Annobin

The ANNOBIN plugin
(Annobin)
Version 12.0

Nick Clifton




This manual describes the ANNOBIN plugin and the annocheck program, and
how you can use them to determine what security features were used when
a program was built.

Copyright (©) 2018 - 2024 Red Hat

Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation
License”.



Table of Contents

1 What is Binary Annotation 7 .................. 1

2 How to add Binary Annotations to
your application.................. ... ... 3

3 How to examine the information

stored in the binary.............. ... ... ... .. ... 9
3.1 Encoding Protocol and Producer Versions...................... 10
3.2 Encoding Stack Protections............ ... .. il 10
3.3 Encoding Position Independence.................. ... .. ..., 10
3.4 Encoding Optimization and Debugging Levels.................. 11
3.5 Encoding Control Flow Protection............................. 13
3.6 Encoding the Size of Enumerations ............................ 14
3.7 Encoding Instrumentation Options.............. ... ... ........ 14
3.8 Encoding Notes in a string format ................ ... . ... ... 14
4 Analysing binary files.......................... 17
4.1 The builder checker......... .. ... o i 19
4.2 The Hardened security checker.............. . ... ... ... 19
4.2.1 The Tests Run By Annocheck............................. 20
4.2.1.1 The auto-var-init test............. ... ... L. 20
4.2.1.2 The bind-now test .......... ... 21
4.2.1.3 The branch-protection test........................... 21
4.2.1.4 The cf-protection test............coviiiiiii.. 23
4.2.1.5 The dynamic-segment test ........................... 25
4.2.1.6 The dynamic-tags test ...............ccoo i 25
4.2.1.7 Theentry test......cooiuiiiiiiiiiiii . 27
4.2.1.8 The -Ofast test ... 27
4.2.1.9 The FIPS test ....ovvi e 27
4.2.1.10 The flex arrays test .........cooooiiiiiiiiiiiiii.. 28
4.2.1.11 The fortify test ... 28
4.2.1.12 The gaps test.....ovvi i 29
4.2.1.13 The glibcxx-assertions test............... ... ... 29
4.2.1.14 The gnu-relro test ..., 29
4.2.1.15 The gnu-stack test............. ... it 30
4.2.1.16 The go-revision test........... ... il 31
4.2.1.17 The implicit values test .......... ... ...t 31
4.2.1.18 The instrumentation test ............. ... .. ... ... 32
4.2.1.19 Theltotest.. ..o 32
4.2.1.20 The not-branch-protection test...................... 32



ii Annobin
4.2.1.21 The not-dynamic-tags test .......................... 33
4.2.1.22 Thenotestest .......cooviiiiiiiiiiiiiiiii ... 34
4.2.1.23 Theonly-gotest.............ooiiiiiii i 35
4.2.1.24 The openssl-engine test .......... ... ... i 35
4.2.1.25 The optimization test.............. ... L. 36
4.2.1.26 Thepictest ....ooviiiiiii e 36
4.2.1.27 Thepietest ...ooooiii 37
4.2.1.28 The production test .......... ... il 37
4.2.1.29 The property-note test...........cooiiiiiiiiii 38
4.2.1.30 The RHIVOS tests .....oviiiii i 38
4.2.1.31 The run-path test........... ... ... L, 39
4.2.1.32 The rwx-seg test. ...t 40
4.2.1.33 The short-enums test .................. o il 40
4.2.1.34 The stack-clash test............. .. ... ..l 41
4.2.1.35 The stack-prot test ...........cc i, 41
4.2.1.36 The stack-realign test.............. ... ... L. 42
4.2.1.37 The textrel test........ ... i 42
4.2.1.38 The threads test......... ..o, 43
4.2.1.39 The unicode test........ccooiiiiiiiiiii i, 43
4.2.1.40 The warnings test ... 43
4.2.1.41 The writable-got test ............ ... ... ...l 44
4.2.1.42 The zero-call-used-regs test ......................... 44

4.2.2 Command line options specific to the hardened tool....... 45
4.2.3 How to waive the results of the hardening tests............ 48

4.2.4 What to do if annocheck reports that it could
not find compiled code........ ... 49
4.3 The annobin note displayer................ .o i, 52
4.4 The section size recorder. ..........oouiiiiiiiiiiiiiiiiaaa... 52
4.5 How long did the check take 7 ......... ... ... .. ... ... 53

5 Allowing other programs to run

security checks........... ... .. ... 55
5.1 Initialise the library ......... ... 55
5.2 Close the library ... 55
5.3 Get the library version ... 56
5.4 Convert an error number into an error message ................ 56
5.5 Get a list of tests supported by the library..................... 56
5.6 Enable all tests. ... 56
5.7 Disable all tests ......oooiiiiiii 57
5.8 Enable a specific test ....... ... 57
5.9 Disable a specific test. ... 57
5.10 Enable aprofile..... ... ... i 57
5.11 Get a list of known profiles............ ... ..., 58

5.12

Run enabled tests . ... 58



6 Configuring annobin and annocheck.......... 59

7 How to use the information

stored in the binary. ............................ 61
7.1 The built-by script ... 61
7.2 The check-abi script ..... ..o 63
7.3 The hardened script ....... ..o 64
7.4 The run-on-binaries-in script............cooviiiiiiiiiiii... 66

Appendix A GNU Free
Documentation License ......................... 69






1 What is Binary Annotation ?

Binary Annotation is a method for recording information about an applica-
tion inside the application itself. It is an implementation of the Watermark
specification defined here: https://fedoraproject.org/wiki/Toolchain/
Watermark

Although mainly focused on recording security information, the system
can be used to record any kind of data, even data not related to the appli-
cation. One of the main goals of the system however is the ability to specify
the address range over which a given piece of information is valid. So for
example it is possible to specify that all of a program was compiled with
the -02 option except for one special function which was compiled with -00
instead.

The range information is useful because it allows third parties to examine
the binary and find out if its construction was consistent. IE that there are
no gaps in the recorded information, and no special cases where a required
feature was not active.

The system works by adding special sections to the application containing
individual pieces of information along with an address range for which the
information is valid. (Some effort has gone into the storing this information
in a reasonably compact format).

The information is generated by a plugin that is attached to the compiler.
The plugin extracts information from the internals of compiler and records
them in the object file(s) being produced.

Note - the plugin method is just one way of generating the information.
Any interested party can create and add information to the object file, pro-
viding that they follow the Watermark specification.

The information can be extracted from files via the use of tools like
readelf and objdump. The annobin package itself includes a program called
annocheck which can can also examine this information. Details on this pro-
gram can be found elsewhere in this documentation.

Experience has shown however that storing the range information along
with the data does tend to significantly increase the size of programs. So
the system also provides an alternative implementation which uses a more
compact format, at the cose of dropping the range data.


https://fedoraproject.org/wiki/Toolchain/Watermark
https://fedoraproject.org/wiki/Toolchain/Watermark




2 How to add Binary Annotations to
your application.

Normally the option to enable the recording of binary annotation notes
is enabled automatically by the build system, so no user intervention is
required. On Fedora and RHEL based systems this is handled by the
‘redhat-rpm-config’ package.

Currently the binary annotations are generated by a plugin to the com-
piler (GCC, clang or 11vm). This does mean that files that are not compiled
by any of these compilers will not gain any annotations, although there is
an optional assembler switch to add some basic notes if none are present in
the input files.

If the build system being used does not automatically enable the annobin
plugin then it can be specifically added to the compiler command line by
adding the -fplugin=annobin (for gcc) or ~fplugin=annobin-for-clang
(for clang) or -fplugin=annobin-for-1llvm (for LLVM) option. It may
also be necessary to tell the compiler where to find the plugin by adding the
-iplugindir= option, although this should only be necessary if the plugin
is installed in an unusual place.

If it is desired to disable the recording of binary annotations then
the -fplugin-arg-annobin-disable (for gcc) or -Xclang -plugin-arg-
annobin-disable (for clang or 1lvm) can be used. Note - these options
must be placed after the ~-fplugin=annobin option.

On Fedora and RHEL systems the plugin can be disabled entirely for all
compilations in a package by adding %undefine _annotated_build to the
spec file.

The plugin accepts a small selection of command line arguments, all ac-
cessed by passing -fplugin-arg-annobin-<option> (for gcc) or -Xclang
-plugin-arg-annobin-<option> (for clang or 11vm) on the command line.
These options must be placed on the command line after the plugin itself is
mentioned. Note - not all versions of the plugin accept all of these options.

In addition it is possible to pass options via the ANNOBIN environment
variable. Multiple arguments must be separated by commas, and arguments
that need a value must use an equals sign rather than a space or colon.

Also - in order to support backwards compatibility - the LLVM plugin de-
tects the ANNOBIN_VERBOSE enviroment variable and turns on verbose mode
if it is present.

The supported options are:

disable
enable Either disable or enable the plugin. The default is for the plugin
to be enabled.

help Display a list of supported options on the standard output. This
is in addition to whatever else the plugin has been instructed to
do.



