=3000

$ n=2000

$ exp=mxv.hwc.sel.2.thr.er

$ hwc1=br_ins,hi

$ hwc2=mem_load_retired.l1_miss,hi

$ gprofng collect app -O $exp -h $hwc1 -h $hwc2 $exe -m $m -n $n -t 2
 	
As before, we get a table with the event counts. Due to the very long

name for the second counter, we have somewhat modified the output.� �
$ gprofng display text -limit 10 -functions mxv.hwc.sel.2.thr.er
 	
Functions sorted by metric: Exclusive Total CPU Time

Excl. Incl. Excl. Branch Excl. Name

Total Total Instructions mem_load_retired.l1_miss

CPU sec. CPU sec. Events

2.597 2.597 1305305319 4021340 <Total>

2.481 2.481 1233233242 3982327 mxv_core

0.040 0.107 19019012 9003 init_data

0.028 0.052 23023048 15006 erand48_r

0.024 0.024 19019008 9004 __drand48_iterate

0.015 0.067 11011009 2998 drand48

0.008 0.010 0 3002 _int_malloc

0.001 0.001 0 0 brk

0.001 0.002 0 0 sysmalloc

0. 0.001 0 0 __default_morecore

When using event counters, the values could be very large and it is not
easy to compare the numbers. As we will show next, the ratio feature is
very useful when comparing such profiles.

To demonstrate this, we have set up another event counter experiment
where we would like to compare the number of last level cache miss and the

Chapter 3: A Mini Tutorial 39

number of branch instructions executed when using a single thread, or two
threads.

These are the commands used to generate the experiment directories:� �
$ exe=./mxv-pthreads.exe

$ m=3000

$ n=2000

$ exp1=mxv.hwc.comp.1.thr.er

$ exp2=mxv.hwc.comp.2.thr.er

$ gprofng collect app -O $exp1 -h llm -h br_ins $exe -m $m -n $n -t 1

$ gprofng collect app -O $exp2 -h llm -h br_ins $exe -m $m -n $n -t 2
 	
The following script has been used to get the tables. Due to lay-out

restrictions, we have to create two tables, one for each counter.� �
Limit the output to 5 lines

limit 5

Define the metrics

metrics name:e.llm

Set the comparison to ratio

compare ratio

functions

Define the metrics

metrics name:e.br_ins

Set the comparison to ratio

compare ratio

functions
 	
Note that we print the name of the function first, followed by the counter

data. The new element is that we set the comparison mode to ratio. This
divides the data in a column by its counterpart in the reference experiment.

This is the command using this script and the two experiment directories
as input:� �

$ gprofng display text -script my-script-comp-counters \

mxv.hwc.comp.1.thr.er \

mxv.hwc.comp.2.thr.er
 	
By design, we get two tables, one for each counter:

Functions sorted by metric: Exclusive Last-Level Cache Misses

mxv.hwc.comp.1.thr.er mxv.hwc.comp.2.thr.er

Name Excl. Last-Level Excl. Last-Level

Cache Misses Cache Misses

ratio

<Total> 122709276 x 0.788

mxv_core 121796001 x 0.787

40 GNU gprofng

init_data 723064 x 1.055

erand48_r 100111 x 0.500

drand48 60065 x 1.167

Functions sorted by metric: Exclusive Branch Instructions

mxv.hwc.comp.1.thr.er mxv.hwc.comp.2.thr.er

Name Excl. Branch Excl. Branch

Instructions Instructions

ratio

<Total> 1307307316 x 0.997

mxv_core 1235235239 x 0.997

erand48_r 23023033 x 0.957

drand48 20020009 x 0.600

__drand48_iterate 17017028 x 0.882

A ratio less than one in the second column, means that this counter value
was smaller than the value from the reference experiment shown in the first
column.

This kind of presentation of the results makes it much easier to quickly
interpret the data.

We conclude this section with thread-level event counter overviews, but
before we go into this, there is an important metric we need to mention.

In case it is known how many instructions and CPU cycles have been
executed, the value for the IPC (“Instructions Per Clockycle”) can be com-
puted. See Section 4.8 [Hardware Event Counters Explained], page 48. This
is a derived metric that gives an indication how well the processor is utilized.
The inverse of the IPC is called CPI.