4 Annobin

version  Display the version of the plugin on the standard output. This
is in addition to whatever else the plugin has been instructed to
do.

verbose  Report the actions that the plugin is taking. If invoked for a
second time on the command line the plugin will be very verbose.

function-verbose
Report the generation of function specific notes. This indicates
that the named function was compiled with different options
from those that were globally enabled.

stack-size-notes

no-stack-size—-notes
Do, or do not, record information about the stack requirements
of functions in the executable. This feature is disabled by default
as these notes can take up a lot of extra room if the executable
contains a lot of functions.

stack-threshold=N
If stack size requirements are being recorded then this option
sets the minimum value to record. Functions which require less
than N bytes of static stack space will not have their requirements
recorded. If not set, then N defaults to 1024.

global-file-syms

no-global-file-syms
If enabled the global-file-syms option will create globally vis-
ible, unique symbols to mark the start and end of the compiled
code. This can be desirable if a program consists of multiple
source files with the same name, or if it links to a library that
was built with source files of the same name as the program it-
self. The disadvantage of this feature however is that the unique
names are based upon the time of the build, so repeated builds of
the same source will have different symbol names inside it. This
breaks the functionality of the build-id system which is meant
to identify similar builds created at different times. This feature
is disabled by default, and if enabled can be disabled again via
the no-global-file-syms option.

attach

no-attach
When gcc compiles code with the ~-ffunction-sections option
active it will place each function into its own section. When
the annobin attach option is active the plugin will attempt to
attach the function section to a group containing the notes and
relocations for the function. In that way, if the linker decides to
discard the function, it will also know that it should discard the
notes and relocations as well.



Chapter 2: How to add Binary Annotations to your application. 5

The default is attach, but this can be disabled via the
no-attach option. Note however that if both attach and
link-order are disabled then note generation for function
sections will not work properly.

link-order

no-link-order
As an alternative to using section groups and a special assembler
directive the plugin can use a feature of the ELF SHF_LINK_
ORDER flag which tells the linker that it should discard a section if
the section it is linked to is also being discarded. This behaviour
is enabled by the link-order option.

rename Adds an extra prefix to the symbol names generated by the
annobin plugin. This allows the plugin to be run twice on the
same executable, which can be useful for debugging and build
testing.

active—-checks

no-active-checks
The annobin plugin will normally generate warning messages if
it detects that certain preprocessor command line options are
missing or misspelt. The active-checks option changes the
warnings into errors, just as if ~-Werror had been specified. The
no-active-checks option disables the messages entirely.

Currently the plugin checks for these issues:

Missing FORTIFY_SOURCE
This warning is generated when neither -D_
FORTIFY_SOURCE=2 nor -D_FORTIFY_SOURCE=3
have been provided on the command line and the
-flto option has been enabled.

Nomrally this problem would be detected by the
annocheck tool, but LTO compilation hides prepro-
cessor options, so information about them cannot be
passed on by the plugin. This is why the plugin will
generate a warning message when the _FORTIFY_
SOURCE option is missing and LTO is enabled.

-D_FORTIFY_SOURCE typo
The plugin will warn if the -D_FORTIFY_SOURCE op-
tion is spelt as either -DFORTIFY_SOURCE or -D__
FORTIFY_SOURCE.

-D_GLIBCXX_ASSERTIONS typo
The plugin will warn if the -D_GLIBCXX_
ASSERTIONS option is spelt as either -DGLIBCXX_
ASSERTIONS or -D__GLIBCXX_ASSERTIONS



6 Annobin

Note - in the future the annobin plugin might be extended to
produce warning messages for other missing command line op-
tions.

Note - as a workaround for certain tests generated by the
autoconf tool the warning message will not be produced if the
input source filename starts with conftest.. In these cases au-
toconf is usually checking to see if a warning will be produced for
some other reason, and so the annobin warning would get in the
way. If the active-checks option has been enabled however,
an error message will still be generated.

dynamic-notes
no-dynamic-notes
static-notes
no-static-notes
These options are deprecated.

ppc64-nops

no-ppc64-nops
This option either enables or disables the insertion of NOP in-
structions in the some of the code sections of PowerPC64 bi-
naries. This is necessary to avoid problems with the elflint
program which will complain about binaries built without this
option enabled. The option is enabled by default, but since it
does increase the size of compiled programs by a small amount,
the no-ppc64-nops is provided in order to turn it off.

note-format=note|string
This option chooses the format used to store the information
generated by the plugin. The possibilities are:

note Store the information as ELF format notes in the
.gnu.build.attributes section.

string Store the information as mergeable strings in the
.annobin.notes section.

The default is note.

The plugins record information appropriate to the compiler that is run-
ning them. So the gcc plugin records information about the following op-
tions:

-D_FORTIFY_SOURCE=[2]|3]
-D_GLIBCXX_ASSERTIONS
-0

-Wall
-fPIC
-fPIE



Chapter 2: How to add Binary Annotations to your application. 7

—-fcf-protection
—finstrument_functions
-flto

-fomit-frame-pointer
-fprofile

-fprofile-arcs
-fsanitize

-fshort-enums
-fstack-clash-protection
-fstack-protector

)

-mbranch-protection (AArch64)
-mstack-realign (i386)
-mtls-size (PowerPC)

The Clang plugin records information on the following command line
options:
-0
-Wall
-fPIC
-fPIE

-fcf-protection-branch
-fcf-protection-return
-fsanitize=cfi-cast-strict
-fsanitize=safe-stack
-fspeculative-load-hardening
-fstack-protector-strong

Note - if LTO compilation is enabled (-flto) then any data recorded by
the Clang plugin is ignored when the object file is recompiled by the LLVM
backend. Hence when using LTO and Clang it is best to enable the LLVM
plugin.

The LLVM plugin records information on the following command line op-
tions:

-D_FORTIFY_SOURCE=[2]3]
-0

-Wall
-flto
-fPIC
-fPIE



8 Annobin

—fcf-protection-branch
-fcf-protection-return
-fsanitize=safe-stack
-fstack-protector-strong

g



9

3 How to examine the information stored
in the binary.

The information is stored in a binary in either the ELF Note format inside
a special section called .gnu.build.attributes, or else as ordinary strings
inside a section called .annobin.notes.

The readelf program from the binutils package can extract and display
these notes. (Adding the --wide option is also helpful).

If the information is held in the ELF note format then readelf’s -—-notes
option will display them. Here is an example of the output:

Displaying notes found in: .gnu.build.attributes

Owner Data size Description

GA$<version>3p3 0x00000010 OPEN Applies to region from
GA$<tool>gcc 7.2.1 20170915 0x00000000 OPEN Applies to region from
GA*GOW: 0x452b 0x00000000 OPEN Applies to region from
GA*<stack prot>strong 0x00000000 OPEN Applies to region from
GA*GOW:0x412b 0x00000010 func Applies to region from

This shows various different pieces of information, including the fact that
the notes were produced using version 3 of the specification, and version
3 of the plugin. The binary was built by gcc version 7.2.1 and the -fstack-
protector-strong option was enabled on the command line. The program was
compiled with -O2 enabled except the baz() function which was compiled
with -O0 instead.

The most complicated part of the notes is the owner field. This is used to
encode the type of note as well as its value and possibly extra data as well.
The format of the field is explained in detail in the Watermark specification,
but it basically consists of the letters ‘G’ and ‘A’ followed by an encoding
character (one of ‘*$!+’) and then a type character and finally the value.

The notes are always four byte aligned, even on 64-bit systems. This
does mean that consumers of the notes may have to read 8-byte wide values
from 4-byte aligned addresses, and that producers of the notes may have to
generate unaligned relocs when creating them.

If the information is held as strings then readelf’s -p.annobin.notes
option will display them. Here is an example of the output:

String dump of section ’.annobin.notes’:
[ 0] AV:4.p.1200
[ c] RV:running gcc 12.2.1 20221121
[ 2b] BV:annobin gcc 12.2.1 20221121
[ 4a] PN:annobin
[ 55] GW:0x290540
[ 61] SP:3

Most of the notes have a reasonably self explanatory name and value.
The exception are the version and GOW notes, which are included in the
table below.

0x8a0 to
0x8a0 to
0x8a0 to
0x8a0 to
0x8c0 to

0x8c
0x8c
0x8c
0x8c
0x8c



10 Annobin

3.1 Encoding Protocol and Producer Versions

The version note encodes the version of the Watermark specification used
and the version of the tool used to generate the notes. Typically the protocol
version will be 3 or 4 and the plugin version will be 11 or 12. It also encodes
the tool used to generate the notes as a single character. The following
characters are used:

L The notes have been produced by the Clang plugin.

v The notes have been produced by the LLVM plugin.

a The notes have been produced by the assembler.

c The notes have been produced by the gce plugin for the .text.cold
section.

e The notes have been produced by the gcc plugin for the .text.exit
section.

g The notes have been produced by the gcc plugin when running
in LTO mode.

h The notes have been produced by the gce plugin for the .text.hot
section.

1 The notes have been produced by the linker.

P The notes have been produced by the gcc plugin.

The notes have been produced by the gcc plugin for the
text.startup section.

3.2 Encoding Stack Protections

The stack protection note (value 2) encodes the setting of the -fstack-
protector option. Possible values are:

0 Not compiled with any setting of -fstack-protector (or the
setting is unknown).

Compiled with just -fstack-protector.
Compiled with -fstack-protector-all.

Compiled with -fstack-protector-strong.

s w N -

Compiled with -fstack-protector-explicit.

3.3 Encoding Position Independence

The Position Independence Status note encodes the setting of the
-fpic/-fpie used when compiling the program. The value of the note can
be



Chapter 3: How to examine the information stored in the binary. 11

Static code, ie neither pic nor pie.
Compiled with -fpic.
Compiled with -fPIC.
Compiled with -fpie.
Compiled with -fPIE

W N+, O

If both pic and pie have been specified on the command line then pie
takes the precedence in the encoding.

3.4 Encoding Optimization and Debugging Levels

The GOW note encodes the optimization level (-0) and debugging level (-g)
used when compiling a binary. In order to save space this is stored as a bit
field with the bits having the following meanings:
bits 0 - 2
The debug type, ie DBX, DWARF, VMS or XCOFF. As speci-
fied by the -gstabs, ~gdwarf, -gvms and -gxcoff options.
bit 3 Set if GNU extensions to the debug type have been enabled.

bits 4 -5
The debug info level ie TERSE, NORMAL or VERBOSE as set
by the -g<level> option.

bits 6 - 8
The DWARF version, if DWARF is being generated. Set by the
-gdwarf-<version> option.

bits 9 - 10
The optimization level as set by the -0<number> option. Levels
above 3 are treated as if they were 3.

bit 11 Set if the optimize-for-size option (-0s) is enabled.

bit 12 Set if the inaccurate-but-fast optimization option (-Ofast) has
been enabled.

bit 13 Set if the optimize-with-debugging option (-0g) has been en-

abled.
bit 14 Set if the enable most warnings option (-Wall) has been enabled.
bit 15 Set if the format security warning option (-Wformat-security)

has been enabled.
bit 16 Set if LTO compilation has been enabled.

bit 17 Set if LTO compilation has not been enabled.

This bit is here so that tools can detect notes created by earlier
versions of annobin which did not set any bits higher than 15.



12 Annobin

bits 18 - 19

These bits are used to record the setting of gee’s —ftrivial-
auto-var-init command line option. If both bits are clear
then the option is not supported by the compiler. If bit 18 is
set but bit 19 is clear, then the compiler supports the option,
but either it was not used, or it was used but the option’s value
was skip. Otherwise if bit 19 is clear then the option was used
but its value was set to pattern (which is inappropriate for
production binaries) or if bit 19 is set then the option was used
and its value was set to zero.

bits 20 - 21

These bits are used to record the setting of gcc’s ~fzero-call-
used-regs command line option. If both bits are clear the op-
tion is not supported by the compiler. Otherwise if bit 20 is set
(and bit 21 is clear) then the option is supported but it was not
used, or it was used, but its value was set to skip. Otherwise
both bits 20 and 21 should be set, indicating that the option
was used and a value other than skip was used.

bits 22 - 23
These bits are used to record the setting of gce’s -Wimplicit-
int warning. Enabling this warning is important as variables
with an implicit type of int can cause problems when they are
used in situations where they are expected to be compatible with
pointers. The meanings of the two bits are as follows:

bit22 =0, bit23 =0
The annobin plugin did not record any information
about this warning, probably because the plugin is
an old version.
bit22 =1, bit23 =0
The warning has been disabled.
bit22 =0, bit23 =1
The warning has its default value. It has not been
altered via a command line option.
bit22 =1, bit23 =1
The warning has been enabled via a command line
option.
Note - whilst this warning is normally enabled it can be manually
disabled. Hence the need for this extra test.
Note - this test is only really relevent to C source code. Other
languages are not affected.

bits 24 - 25
These bits are used to record the setting of gce’s -Wimplicit-
function-declaration warning. Enabling this warning is im-



Chapter 3: How to examine the information stored in the binary. 13

portant as functions that are assumed to accept int parameters
or return int values can cause problems when pointers are in-
volved. The meanings of the two bits are as follows:

bit22 =0, bit23 =0
The annobin plugin did not record any information
about this warning, probably because the plugin is
an old version.

bit22 =1, bit23 =0
The warning has been disabled.

bit22 =0, bit23 =1
The warning has its default value. It has not been
altered via a command line option.

bit22 =1, bit23 =1
The warning has been enabled via a command line
option.

Note - whilst this warning is normally enabled it can be manually
disabled. Hence the need for this extra test.

Note - this test is only really relevent to C source code. Other
languages are not affected.

bits 26 - 28
These bits record the settings of gee’s flexible array strengthen-
ing. Bit 26 is set only if the feature is supported by the compiler.
If bit 26 is not set then bits 27 to 28 should be ignored. Bit 27 is
set if the -Wstrict-flex-arrays warnings is enabled. Bit 28 is
set if the ~fstrict-flex-arrays option has been set to a value
greater than zero.

The other bits are not currently used and should be set to zero so they
can be used in future extensions to the specification.

3.5 Encoding Control Flow Protection

Records the setting of the —~cf-protection option. This is a bit mask using
the following bits, based upon the definition of the enum cf_protection_
level from gecc’s flag-types.h header file:

bit O Branches are protected. (ie -fcf-protection=branch).
bit 1 Returns are protected. (ie ~fcf-protection=return).
bit 2 If set, this indicates that the other bits were explicitly set by

an option on the gcc command line. Otherwise those bits were
implicitly set by either other options or the backend concerned.

If both bits 0 and 1 are set then this implies the -fcf-protection=full
option, and if neither are set then this implies the —-fcf-protection=none
option.



14 Annobin

Note - in order to avoid storing a value of 0 in the note (which can be
confused with a NUL-byte to indicate the end of a string), the value stored
is biased by 1.

3.6 Encoding the Size of Enumerations
Record the value of the ~fshort-enums option. Possible values are:
true The -fshort-enums option has been enabled.

false The -fshort-enums option has not been enabled.

3.7 Encoding Instrumentation Options

Records the enablement of various code instrumentation options. Note - this
note is only produced if one or more of these options are enabled.

The note encodes four values, separate by the forward slash (/) character.
These values are:

sanitization
Enabled via a plethora of ~fsanitize=. .. options these tell gcc
to add extra code to help with various different types of error
checking features.

function instrumentation
Enabled via gec’s —-finstrument-functions option, this adds
special function calls at the entry and exit point of every normal
function.

profiling
Enabled via gcc’s —p or —pg options, this adds instrumentation
to the compiled code that generates output suitable for analysis
via the prof or gprof programs.

arc profiling
Enabled via gcc’s —~fprofile-arc option, or one of the meta-
profiling options, this option adds code to record how many
times every branch and function call is executed.

3.8 Encoding Notes in a string format

If the notes are being recorded in a string format, via the
note-formt=string command line options, then the strings take
the form of a two letter prefix, followed by a colon and then the value
associated with the note. If the note is likely to trigger a failure result in
annocheck then the filename of the source file will follow, separated by a
space. If the note is specific to a single function then the function name
will follow on afterwards, again separated by a space.

The currently accepted two letter prefixes are:



AV
BV
CF
FL
FP
GA

GW
PF
PI
PN
RV
SC
SE
SP
aA
aB
is
pA
xA

15

Records the version of the plugin.

Records the version of the compiler that built the plugin.
Records the setting of any control flow security options.
Records the level of the -D_FORTIFY_LEVEL option.
Records the use of the frame pointer.

Records the setting of the -D_GLIBCCXX_ASSERTIONS command
line option.

Records the GOW values.

Records any profiling options.

Records any PIC settings.

Records the name of the plugin.

Records the version of the compiler that is running the plugin.
Records the setting of any stack clash protection.

Records the use of short enums.

Records the use of an stack protector options.

Records the ABI selected. (AArch64 only).

Records the use of Branch Target Identification. (Aarch64 only).
Records the use of the stack realign option. (x86 only).
Records the ABI selected. (PowerPC only).

Records the ABI selected. (x86_64 only).

Each value represents a setting of an internal gcc flag variable. The exact

meaning of the values is specific to gee, but any non-zero number means that
the feature has been enabled in some way.






17

4 Analysing binary files.

annocheck
[-h | —help]
[help-tool]
[—version]
[-v | —verbose]
[-q | —quiet]
[-i | -ignore-unknown]
[-r | —report-unknown]
[-f | —follow-links]
[-I | —ignore-links]
[-debug-rpm=rile]
[-dwarf-dir=dir]
[-p text | —prefix=text]
[-t dir | -tmpdir=dir]
[-u | —use-debuginfod]
[-n | —no-use-debuginfod]
[-enable-tool]
[~disable-tool]
[-tool-option]
file...

The annocheck program can analyse binary files and report information
about them. It is designed to be modular, with a set of self-contained tools
providing the checking functionality. Currently the following tools are im-
plemented:

The annocheck program is able to scan inside rpm files and libraries.
It will automatically recurse into any directories that are specified on the
command line. In addition annocheck knows how to find debug information
held in separate debug files, and it will search for these whenever it needs
the resources that they contain.

New tools can be added to the annocheck framework by creating a new
source file and including it in the Makefile used to build annocheck. The
modular nature of annocheck means that nothing else needs to be updated.

New tools must fill out a struct checker structure (defined in
annocheck.h) and they must define a constructor function that calls
annocheck_add_checker to register their presence at program start-up.

The annocheck program supports some generic command line options
that are used regardless of which tools are enabled.

--debug-rpm=file
Look in file for separate dwarf debug information.

--dwarf-dir=dir
Look in dir for separate dwarf debug information files.

--help
-h Displays the generic annobin usage information and then exits.



18 Annobin

--help-tool
Display the usage information for tool and then exits.

—--report-unknown

--ignore-unknown

-r

-i If enabled, unknown file types are reported when they are en-
countered. This includes non-ELF format files, block devices
and so on. Directories are not considered to be unknown and
are automatically descended.

The default setting depends upon the file being processed. For
rpm files the default is to ignore unknowns, since these often
contain non-executable files. For other file types, including di-
rectories, the default is to report unknown files.

--ignore-links

-—follow-1links

-I

-f Specifies whether symbolic links should be followed or ignored.
The default setting depends upon the file being processed. For
rpm files the default is to ignore symbolic links, since these often
unresolveable. For other file types, including directories, the
default is to follow the links.

--prefix=text
-p text Include text in the output description.

--quiet

-q Do not print anything, just return an exit status.
--tmpdir=dir

-t dir Use dir as a directory for holding temporary files.
--verbose

-v Produce informational messages whilst working. Repeat for
more information.

--version
Report the version of the tool and then exit.

--use—-debuginfod

-u Enable the use of the debuginfod service to download debuginfo
rpms. This feature is enabled by default, but it is only active
if support for the debuginfod server has been compiled in to
annocheck.

--no-use-debuginfod
-n Do not use the debuginfod service, even if it is available.

--enable-tool
Enable tool. Most tools are disabled by default and so need to
be enabled via this option before they will act.