The gprofng display text command automatically computes the IPC
and CPI values if an experiment contains the event counter values for the
instructions and CPU cycles executed. These are part of the metric list and
can be displayed, just like any other metric.

This can be verified through the metric_list command. If we go back to
our earlier experiment with the default event counters, we get the following
result.� �

$ gprofng display text -metric_list mxv.hwc.def.2.thr.er
 	
Current metrics: e.totalcpu:i.totalcpu:e.cycles:e+insts:e+llm:name

Current Sort Metric: Exclusive Total CPU Time (e.totalcpu)

Available metrics:

Exclusive Total CPU Time: e.%totalcpu

Inclusive Total CPU Time: i.%totalcpu

Exclusive CPU Cycles: e.+%cycles

Inclusive CPU Cycles: i.+%cycles

Exclusive Instructions Executed: e+%insts

Inclusive Instructions Executed: i+%insts

Exclusive Last-Level Cache Misses: e+%llm

Inclusive Last-Level Cache Misses: i+%llm

Chapter 3: A Mini Tutorial 41

Exclusive Instructions Per Cycle: e+IPC

Inclusive Instructions Per Cycle: i+IPC

Exclusive Cycles Per Instruction: e+CPI

Inclusive Cycles Per Instruction: i+CPI

Size: size

PC Address: address

Name: name

Among the other metrics, we see the new metrics for the IPC and CPI
listed.

In the script below, we use this information and add the IPC and CPI to
the metrics to be displayed. We also use a the thread filter to display these
values for the individual threads.

This is the complete script we have used. Other than a different selection
of the metrics, there are no new features.� �

Define the metrics

metrics e.insts:e.%cycles:e.IPC:e.CPI

Sort with respect to cycles

sort e.cycles

Limit the output to 5 lines

limit 5

Get the function overview for all threads

functions

Get the function overview for thread 1

thread_select 1

functions

Get the function overview for thread 2

thread_select 2

functions

Get the function overview for thread 3

thread_select 3

functions
 	
In the metrics definition on the second line, we explicitly request the

counter values for the instructions (e.insts) and CPU cycles (e.cycles)
executed. These names can be found in output from the metric_list com-
mad above. In addition to these metrics, we also request the IPC and CPI
to be shown.

As before, we used the limit command to control the number of functions
displayed. We then request an overview for all the threads, followed by three
sets of two commands to select a thread and display the function overview.

The script above is used as follows:� �
$ gprofng display text -script my-script-ipc mxv.hwc.def.2.thr.er
 	

This script produces four tables. We list them separately below, and have
left out the additional output.

42 GNU gprofng

The first table shows the accumulated values across the three threads
that have been active.

Functions sorted by metric: Exclusive CPU Cycles

Excl. Excl. CPU Excl. Excl. Name

Instructions Cycles IPC CPI

Executed sec. %

7906475309 2.691 100.00 1.473 0.679 <Total>

7432724378 2.598 96.54 1.434 0.697 mxv_core

188860269 0.035 1.31 2.682 0.373 erand48_r

73623396 0.026 0.95 1.438 0.696 init_data

76824434 0.018 0.66 2.182 0.458 drand48

This shows that IPC of this program is completely dominated by function
mxv_core. It has a fairly low IPC value of 1.43.

The next table is for thread 1 and shows the values for the main thread.
Exp Sel Total

=== === =====

1 1 3

Functions sorted by metric: Exclusive CPU Cycles

Excl. Excl. CPU Excl. Excl. Name

Instructions Cycles IPC CPI

Executed sec. %

473750931 0.093 100.00 2.552 0.392 <Total>

188860269 0.035 37.93 2.682 0.373 erand48_r

73623396 0.026 27.59 1.438 0.696 init_data

76824434 0.018 18.97 2.182 0.458 drand48

134442832 0.013 13.79 5.250 0.190 __drand48_iterate

Although this thread hardly uses any CPU cycles, the overall IPC of 2.55
is not all that bad.