Chapter 4: Analysing binary files. 19

—-disable-tool

Disable tool. Normally used to disable the hardening checker,
which is enabled by default.

--tool-option

Pass option on to tool.

Any other command line options will be passed to the tools in turn in
order to give them a chance to claim and process them.

4.1 The builder checker.

annocheck

—enable-builtby

[-tool=name]
[-nottool=name]
file...

The built-by tool is disabled by default, but it can be enabled by the
command line option -—enable-builtby. The tool checks the specified files
to see if any information is stored about how the file was built.

Since the hardening checker is enabled by default it may also be useful
to add the --disable-hardened option to the command line.

The tool supports a few command line options to customise its behaviour:

--all

Report all builder identification strings. The tool has several
different heuristics for determining the builder. By default it will
report the information return by the first successful heuristic. If
the --all option is enabled then all successful results will be
returned.

--tool=name

This option can be used to restrict the output to only those files
which were built by a specific tool. This can be useful when
scanning a directory full of files searching for those built by a
particular compiler.

—--nottool=NAME

This option can be used to restrict the output to only those files
which were not built by a specific tool. This can be useful when
scanning a directory full of files searching for those that were
not built by a particular compiler.

4.2 The Hardened security checker.

annocheck

[-skip-name[=funcname]]
[~test-name]



20 Annobin

[—skip-all]

[-test-all]

[—skip-future]
[-test-future]
[-test-unicode-all]
[-test-unicode-suspicious]
[-profile=release]
[-ignore-gaps]
[-report-gaps]
[fixed-format-messages]
[-disable-colour]
[-enable-colour]
[-disable-hardened]
[-enable-hardened]
[—full-filenames]
[-base-filenames]
[-suppress-version-warnings]
[-no-urls]
[-provide-urls]

file. ..

The hardened tool checks that the specified files were built with specific
security hardening features enabled. The features that are tested can be
controlled via command line options, but the default is to test for all of
them.

The tool was originally built to assist in the implementation of secu-
rity features for Fedora, although it does now check for more things than
are described in that document: https://fedoraproject . org/wiki/
Security_Features

New tests can be added to the hardened checker by adding an entry
in the tests array defined in hardened.c and then creating the necessary
code to support the test. There is more information on this process in
this blog: https://developers.redhat.com/articles/2021/07/15/
build-your-own-tool-search-code-sequences-binary-files

Currently the hardened tool can run the following tests. Each test listed
here starts with a short section describing the reason for the test, a probable
solution to fix the test, criteria for when the test can be ignored and some
examples of the error messages that are produced by annocheck when the
test goes wrong.

4.2.1 The Tests Run By Annocheck

4.2.1.1 The auto-var-init test

Problem: An attacker could extract information from uninitialised lo-
cations on the stack

Fix By: Add -fauto-var-init=zero to the compiler command line

Waive If: The overhead of initializing auto variables is too high

Example: FAIL: auto-var-init test because -ftrivial-auto-var-init not used or set to


https://fedoraproject.org/wiki/Security_Features
https://fedoraproject.org/wiki/Security_Features
https://developers.redhat.com/articles/2021/07/15/build-your-own-tool-search-code-sequences-binary-files
https://developers.redhat.com/articles/2021/07/15/build-your-own-tool-search-code-sequences-binary-files

Chapter 4: Analysing binary files. 21

This is a future test. It is not enabled by default. It checks a security
feature that may not be widely available or enforced.

This test checks to make sure that programs have been compiled with
the -ftrivial-auto-var-init=zero command line option. This option
ensures that all local variables are initialised, even if they are not used. This
includes any padding between structure fields or unused array entries. If this
is not done then a potential attacker might be able to access the unitialized
memory and extract information.

The test can be enabled via the --test-auto-var-init option and
disabled by the --skip-auto-var-init option. It is also enabled if the
-—test-future option is specified and disabled if the skip-future option
is specified.

4.2.1.2 The bind-now test

Problem: An attacker could intercept calls to shared library functions
Fix By: Add -Wl1l,-z,now to final link command line
Waive If: No shared libraries used

Example: FAIL: bind-now test because not linked with -Wl,-z,now

This test checks that lazy binding is not enabled in the binary. Lazy
binding can be used to delay resolving the links between an application and
any shared libraries that it uses:

https://www.airs.com/blog/archives/41

Using lazy binding provides a faster start-up for an application since this
resolving process is not performed until a function call is made to a specific
library. But it is also a security vulnerability since an attacker could replace
the binding with a link to their own code. Hence for security purposes
immediate binding rather than lazy binding should be used.

The type of binding is selected via a linker command line option, and
on a compiler command line the secure version usually looks like -W1,-
z,now. The lazy binding option is -Wl,-z,lazy although some linkers are
configured to use lazy binding by default, in which case just the absence of
the -W1,-z,now option is enough to trigger this test.

Whilst important, this test can be ignored if the binary does not use any
shared libraries.

Note - this test is automatically disabled if the —-profile=el7 option is
used.

The test can be disabled via the —~—skip-bind-now option and re-enabled
by the —-test-bind-now option.

4.2.1.3 The branch-protection test

Problem: Unprotected AArch64 binaries are vulnerable to ROP/JOP style attacks
Fix By: Compile with -mbranch-protection=standard

Waive If: Not running on AArch64

Waive If: The application will not run on Fedora 35 or later.


https://www.airs.com/blog/archives/41

22 Annobin

Waive If: The application will not run on newer AArch64 cores.

Example: FAIL: branch protection test because not enabled

Example: FAIL: branch protection test because only partially enabled

Example: FAIL: branch protection test because .note.gnu.property sec-
tion not found (it is needed for branch protection support)

Example: FAIL: branch protection test because the -mbranch-protection op-
tion was not used

AArch64 processors are vulnerable to a class of attack known as ROP
and JOP style attacks. Preventing this kind of exploit requires assistance
from the hardware itself, in the form of new instructions that need to be
inserted by the compiler, and new bits in the core’s status that need to be
set.

This test checks to see if the compile time option to enable the security
feature was used. There are four levels of security available, ranging from
none through partial (some functions are protected others are not) to full.
The test checks that full security has been enabled.

The security feature is enabled by compiling with the -mbranch-
protection=standard gcc command line option.

Note - these security features are only found on newer versions of the
AArch64 architecture, and they need a compiler and a loader that will sup-
port them. Currently this means Fedora 35 or later, but not RHEL-8 or
RHEL-9.

If an assembler source file is used as part of an application then it too
needs to be updated. Any location in the source code where an indirect
branch or function call can land must now have BTI as the first instruction
executed. This instruction is safe to use even in code that will not be exe-
cuted in a BTI-enabled environment as it translates into a no-op instruction
if not needed.

In addition the assembler needs a note to indicate that it now supports
BTI. This note can be added via including this code snippet in the sources:

.pushsection .note.gnu.property, "a"

.align 3

.word 2f - 1f

.word 4f - 3f

.word 5 /* NT_GNU_PROPERTY_TYPE_O */

1: .asciz "GNU"

2: .align 3

3: .word 0xc0000000 /* type: GNU_PROPERTY_AARCH64_FEATURE_1_AND */
.word 6f - 5f /* size */

5: .word 1 /* value: GNU_PROPERTY_AARCH64_FEATURE_1_BTI */

6: .align 3
4: .popsection



Chapter 4: Analysing binary files. 23

Note - this test is the inverse of the Section 4.2.1.20 [Test not branch
protection], page 32, test and directly related to the Section 4.2.1.6 [Test
dynamic tags|, page 25, test.

Note - this test is automatically enabled if one of the following profile
options is used:

—-—profile=rawhide
--profile=£38
--profile=£37
--profile=£36
--profile=ell0

The test is automatically disabled if one of the other profile options is
used, ie:

--profile=el7
--profile=el8
--profile=el9
——profile=£35

If necessary the test can be disabled via the -—skip-branch-protection
option and re-enabled via the --test-branch-protection option.

4.2.1.4 The cf-protection test

Problem: An attacker could compromise an unprotected binary
Fix By: Compiling with -fcf-protection=full
Waive If: The application will not run on the latest Intel hardware

Waive If: The application is built by a compiler that does not support CET

Example: FAIL: cf-protection test because only branch protection enabled
Example: FAIL: cf-protection test because only return protection enabled

Example: FAIL: cf-protection test because no protection enabled

Example: FAIL: cf-protection test because insufficient Control Flow sanitization

Example: FAIL: cf-protection test because no .note.gnu.property section

trol flow information
Example: FAIL: cf-protection test because CET enabling note missing

no con-

Example: FAIL: cf-protection test because control flow protection is not enabled

Intel have introduced a new security feature called CET to their Tiger
Lake and newer cores:

https: / / newsroom . intel . <com / -editorials /
intel-cet-answers-call-protect-common-malware-threats / #
gs.avhl8k

This test checks to see that this feature is enabled. Normally this
is done by compiling the code with the -fcf-protection or -fcf-
protection=full command line option enabled. (The first form of the
option is an alias for the second, but the second form is preferred as it

explicitly shows that all of the control flow protection features are being
enabled).


https://newsroom.intel.com/editorials/intel-cet-answers-call-protect-common-malware-threats/#gs.avhl8k
https://newsroom.intel.com/editorials/intel-cet-answers-call-protect-common-malware-threats/#gs.avhl8k
https://newsroom.intel.com/editorials/intel-cet-answers-call-protect-common-malware-threats/#gs.avhl8k

24 Annobin

But if an application contains assembler code, or it is linked against a
library that has not been built with the protection enabled, or it is built by
a compiler that does not support CET then this test can fail.

The feature has to be enabled in the compiler as it involves inserting new
instructions into the compiled code. The feature is also an all-or-nothing
type proposition for any process. Either all of the code in the process must
have been built to support CET - in which case the feature can be enabled -
or if even a single component does not support CET then it must be disabled
for the entire process.

In order to enforce this the compiler inserts a special note into compiled
object files (the .note.gnu.property section referred to above). The note
indicates that CET is supported, as well as details of the minimum x86
architecture revision needed and so on.

Then when the object files are linked together to create the executable
the linker checks all of these notes, and if any object file or library is missing
one then it does not put a note in the output executable. Alternatively if all
of the object files (and libraries of course) do have notes, but one or more of
them do not have the CET-is-enabled flag, then the linker copies the notes
into the executable, but always clears the CET-is-enabled flag.

Finally when a program is executed the run-time loader checks this note
and if the CET-is-enabled flag is present then it enables the CET feature in
the hardware.

Fixing this check either means enabling the -fcf-protection=full (for
gee) or the —-fcf-protection-branch and -fcf-protection-return op-
tions (for Clang).

If an assembler source file is used as part of an application then it too
needs to be updated. Any location in the source code where an indirect
branch or function call can land must now have either ENDBR64 (for 64-
bit assembler) or ENDBR32 (for 32-bit assembler) as the first instruction
executed.

In addition the assembler needs a note to indicate that it now supports
CET. This note can be added via including this code snippet in the sources:

.section .note.gnu.property,"a"
.align 8

.long 1f - Of

.long 4f - 1f

.long 5

0:

.string "GNU"

1:

.align 8

.long 0xc0000002
.long 3f - 2f

2:

.long 0x3

3:



Chapter 4: Analysing binary files. 25

.align 8
4:

If necessary the test can be disabled via the --skip-cf-protection op-
tion and re-enabled via the --test-cf-protection option.

For more information on CET see: https: / / www . intel
com / content / dam / develop / external / us / en / documents /
catcl7-introduction-intel-cet-844137.pdf

4.2.1.5 The dynamic-segment test

Problem: Programs with more than one dynamic section will not be loaded properly
Fix By: Fix assembler source code and/or linker script
Waive If: Don’t.

Example: FAIL: dynamic segment test because multiple dynamic sections detected

Dynamic executables must have a dynamic section which contains infor-
mation that is used by the loader at program startup. The loader however
only expects there to be one dynamic section in a program, and it does not
cope it there are more than one. Normally this is not an issue however as
the linker will ensure that there is only one dynamic section. It is possible
however to use a custom linker script to create more than one dynamic sec-
tion, or to write some assembler code specifically designed to create multiple
dynamic sections.

If necessary the test can be disabled via the —-skip-dynamic-segment
option and re-enabled via the -—test-dynamic-segment option.

4.2.1.6 The dynamic-tags test

Problem: Unprotected AArch64 binaries are vulnerable to ROP/JOP style attacks
Fix By: Compile with -mbranch-protection=standard

Waive If: Not running on AArch64

Waive If: The application will not run on Fedora 35 or later.

Waive If: The application will not run on newer AArch64 cores.

Example: FAIL: dynamic tags test because BTI_PLT and PAC_PLT flags miss-
ing from the dynamic tags
Example: FAIL: dynamic tags test because BTI_PLT flag is missing from the dy-
namic tags
Example: FAIL: dynamic tags test because PAC_PLT flag is missing from the dy-
namic tags
Example: FAIL: dynamic tags test because no dynamic tags found
AArch64 processors are vulnerable to a class of attack known as ROP
and JOP style attacks. Preventing this kind of exploit requires assistance
from the hardware itself, in the form of new instructions that need to be
inserted by the compiler, and new bits in the core’s status that need to be
set.
This test checks to see if executable binaries have been marked as sup-

porting the necessary security features to prevent this kind of attack. (The
BTI_PLT and PAC_PLT flags mentioned in the failure messages). If they


https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/catc17-introduction-intel-cet-844137.pdf

26 Annobin

are marked then the runtime loader can enable the features in the processor
core. This marking is done by setting flags in the tags found in the dynamic
section of the executable. If the flags are missing then the executable is
considered to be unprotected.

The security features are enabled by compiling with the -mbranch-
protection=standard gcc command line option.

Note - these security features are only found on newer versions of the
A Arch64 architecture, and they need a compiler and a loader that will sup-
port them. Currently this means Fedora 35 or later, but not RHEL-8 or
RHEL-9.

If an assembler source file is used as part of an application then it too
needs to be updated. Any location in the source code where an indirect
branch or function call can land must now have BTT as the first instruction
executed. This instruction is safe to use even in code that will not be exe-
cuted in a BTI-enabled environment as it translates into a no-op instruction
if not needed.

In addition the assembler needs a note to indicate that it now supports

BTI. This note can be added via including this code snippet in the sources:

.pushsection .note.gnu.property, "a"

.align 3

.word 2f - 1f

.word 4f - 3f

.word 5 /* NT_GNU_PROPERTY_TYPE_O */

1: .asciz "GNU"

2: .align 3

3: .word 0xc0000000 /* type: GNU_PROPERTY_AARCH64_FEATURE_1_AND */
.word 6f - 5f /* size */

5: .word 1 /* value: GNU_PROPERTY_AARCH64_FEATURE_1_BTI */

6: .align 3
4: .popsection
Note - this test is the inverse of the Section 4.2.1.21 [Test not dynamic
tags|, page 33, test and directly related to the Section 4.2.1.3 [Test branch
protection], page 21, test.

Note - this test is automatically enabled if one of the following profile
options is used:

--profile=rawhide
--profile=£38
--profile=£37
--profile=£36
--profile=ell0

The test is automatically disabled if one of the other profile options is
used, ie:



Chapter 4: Analysing binary files. 27

——profile=el7
--profile=el8
--profile=el9
—--profile=£f35
If necessary the test can be disabled via the -—skip-dynamic-tags option
and re-enabled via the --test-dynamic-tags option.

4.2.1.7 The entry test

Problem: Intel’s CET security feature requires that the first instruc-
tion in a program be ENDBR

Fix By: Compile statup code with -fcf-protection

Waive If: The application will not run on the latest Intel hardware

Example: FAIL: entry test because instruction at entry is not ENDBR32

Example: FAIL: entry test because instruction at entry is not ENDBR64

This test checks to make sure that the first instruction in a program for

the x86_64 architectures is ENDBR. This is needed as part of Intel’s CET

security feature. (See Section 4.2.1.4 [Test cf protection], page 23, for more
details on CET).

If necessary the test can be disabled via the --skip-entry option and
re-enabled via the -—test-entry option.

4.2.1.8 The -Ofast test

Problem: Combining code that is compiled with -0Ofast with code that
is not results in inconsistent behaviour

Fix By: Compiling everything with -Ofast

Waive If: The application does not use maths functions

Example: FAIL: fast test because some parts of the program were compiled with -
Ofast and some were not.

This test checks that if part of the application was compiled with the
-0fast option, then all of it was compiled with this option. If only some
parts are compiled with -Ofast then the parts that are not may not be-
have correctly as they will be expecting to receive accurate results from
mathematical functions. For more details on this problem see: https://
bugzilla.redhat.com/show_bug.cgi?id=1248744

If necessary the test can be disabled via the --skip-fast option and
re-enabled via the ——test-fast option.

4.2.1.9 The FIPS test

Problem: GO binaries need to be compiled with FIPS crypto support
Fix By: Compiling CGO_ENABLED=1
Waive If: The application does not use crypto

Example: FAIL: fips test because the binary loaded a non-FIPS compli-
ant crypto library


https://bugzilla.redhat.com/show_bug.cgi?id=1248744
https://bugzilla.redhat.com/show_bug.cgi?id=1248744

28 Annobin

By default when using Fedora, applications written in GO use crypto-
graphic functions from the GO standard library, which is not FIPS-validated.
RHEL however is based on upstream GO’s dev.boringcrypto branch, which is
modified to use BoringSSL for crypto primitives. These are FIPS-validated.

For the best security GO applications should use a FIPS-validated cryp-
tographic library, and this test checks for this behaviour.

This is automatically disabled if a Fedora profile is used.

If necessary the test can be disabled via the --skip-fips option or re-
enabled via the --test-fips option.

4.2.1.10 The flex arrays test

Problem: Flexible arrays are a C coding convention that are often
subject to buffer overrun attacks

Fix By: Compiling with -fstrict-flex-arrays=[123]

Waive If: The application does not use flexible arrays

Example: FAIL: flexible test because -fstrict-flex-arrays was not enabled

This is a future test. It is not enabled by default. It checks a security
feature that may not be widely available or enforced.

This test checks that the application was compiled with the -fstrict-
flex-arrays=[123] command line option enabled. This option enforces
a stricter use of flexible arrays that is easier for the compiler to check for
ppotential buffer overrun attacks.

The test also checks that the -Wstrict-flex—-arrays warning is enabled.

If necessary the test can be disabled via the --skip-flex-arrays option
and re-enabled via the —-test-flex-arrays option.

4.2.1.11 The fortify test

Problem: Buffer overruns in string/memory library functions can be ex-
ploited by an attacker

Fix By: Compiling with -D_FORTIFY_SOURCE=2 or -D_FORTIFY_SOURCE=3

Waive If: The application does not use C library string/memory functions

Example: FAIL: fortify test because -D_FORTIFY_SOURCE=[2|3] was not present on the c

mand line
Example: FAIL: fortify test because -0 level is too low

Example: FAIL: fortify test because no indication that the necessary op-

tion was used (and a C compiler was detected)

This test checks that the application was compiled with either -D_
FORTIFY_SOURCE=2 or -D_FORTIFY_SOURCE=3 specified on the compiler com-
mand line. Since these options need good optimization in order to work
properly the test also checks that -02 or higher was used.