Last, we show the tables for threads 2 and 3:
Exp Sel Total

=== === =====

1 2 3

Functions sorted by metric: Exclusive CPU Cycles

Excl. Excl. CPU Excl. Excl. Name

Instructions Cycles IPC CPI

Executed sec. %

3716362189 1.298 100.00 1.435 0.697 <Total>

3716362189 1.298 100.00 1.435 0.697 mxv_core

0 0. 0. 0. 0. collector_root

0 0. 0. 0. 0. driver_mxv

Exp Sel Total

=== === =====

1 3 3

Functions sorted by metric: Exclusive CPU Cycles

Excl. Excl. CPU Excl. Excl. Name

Chapter 3: A Mini Tutorial 43

Instructions Cycles IPC CPI

Executed sec. %

3716362189 1.300 100.00 1.433 0.698 <Total>

3716362189 1.300 100.00 1.433 0.698 mxv_core

0 0. 0. 0. 0. collector_root

0 0. 0. 0. 0. driver_mxv

It is seen that both execute the same number of instructions and take
about the same number of CPU cycles. As a result, the IPC is the same for
both threads.

3.5 Java Profiling
The gprofng collect app command supports Java profiling. The -j on
option can be used for this, but since this feature is enabled by default, there
is no need to set this explicitly. Java profiling may be disabled through the
-j off option.

The program is compiled as usual and the experiment directory is created
similar to what we have seen before. The only difference with a C/C++
application is that the program has to be explicitly executed by java.

For example, this is how to generate the experiment data for a Java
program that has the source code stored in file Pi.java:� �

$ javac Pi.java

$ gprofng collect app -j on -O pi.demo.er java Pi < pi.in
 	
Regarding which java is selected to generate the data, gprofng first looks

for the JDK in the path set in either the JDK_HOME environment variable,
or in the JAVA_PATH environment variable. If neither of these variables is
set, it checks for a JDK in the search path (set in the PATH environment
variable). If there is no JDK in this path, it checks for the java executable
in /usr/java/bin/java.

In case additional options need to be passed on to the JVM, the -J
<string> option can be used. The string with the option(s) has to be
delimited by quotation marks in case there is more than one argument.

The gprofng display text command may be used to view the perfor-
mance data. There is no need for any special options and the same commands
as previously discussed are supported.

The viewmode command See Section 4.4 [The Viewmode], page 46, is
very useful to examine the call stacks.

For example, this is how one can see the native call stacks. For lay-out
purposes we have restricted the list to the first five entries:� �

$ gprofng display text -limit 5 -viewmode machine -calltree pi.demo.er
 	
Print limit set to 5

44 GNU gprofng

Viewmode set to machine

Functions Call Tree. Metric: Attributed Total CPU Time

Attr. Name

Total

CPU sec.

1.381 +-<Total>

1.171 +-Pi.calculatePi(double)

0.110 +-collector_root

0.110 | +-JavaMain

0.070 | +-jni_CallStaticVoidMethod

Note that the selection of the viewmode is echoed in the output.

45

4 Terminology

Throughout this manual, certain terminology specific to profiling tools, or
gprofng, or even to this document only, is used. In this chapter we explain
this terminology in detail.

4.1 The Program Counter
The Program Counter, or PC for short, keeps track where program execution
is. The address of the next instruction to be executed is stored in a special
purpose register in the processor, or core.

The PC is sometimes also referred to as the instruction pointer, but we
will use Program Counter or PC throughout this document.

4.2 Inclusive and Exclusive Metrics
In the remainder, these two concepts occur quite often and for lack of a
better place, they are explained here.

The inclusive value for a metric includes all values that are part of the
dynamic extent of the target function. For example if function A calls func-
tions B and C, the inclusive CPU time for A includes the CPU time spent in
B and C.

In contrast with this, the exclusive value for a metric is computed by
excluding the metric values used by other functions called. In our imaginary
example, the exclusive CPU time for function A is the time spent outside
calling functions B and C.

In case of a leaf function, the inclusive and exclusive values for the metric
are the same since by definition, it is not calling any other function(s).

Why do we use these two different values? The inclusive metric shows the
most expensive path, in terms of this metric, in the application. For example,
if the metric is cache misses, the function with the highest inclusive metric
tells you where most of the cache misses come from.

Within this branch of the application, the exclusive metric points to the
functions that contribute and help to identify which part(s) to consider for
further analysis.