The _FORTIFY_SOURCE define enables the use of secure version of certain

string and memory C library functions. For full details of what it does, see
this blog: https://access.redhat.com/blogs/766093/posts/1976213


https://access.redhat.com/blogs/766093/posts/1976213

Chapter 4: Analysing binary files. 29

Any program that uses the string or memory functions in the glibc library
should have this define present on the compiler command line. Programs
that do not use these functions do not need the define, but it will not hurt
to have it present anyway.

Note - this test is automatically disabled if the —-profile=el7 option is
used.

Note - if either of the €110 or rawhide profiles are enabled then only
-D_FORTIFY_SOURCE=3 will be accepted.

If necessary the test can be disabled via the ——skip-fortify option and
re-enabled via the -—test-fortify option.

4.2.1.12 The gaps test

Problem: Without complete coverage of the compiled code, other tests can miss proble
Fix By: Compile with -fplugin=annobin
Waive If: Not compiling C or C++ code

Example: FAIL: gaps were detected in the annobin coverage

This test checks to make sure that there are no gaps in the annobin data
for the binary being checked. If gaps are present then this means that some
parts of the program might have problems which cannot be detected by
annocheck.

If necessary the test can be disabled via the --skip-gaps option and
re-enabled via the —-test-gaps option.

4.2.1.13 The glibcxx-assertions test

Problem: Compiled C++ code might contain bugs that could have been de-
tected and fixed

Fix By: Compile with -D_GLIBCXX_ASSERTIONS

Waive If: Not compiling C++

Waive If: Not using functions from libstdc++

Example: FAIL: glibcxx-assertions test because compiled without -D_GLIBCXX_ASSERTION

This test checks to make sure that the -D_GLIBCXX_ASSERTIONS g+=
compiler command line option was used when building binaries. This option
is one of several supported by the libstdc++ library and it is used to enable
various NULL pointer and bounds checking security features. For more
information see:

https: / / gcc . gnu . org / onlinedocs / libstdc++ / manual /
using_macros.html

If necessary the test can be disabled via the --skip-glibcxx-
assertions option and re-enabled via the --test-glibcxx-assertions
option.

4.2.1.14 The gnu-relro test

Problem: An attacker could alter how an applications interacts with shared libraries


https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_macros.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_macros.html

30 Annobin

Fix By: Link with -Wl,-z,relro,-z,now
Waive If: The application runs in an space/time constrained environment

Example: FAIL: gnu relro test because not linked with -Wl,-z,relro

Some parts of an executable need to be modified when it starts, so that it
can access any shared libraries that it uses. This process is called relocation,
and once it is finished the altered code/data should not be modified again.
The gnu relro test checks that write permission can be removed once the
relocations have finished.

Enabling gnu relro increases the executable size on disk and in memory,
and depending upon the application it can also cause a slow start time. It
does not cause any significant execution time penalty, and using pre-linking
can eliminate the startup penalty.

For programs that do not need to be reloaded often, such as daemons
and servers, and on systems where disk and memory are relatively abundant
such as desktops and servers, the overhead of gnu relro is very insignificant
and highly recommended. For programs that need to be reloaded often, the
execution penalty of gnu relro can be eliminated by using prelinking. For
embedded systems where space is scarce, gnu relro is not recommended due
to its space overhead.

To turn on gnu relro compile with the gcc -W1,-z,relro,-z,now option.

If necessary the test can be disabled via the --skip-gnu-relro option
and re-enabled via the ——test-gnu-relro option.

4.2.1.15 The gnu-stack test

Problem: An attacker could place code on the stack and then run it

Fix By: Updating compiler, assembler sources and/or linker scripts

Waive If: The application *really* needs to be able to dynamically cre-
ate and execute code

Example: FAIL: gnu-stack test because the .stack section has incorrect permissions
Example: FAIL: gnu-stack test because the .note.GNU-stack section has ex-

ecute permission
Example: FAIL: gnu-stack test because the GNU stack segment has execute permission
Example: FAIL: gnu-stack test because the GNU stack segment does not have both read
Example: FAIL: gnu-stack test because no .note.GNU-stack section found
Example: MAYB: gnu-stack test because multiple stack sections detected

This test checks that it is not possible to place code onto the stack and
then execute it. Normally the stack just holds data and addresses, but never
instructions. A favourite tactic of attackers however is to discover a buffer
overrun bug that addresses the stack and then place instructions there before
forcing the processor to execute them.

The test actually checks several different parts of a binary file in order
to determine that its stack is safe, which is why there are several different
potential failure messages.



Chapter 4: Analysing binary files. 31

Most applications will have a section inserted into them by the compiler
called .note. GNU-stack. The section has no contents, but the read, write,
and execute attributes of the section reflect the needs of the application’s
stack.

Ordinary compiled code should never see this problem, but the test fail-
ure can be triggered by programs built with an old compiler which does
not support the .note-GNU-stack section, or if the program contains some
assembler source files or linked with a custom made linker map.

To fix the problem either the compiler needs to be upgraded or the linker
map needs to be updated or the assembler sources need to be extended to
add the .note-GNU-stack section by adding code like this:

.section .note.GNU-stack,"",’progbits

If necessary the test can be disabled via the --skip-gnu-stack option
and re-enabled via the --test-gnu-stack option.

4.2.1.16 The go-revision test

Problem: Using old versions of the GO compiler looses out on security enhacements

Fix By: Using a newer GO compiler
Waive If: No new GO compiler is available

Example: FAIL: go-revision test because GO revision must be >= 14

Example: FAIL: go-revision test because multiple, different GO version strings found

Example: FAIL: go-revision test because no Go compiler revision infor-
mation found
This test checks to see that GO code has been compiled by at least a
revision 14 compiler. Earlier versions of the compiler do not have all the bug
fixes and security enhancements of later versions.

Note - it is likely that the minimum revision of the GO compiler will be
increased in the future.

If necessary the test can be disabled via the --skip-go-revision option
and re-enabled via the -—test-go-revision option.

4.2.1.17 The implicit values test

Problem: Binaries built with implicit types for functions and
variables might not work in environments where pointers
and integers are different sizes

Fix By: Compiling with the warnings enabled and then fixing the
warnings

Waive If: Enabling the warnings would generate false positives

Example: FAIL: -Wimplicit-int not enabled
FAIL: -Wimplicit-function-declaration not enabled
This test checks to see that gcc’s -Wimplicit-int and -Wimplicit-
function-declaration options have been enabled when the binary built.
These options are normally enabled when the -Wall option is used (see



32 Annobin

Section 4.2.1.40 [Test warnings], page 43), but they can also be enabled and
disabled individually.

It is important to enable these warnings and then fix any code that trig-
gers them. Otherwise any code that runs in an environment where a pointer
is not the same size as an integer is likely to run into problems where the
two are used interchangeably.

If necessary the test can be disabled via the --skip-implicit-values
option and re-enabled via the -—test-implicit-values option.

4.2.1.18 The instrumentation test

Problem: Instrumented binaries are bigger and slower than regular binaries
Fix By: Removing instrumentation options from compiler command line
Waive If: Instrumentation is needed

Example: WARN: Instrumentation enabled - this is probably a mistake for pro-
duction binaries
This test checks to see if any of gcc’s instrumentation command line op-
tions have been used when the binary built. These options are: _fsanitize,
-finstrument-functions, -p, -pg, and -fprofile-arcs.

If necessary the test can be disabled via the --skip-instrumentation
option and re-enabled via the --test-instrumentation option.

4.2.1.19 The lto test

Problem: When LTO is supported by the compiler, it should be used
Fix By: Using -flto consistently
Waive If: LTO building is not wanted

Example: FAIL: no indication of LTO, possibly -fno-lto was used

This test checks to see if the -flto compiler command line option was
used. Using link time optimization produces better code and allows for
more compile-time security checks to be run. Hence if it is supported by the
compiler it should be used.

Annocheck is currently unable to distinguish between code that has been
compiled with the -fno-1to option and code that has not been compiled
with any -flto option, which is why the failure message is so vague.

Note - this test is automatically disabled if the --profile=el7 or
—--profile=el8 option is used.

If necessary the test can be disabled via the --skip-1to option and re-
enabled via the --test-1to option.

4.2.1.20 The not-branch-protection test

Problem: Protecting AArch64 binaries needs newer versions of AArch64 cores
Fix By: Compile with -mbranch-protection=none

Waive If: Not running on AArch64

Waive If: The application will run on Fedora 35 or later.



Chapter 4: Analysing binary files. 33

Waive If: The application will not run on newer AArch64 cores.

Example: FAIL: not branch protection test because protection enabled

Example: FAIL: not branch protection test because only partially disabled

Note - this test is the inverse of the Section 4.2.1.3 [Test branch pro-
tection], page 21, test and directly related to the Section 4.2.1.21 [Test not
dynamic tags|, page 33, test.

This test checks to see if the compile time option to enable the AArch64
branch protection security feature was used. This feature is only supported
on newer versions of AArch64 core, and will not work on older cores. Hence
this test checks to make sure that the option was not used, or was used but
was set to disable the feature.

The security features can be disabled by compiling with the -mbranch-
protection=none gcc command line option.

Note - this test is automatically disabled if one of the following profile
options is used:

—-—profile=rawhide
--profile=£38
--profile=£37
—--profile=£f36
--profile=ell0

The test is automatically enabled if one of the other profile options is
used, ie:

--profile=el7
—--profile=el8
--profile=el9
--profile=£35

If necessary the test can be disabled via the --skip-not-branch-
protection option and re-enabled via the --test-not-branch-protection
option.

4.2.1.21 The not-dynamic-tags test

Problem: Protecting AArch64 binaries needs newer versions of AArch64 cores

Fix By: Compile with -mbranch-protection=off

Waive If: Not running on AArch64

Waive If: The application will run on Fedora 35 or later.
Waive If: The application will not run on newer AArch64 cores.

Example: FAIL: not dynamic tags test because BTI_PLT and PAC_PLT flags are present i

namic tags

Example: FAIL: not dynamic tags test because BTI_PLT flag is present in the dy-

namic tags

Example: FAIL: not dynamic tags test because PAC_PLT flag is present in the dy-

namic tags



34 Annobin

Note - this test is the inverse of the Section 4.2.1.6 [Test dynamic tags],
page 25, test and directly related to the Section 4.2.1.20 [Test not branch
protection], page 32, test.

This test checks to see if executable AArch64 binaries have been marked
as supporting the BTI and PAC security features. Such features require the
support of the run-time loader in order to work, and this test is intended for
environments where this support is missing. (Such as RHEL or pre version-

35 Fedora).

The security features can be disabled by compiling with the -mbranch-
protection=none gcc command line option.

Note - this test is automatically disabled if one of the following profile

options is used:

—-—-profile=rawhide

--profile=£38
--profile=£37
—--profile=£f36

--profile=ell0

The test is automatically enabled if one of the other profile options is

used, ie:

--profile=el7
--profile=el8
—-—profile=el9
--profile=£35

If necessary the test can be disabled via the ——skip-not-dynamic-tags
option and re-enabled via the -—test-not-dynamic-tags option.

4.2.1.22 The notes test

Problem:
Fix By:
Waive If:

Example:
Example:

Lack of annobin notes in a binary means that other tests will not work prop
Compiling with -fplugin=annobin
The annobin plugin is not available

FAIL:
MAYB:

notes test because gaps were detected in the annobin coverage
notes test because not all of the .text section is cov-

ered by notes

Example:

Example:
Example:
Example:

FAIL: notes test because annobin notes were not found

MAYB: lto test because no indication that LTO was used

MAYB: stack-clash test because no notes found regarding this test
FAIL: fortify test because no indication that the necessary op-

tion was used (and a C compiler was detected)

Example:

FAIL: warnings test because no indication that the necessary op-

tion was used (and a C compiler was detected)

Example:
Example:

FAIL: stack-realign test because stack realign support is mandatory
FAIL: branch-protection test because the -mbranch-protection op-

tion was not used



Chapter 4: Analysing binary files. 35

This test checks that there are annobin notes covering all of the file. An-
nobin notes are generated by the compiler and describe the security features
that have been enabled. The notes contain range information, so that it is
possible to determine if all of an application has been covered by the notes,
or if there are parts that are missing notes.

If annobin notes are missing from a file then some of the other checks run
by the hardened checker will not work, which can trigger FAIL or MAYB
results for those tests.

Annobin notes are normally produced by a compiler plugin which can be
enabled via the -fplugin=annobin option for gcc or Clang, and the -fpass-
plugin=annobin option for LLVM. (Note for pre version-13 of LLVM the
-Xclang -load -Xclang annobin option should be used instead).

Annobin notes can be generated for assembler sources by using the
-Wa,--generate-missing-build-notes=yes option. Even better would be
to add extra code to the assembler sources to create annobin notes that
describe the security features supported by the assembler.

Compiling a simple C program with the -8 -fverbose-asm -
fplugin=annobin <security option> options should provide an example
of how to encode an annobin note about <security option>.

If necessary the test can be disabled via the -—skip-notes and --skip-
gaps options and re-enabled via the --test-notes and --test-gaps op-
tions.

4.2.1.23 The only-go test

Problem: Mixing GO and C is unsafe on x86 platforms
Fix By: Using a new GO compiler
Waive If: Always

Example: FAIL: only-go test because combining GO and non-GO object files on x86 sys-
tems is not safe - it disables CET

Note - this test is currently disabled. The GO compiler’s lack of support
for CET is a known issue that cannot be addressed by package maintainers.
Hence there is no point in issuing an error message.

This test checks to see if GO and C are being used together in the same
program. This is a problem for code that is going to run on x86 architec-
tures as the GO compiler does not support Intel’s CET technology. (See
Section 4.2.1.4 [Test cf protection], page 23, for more details on CET'). The
GO language is inheritantly safer than C, but if the two are mixed, then the
C parts will be missing out on the protection offered by CET.

If necessary the test can be disabled via the ——skip-only-go option and
re-enabled via the -—test-only-go option.

4.2.1.24 The openssl-engine test

Problem: The OpenSSL ENGINE API is deprecated in RHEL-10 and later
Fix By: Update the OpenSSL libraries installed and then rebuild the binary



36 Annobin

Waive If: The application is not intended for RHEL-10

Example: FAIL: OpenSSL binary using the deprecated ENGINE API detected

This test checks that the if the application uses the OpenSSL library, it
does not make use of the decpreated ENGINE API.

OpenSSL Engines are not FIPS compatible and corresponding API is
deprecated since OpenSSL 3.0. The engine functionality we are aware of
(PKCS#11, TPM) is covered by providers maintained by Crypto Team now.
Feel free to reach crypto team (#crypto) in case of questions.

This test is normally only enabled if the profile is unknown or RHEL-10.
If necessary the test can be disabled via the -—skip-openssl-engine option
and enabled via the --test-openssl-engine option.

4.2.1.25 The optimization test

Problem: Insufficient optimization prevents security features from working
Fix By: Compiling with -02
Waive If: The application does not use string/memory functions

Example: FAIL: optimization test because optimization level too low
Example: FAIL: optimization test because level too low
Example: MAYB: optimization test because no valid notes found regard-
ing this test
This test checks that the application was compiled with sufficient opti-
mization enabled.

The C library security hardening features enabled via the -D_FORTIFY_
SOURCE=2 or -D_FORTIFY_SOURCE=3 preprocessor command line options will
only work properly if the compiler is run at an optimization level of at least
-02. Hence this test checks to make sure that this level (or higher) has been
used.

Normally the only reason for not using -02 or higher is because the
application is space sensitive and needs to be compiled with -0s or the
compilation process is so time intensive that using -00 is the only way to
obtain reasonable build times.

If necessary the test can be disabled via the -—skip-optimization option
and re-enabled via the ——test-optimization option.

4.2.1.26 The pic test

Problem: Static binaries are more vulnerable to attacks
Fix By: Compile with -fPIC or -fPIE
Waive If: Don’t.

Example: FAIL: pic test because -fpic/-fpie not enabled
Programs can be compiled to either load at a fixed address in memory

(static programs) or at a random address assigned at startup time (dynamic
programs). Static programs are more vulnerable to exploits because an



Chapter 4: Analysing binary files. 37

attacker will know exactly where every part of the program is located. Thus
building dynamic executables is recommended.

This test checks that the appropriate compiler option has been used to
generate dynamic code. For shared libraries this is the —fPIE option should
be used. For dynamic executables the —fPIC option should be used. Note
- there are lower case alternatives of these options (ie -fpie and -fpic)
which can also be used. The difference between the lower case and upper
case versions is architecture dependent, but usually the lower case version
will only work with smaller programs, wheres the upper case version works
for all program sizes.

Note - this check is related to the Section 4.2.1.27 [Test pie|, page 37,
test. This test checks that the correct compile time option has been used.
That test checks that the correct link time option has been used.

If necessary the test can be disabled via the —--skip-pic option and re-
enabled via the --test-pic option.

4.2.1.27 The pie test

Problem: Static binaries are more vulnerable to attacks
Fix By: Link with -W1,-pie
Waive If: Don’t

Example: FAIL: pie test because not built with ’-Wl,-pie’ (gcc/clang)
buildmode pie’ (go)

Programs can be compiled to either load at a fixed address in memory
(static programs) or at a random address assigned at startup time (dynamic
programs). Static programs are more vulnerable to exploits because an
attacker will know exactly where every part of the program is located. Thus
building dynamic executables is recommended.

This test checks that the appropriate linker option (-pie) has been used
to generate dynamic executables. The option is only needed for linking
executables, not shared libraries.

Note - this check is related to the Section 4.2.1.26 [Test pic|, page 36,
test. This test checks that the correct linker option has been used. That
test checks that the correct compile time option has been used.

Note - this test is automatically disabled if the —-profile=el7 option is
used.

If necessary the test can be disabled via the --skip-pie option and re-
enabled via the --test-pie option.

4.2.1.28 The production test

or

Problem:
Fix By:

Shipping code generated by an experimental compiler is bad
Compile with a production ready compiler

Waive If: The code is never going to be shipped

Example:

FAIL: production test because a production-ready compiler was not used to b



38 Annobin

This test checks to make sure that the binary was not produced
by an experimental compiler. Experimental compilers can be detected
by examining their version information, which will include the string

NOT_FOR_PRODUCTION or cross from.

If necessary the test can be disabled via the --skip-production option
and re-enabled via the -—test-production option.

4.2.1.29 The property-note test

Problem: Badly formed or missing GNU property notes can compromise an ap-
plication at runtime

Fix By: Investigate and fix the creation of the notes

Waive If: Using old tools that do not generate the notes

Example: FAIL: property-note test because there is more than one GNU Prop-
erty note
Example: FAIL: property-note test because the property note does not have ex-
pected name
Example: FAIL: property-note test because the property note data has the wrong size
Example: FAIL: property-note test because the note section is present but empty
Example: FAIL: property-note test because the property note data has an in-
valid size
Example: FAIL: property-note test because the IBT property is not enabled
Example: FAIL: property-note test because the SHSTK property is not enabled
Example: FAIL: property-note test because unexpected property note type
Example: FAIL: property-note test because the BTI property is not enabled
Example: FAIL: property-note test because the GNU Property note segment not 8 byte a
Example: FAIL: property-note test because there is more than one GNU Prop-
erty note in the note segment
Example: FAIL: property-note test because .note.gnu.property section not found (it i
tection support
Example: FAIL: property-note test because no .note.gnu.property section = no con-
trol flow information
Example: FAIL: property-note test because control flow protection is not enabled

GNU property notes are special markers in binary files that provide in-
formation about the program to the runtime loader. This information is
architecture specific and it often includes details about any security features
that were enabled when the program was compiled.