4.3 Metric Definitions
The metrics to be shown are highly customizable. In this section we explain
the definitions associated with metrics.

The metrics command takes a colon (:) separated list with
special keywords. This keyword consists of the following three fields:
<flavor><visibility><metric_name>.

46 GNU gprofng

The <flavor> field is either an e for “exclusive”, or i for “inclusive”. The
<metric_name> field is the name of the metric request. The <visibility> field
consists of one ore more characters from the following table:

. Show the metric as time. This applies to timing metrics and
hardware event counters that measure cycles. Interpret as + for
other metrics.

% Show the metric as a percentage of the total value for this metric.

+ Show the metric as an absolute value. For hardware event coun-
ters this is the event count. Interpret as . for timing metrics.

| Do not show any metric value. Cannot be used with other visi-
bility characters.

4.4 The Viewmode
There are different ways to view a call stack in Java. In gprofng, this is
called the viewmode and the setting is controlled through a command with
the same name.

The viewmode command takes one of the following keywords:

user This is the default and shows the Java call stacks for Java
threads. No call stacks for any housekeeping threads are shown.
The function list contains a function <JVM-System> that rep-
resents the aggregated time from non-Java threads. When the
JVM software does not report a Java call stack, time is reported
against the function <no Java callstack recorded>.

expert Show the Java call stacks for Java threads when the Java code
from the user is executed and machine call stacks when JVM
code is executed, or when the JVM software does not report a
Java call stack. Show the machine call stacks for housekeeping
threads.

machine Show the actual native call stacks for all threads.

4.5 The Selection List
Several commands allow the user to specify a subset of a list. For example,
to select specific threads from all the threads that have been used when
conducting the experiment(s).

Such a selection list (or “list” in the remainder of this section) can be
a single number, a contiguous range of numbers with the start and end
numbers separated by a hyphen (-), a comma-separated list of numbers and
ranges, or the all keyword. Lists must not contain spaces.

Each list can optionally be preceded by an experiment list with a sim-
ilar format, separated from the list by a colon (:). If no experiment list is
included, the list applies to all experiments.

Chapter 4: Terminology 47

Multiple lists can be concatenated by separating the individual lists by a
plus sign.

These are some examples of various filters using a list:

thread_select 1
Select thread 1 from all experiments.

thread_select all:1
Select thread 1 from all experiments.

thread_select 1:1+2:2
Select thread 1 from experiment 1 and thread 2 from experiment
2.

cpu_select all:1,3,5
Selects cores 1, 3, and 5 from all experiments.

cpu_select 1,2:all
Select all cores from experiments 1 and 2, as listed by the by
exp_list command.

4.6 Load Objects and Functions
An application consists of various components. The source code files are
compiled into object files. These are then glued together at link time to
form the executable. During execution, the program may also dynamically
load objects.

A load object is defined to be an executable, or shared object. A shared
library is an example of a load object in gprofng.

Each load object, contains a text section with the instructions generated
by the compiler, a data section for data, and various symbol tables. All
load objects must contain an ELF symbol table, which gives the names and
addresses of all the globally known functions in that object.

Load objects compiled with the -g option contain additional symbolic
information that can augment the ELF symbol table and provide informa-
tion about functions that are not global, additional information about object
modules from which the functions came, and line number information relat-
ing addresses to source lines.

The term function is used to describe a set of instructions that represent
a high-level operation described in the source code. The term also covers
methods as used in C++ and in the Java programming language.

In the gprofng context, functions are provided in source code format.
Normally their names appear in the symbol table representing a set of ad-
dresses. If the Program Counter (PC) is within that set, the program is
executing within that function.

In principle, any address within the text segment of a load object can be
mapped to a function. Exactly the same mapping is used for the leaf PC
and all the other PCs on the call stack.

48 GNU gprofng

Most of the functions correspond directly to the source model of the
program, but there are exceptions. This topic is however outside of the
scope of this guide.

4.7 The Concept of a CPU in gprofng
In gprofng, there is the concept of a CPU. Admittedly, this is not the best
word to describe what is meant here and may be replaced in the future.

The word CPU is used in many of the displays. In the context of gprofng,
it is meant to denote a part of the processor that is capable of executing
instructions and with its own state, like the program counter.

For example, on a contemporary processor, a CPU could be a core. In
case hardware threads are supported within a core, it could be one of those
hardware threads.

4.8 Hardware Event Counters Explained
For quite a number of years now, many microprocessors have supported
hardware event counters.

On the hardware side, this means that in the processor there are one or
more registers dedicated to count certain activities, or “events”. Examples
of such events are the number of instructions executed, or the number of
cache misses at level 2 in the memory hierarchy.

While there is a limited set of such registers, the user can map events
onto them. In case more than one register is available, this allows for the
simultaenous measurement of various events.

A simple, yet powerful, example is to simultaneously count the number
of CPU cycles and the number of instructions excuted. These two numbers
can then be used to compute the IPC value. IPC stands for “Instructions
Per Clockcycle” and each processor has a maximum. For example, if this
maximum number is 2, it means the processor is capable of executing two
instructions every clock cycle.

Whether this is actually achieved, depends on several factors, including
the instruction characteristics. However, in case the IPC value is well below
this maximum in a time critical part of the application and this cannot be
easily explained, further investigation is probably warranted.

A related metric is called CPI, or “Clockcycles Per Instruction”. It is the
inverse of the CPI and can be compared against the theoretical value(s) of
the target instruction(s). A significant difference may point at a bottleneck.

One thing to keep in mind is that the value returned by a counter can
either be the number of times the event occured, or a CPU cycle count. In
case of the latter it is possible to convert this number to time.

This is often easier to interpret than a simple count, but there is one
caveat to keep in mind. The CPU frequency may not have been constant
while the experimen was recorded and this impacts the time reported.

Chapter 4: Terminology 49

These event counters, or “counters” for short, provide great insight into
what happens deep inside the processor. In case higher level information
does not provide the insight needed, the counters provide the information to
get to the bottom of a performance problem.

There are some things to consider though.

• The event definitions and names vary across processors and it may even
happen that some events change with an update. Unfortunately and
this is luckily rare, there are sometimes bugs causing the wrong count
to be returned.

In gprofng, some of the processor specific event names have an alias
name. For example insts measures the instructions executed. These
aliases not only makes it easier to identify the functionality, but also
provide portability of certain events across processors.

• Another complexity is that there are typically many events one can
monitor. There may up to hundreds of events available and it could re-
quire several experiments to zoom in on the root cause of a performance
problem.

• There may be restrictions regarding the mapping of event(s) onto the
counters. For example, certain events may be restricted to specific coun-
ters only. As a result, one may have to conduct additional experiments
to cover all the events of interest.

• The names of the events may also not be easy to interpret. In such
cases, the description can be found in the architecture manual for the
processor.

Despite these drawbacks, hardware event counters are extremely useful
and may even turn out to be indispensable.

4.9 What is <apath>?
In most cases, gprofng shows the absolute pathnames of directories. These
tend to be rather long, causing display issues in this document.

Instead of wrapping these long pathnames over multiple lines, we decided
to represent them by the <apath> symbol, which stands for “an absolute
pathname”.

Note that different occurrences of <apath> may represent different abso-
lute pathnames.

51

5 Other Document Formats

This document is written in Texinfo and the source text is made available as
part of the binutils distribution. The file name is gprofng.texi and can be
found in subdirectory doc under directory gprofng in the top level directory.

This file can be used to generate the document in the info, html, and
pdf formats. The default installation procedure creates a file in the info
format and stores it in the documentation section of binutils.

The probably easiest way to generate a different format from this Texinfo
document is to go to the distribution directory that was created when the
tools were built. This is either the default distribution directory, or the
one that has been set with the --prefix option as part of the configure
command. In this example we symbolize this location with <dist>.

The make file called Makefile in directory <dist>/gprofng/doc sup-
ports several commands to generate this document in different formats. We
recommend to use these commands.

They create the file(s) and install it in the documentation directory of
binutils, which is <dist>/share/doc in case html or pdf is selected and
<dist>/share/info for the file in the info format.

To generate this document in the requested format and install it in the
documentation directory, the commands below should be executed. In this
notation, <format> is one of info, html, or pdf:

$ cd <dist>/gprofng/doc

$ make install-<format>

Some things to note:

• For the pdf file to be generated, the TeX document formatting software
is required and the relevant commmands need to be included in the
search path. An example of a popular TeX implementation is TexLive.
It is beyond the scope of this document to go into the details of installing
and using TeX, but it is well documented elsewhere.

• Instead of generating a single file in the html format, it is also possible
to create a directory with individual files for the various chapters. To
do so, remove the use of --no-split in variable MAKEINFOHTML in the
make file in the doc directory.

• The make file also supports commands to only generate the file in the
desired format and not move them to the documentation directory. This
is accomplished through the make <format> command.

53

Index

gprofng display text 5

C
Command line mode . 8
Commands, calltree 17
Commands, compare delta 31
Commands, compare on/off 30, 31
Commands, compare ratio 31, 38
Commands, cpu_list 26
Commands, cpus . 26
Commands, disasm . 11
Commands, experiment_list 29
Commands, fsingle 20, 21
Commands, fsummary 20, 21
Commands, functions 8
Commands, header 18, 20
Commands, limit . 15
Commands, lines . 10
Commands, metric_list 13, 40
Commands, metrics 13, 45
Commands, objects 20
Commands, overview 19
Commands, pcs . 12
Commands, script . 15
Commands, sort . 15
Commands, source . 9
Commands, thread_list 23
Commands, thread_select 24, 25
Commands, threads 24
Commands, viewmode 43, 46
Compare experiments 30
CPI . 48
CPU . 48

D
Default metrics . 13

E
ELF . 47
Exclusive metric . 45
Experiment directory 4

F
Filters, Thread selection 24
Flavor field . 45
Function . 47

H
Hardware event counters, alias name . . . 49
Hardware event counters,
auto option . 36

Hardware event counters,
counter definition 33

Hardware event counters, description . . 48
Hardware event counters, hwc metric . . . 36
Hardware event counters, IPC 40
Hardware event counters, variable

CPU frequency . 48

I
Inclusive metric . 45
Instruction level timings 11
Instruction pointer . 45
Interpreter mode . 8
IPC . 48

J
Java profiling, -j on/off 43
Java profiling, -J <string> 43
Java profiling, <JVM-System> 46
Java profiling, <no Java

callstack recorded> 46
Java profiling, different view modes 43
Java profiling, JAVA_PATH 43
Java profiling, JDK_HOME 43

L
Leaf function . 45
List specification . 46
Load object . 47
Load objects . 21

54 GNU gprofng

M
Metric name field . 45
Miscellaneous , ## . 10
Miscellaneous, <apath> 21
Miscellaneous, <Total> 9
mxv-pthreads.exe . 7

O
Options, -C . 19
Options, -h . 32, 36
Options, -o . 14
Options, -O . 14, 16
Options, -p . 18, 20

P
PC . 45, 47
PC sampling . 3
Posix Threads . 7
Program Counter 45, 47
Program Counter sampling 3
Pthreads . 7

S
Sampling interval . 20
Selection list . 46
Source level timings . 9

T
TeX . 51
Thread affinity . 26
Total CPU time . 8

V
Viewmode . 46
Visibility field . 15, 45

	1 Introduction
	2 A Brief Overview of
	Main Features
	Sampling versus Tracing
	Steps Needed to Create a Profile

	3 A Mini Tutorial
	Getting Started
	The Example Program
	A First Profile
	The Source Code View
	The Disassembly View
	Display and Define the Metrics
	A First Customization of the Output
	Name the Experiment Directory
	Control the Number of Lines in the Output
	Sorting the Performance Data
	Scripting
	A More Elaborate Example
	The Call Tree
	More Information on the Experiment
	Control the Sampling Frequency
	Information on Load Objects

	Support for Multithreading
	Creating a Multithreading Experiment
	Commands Specific to Multithreading

	Viewing Multiple Experiments
	Aggregation of Experiments
	Comparison of Experiments

	Profile Hardware Event Counters
	Getting Information on the Counters Supported
	Examples Using Hardware Event Counters

	Java Profiling

	4 Terminology
	The Program Counter
	Inclusive and Exclusive Metrics
	Metric Definitions
	The Viewmode
	The Selection List
	Load Objects and Functions
	The Concept of a CPU in
	Hardware Event Counters Explained
	What is <apath>?

	5 Other Document Formats
	Index