This test checks that the property note is present - if needed for the
particular architcture - and that it is properly formatted.

Problems with property notes are usually related to other security options
being missing, or the use of assembler source files which do not contain their
own instructions for creating property notes.

If necessary the test can be disabled via the --skip-property-note op-
tion and re-enabled via the --test-property-note option.

4.2.1.30 The RHIVOS tests

Problem: Development for the RHIVOS environment requires that some
extra hardening features be enabled.



Chapter 4: Analysing binary files. 39

Fix By: Follow the requirements for RHIVOS delveopment.

Waive If: The application is not going to be used in the RHIVOS environment.

Example: FAIL: INITFIRST dynamic flag seen

Example: FAIL: SONAME includes a directory separator character
Example: FAIL: SONAME not the same as the filename

Example: FAIL: the DT_AUDIT dynamic tag is present

Example: FAIL: the DT_AUXILIARY dynamic tag is present

Example: FAIL: the DT_DEPAUDIT dynamic tag is present

Example: FAIL: the DT_FILTER dynamic tag is present

Example: FAIL: the DT_PREINIT_ARRAY dynamic tag is present
Example: FAIL: DT_HASH seen without DT_GNU_HASH

Example: FAIL: not linked with -Wl,-z,now

Example: FAIL: dlopen/dlclose found in symbol table

Example: FAIL: GNU TLS version 1 functions found in symbol table
Example: FAIL: LOAD segment with Write and Execute permissions seen

Deleopment for the RHIVOS environment requires that some extra hard-
ening measures are applied. This test attempts to check for most of these
requirements.

Enabling this test automatically enables the -—test-bind-now, --test-
gnu-relro, ——test-gnu-stack and --test-rwx-seg tests.

This test is normally only enabled if the ——profile=rhivos option is
used to select the RHIVOS profile. But it can be enabled independently by
the --test-rhivos option and disabled via the --skip-rhivos option.

4.2.1.31 The run-path test

Problem: An attacker could cause an application to use a corrupted shared library

Fix By: Moving the shared libraries needed to a proper location

Waive If: The application uses shared libraries held in non-standard locations

Waive If: The linker does not support --enable-new-dtags

Example: FAIL: run-path test because the DT_RPATH/DT_RUNPATH dynamic tag
Example: MAYB: run-path test because the DT_RPATH/DT_RUNPATH dynamic tag

ists but is empty

Example: FAIL: run-path test because the DT_RPATH/DT_RUNPATH dynamic tag

tains a path that does not start with /usr

Example: FAIL: run-path test because the DT_RPATH/DT_RUNPATH dynamic tag

tains ’..°
Example: FAIL: run-path test because the DT_RPATH/DT_RUNPATH dynamic
GIN after a non-$0RIGIN path
An application that uses shared libraries contains information on how to
locate those libraries. This information is a list of directories which should
be searched for the libraries. The test checks that the list is secure.

The test actually covers several different aspects, such as all directory
paths must be absolute, start with /usr and must not contain ... If any of
these rules are broken then an attacker might be able to exploit the search
paths to force the application to load their own, corrupted version of a shared
library.

tag

is corrupt
ex-—

con-
has a path

has $0RI-



40 Annobin

In addition if the --profile=rawhide option has been enabled then the
presence of the DT_RPATH dynamic tag will generate a MAYB result, since
in Fedora the DT_RUNPATH tag is preferred. (The two tags only differ
in when they are evaluated by the program loader). The DT_RUNPATH
dynamic tag should be generated by default, if it is needed, but in some
cases it may be necessary to add the --enable-new-dtags option to the
linker command line, or the -W1,--enable-new-dtags option if you use gcc
to drive the linker.

If necessary the test can be disabled via the --skip-run-path option
and re-enabled via the --test-run-path option.

4.2.1.32 The rwx-seg test

Problem: An attacker could add their own code to an executable
Fix By: Changing the linker script used to create the binary
Waive If: Don’t.
Example: FAIL: rwx-seg test because segment has Read, Write and eXecute flags set
This test checks that the file does not have any segments that are
have all three of the read, write and execute permissions.
have a non-zero size

are resident in memory when the program runs

L s

do not have an architecture/OS specific type

Code segments should have read and execute permissions, but they should
not be writable as otherwise an attacker can overwrite the code. Data seg-
ments should have read permission, and possibly write permission as well,
but never execute permission as otherwise an attacker might be able to create
their own code in a data area.

The linker will normally never create a binary file with a segment with
all three permissions, but it is possible to force it to do so by using a custom
linker script. If this flaw is detected then whatever linker script is being used
should be corrected to remove the problem.

If necessary the test can be disabled via the --skip-rwx-seg option and
re-enabled via the --test-rwx-seg option.

4.2.1.33 The short-enums test

Problem: Compiler options can change the size of enums
Fix By: Compile with consistent use of the -fshort-enum option
Waive If: Enums are not passed between different compilation units

Example: FAIL: short-enum test because both short and long enums supported

The -fshort-enums gcc compiler option can be used to reduce code size
by storing enums in a short instead of an int. But if the code passes enums
between functions compiled in different files then the -fshort-enums option
must be used consistently or there could be problems.



Chapter 4: Analysing binary files. 41

This test checks that either all files in an application were compiled with
the -fshort-enums option, or that the option was never used.

If necessary the test can be disabled via the ~—skip-short-enums option
and re-enabled via the --test-short-enums option.

4.2.1.34 The stack-clash test

Problem: Attackers exploiting stack overrun bugs can gain control of an application
Fix By: Compiling with -fstack-clash-protection
Waive If: Don’t

Example: FAIL: stack-clash test because -fstack-clash-protection not enabled

This test checks that the application has been compiled with stack clash
protection enabled (either gecc’s -fstack-clash-protection or LLVM’s
SafeStack attribute. If this feature is not enabled then an attacker could
trick the application into overlapping its heap and stack, allowing them to
alter both.

Note - if LTO compilation is enabled then this option needs to be provided
both when the object files are built and when they are linked together.

For a full explanation of this topic see these blogs:

https: / / developers . redhat . com / blog / 2017 / 09 / 25 /
stack-clash-mitigation-gcc-background

https: / / developers . redhat . com / blog / 2019 / 04 / 30 /
stack-clash-mitigation-in-gcc-why-fstack-check-is-not-the-answer

https: / / developers . redhat . com / blog / 2020 / 05 / 22 /
stack-clash-mitigation-in-gcc-part-3

Note - this test is automatically disabled if the —-profile=el7 option is
used.

If necessary the test can be disabled via the —-skip-stack-clash option
and re-enabled via the —-test-stack-clash option.

4.2.1.35 The stack-prot test

Problem: Attackers exploiting stack overrun bugs can gain control of an application
Fix By: Compiling with -fstack-protector-strong
Waive If: Don’t

Example: FAIL: stack-prot test because insufficient protection enabled
Example: FAIL: stack-prot test because stack protection deliberately disabled
Example: FAIL: stack-prot test because only some functions protected

Example: FAIL: stack-prot test because insufficient Stack Safe sanitization

This test checks that the application has been compiled with stack pro-
tection enabled. For gcc this means using the -fstack-protector-strong
option and for Clang the -fsanitize=safe-stack option. The gcc option
does have some levels of protection other than strong, but strong is the only
one that provides full protection.


https://developers.redhat.com/blog/2017/09/25/stack-clash-mitigation-gcc-background
https://developers.redhat.com/blog/2017/09/25/stack-clash-mitigation-gcc-background
https://developers.redhat.com/blog/2019/04/30/stack-clash-mitigation-in-gcc-why-fstack-check-is-not-the-answer
https://developers.redhat.com/blog/2019/04/30/stack-clash-mitigation-in-gcc-why-fstack-check-is-not-the-answer
https://developers.redhat.com/blog/2020/05/22/stack-clash-mitigation-in-gcc-part-3
https://developers.redhat.com/blog/2020/05/22/stack-clash-mitigation-in-gcc-part-3

42 Annobin

The stack protection feature adds checks to compiled code that attempt
to detect buffer overflows for local buffers. These are often a source of
vulnerability that can be exploited by an attacker.

If necessary the test can be disabled via the --skip-stack-prot option
and re-enabled via the —--test-stack-prot option.

4.2.1.36 The stack-realign test

Problem: Legacy i686 code is incompatible with SSE instructions

Fix By: Compile with -mstackrealign

Waive If: The application is not going run in a 32-bit x86 environment
Waive If: The application will not use SSE (or later) instructions

Example: FAIL: stack-realign test because -mstack-realign not enabled
Example: FAIL: stack-realign test because stack realign support is mandatory

On the Intel 32-bit 1686 architecture most instructions work with 4-byte
aligned addresses. The SSE extension (and later) however need 16-byte
aligned addresses. This causes problems for data that is held on the stack, if
the stack pointer is not aligned to a 16-byte address. The -mstackrealign
gce command line option tells the compiler to generate extra code at function
entry which ensures that 16-byte alignment is maintained.

This test checks to make sure that this option has been used when com-
piling 1686 binaries.

If necessary the test can be disabled via the --skip-stack-realign op-
tion and re-enabled via the —-test-stack-realign option.

4.2.1.37 The textrel test

Problem: An attacker could change the code in an executable
Fix By: Compiling with -fPIC enabled
Waive If: The code must be static

Example: FAIL: textrel test because the DT_TEXTREL tag was detected

This test checks to make sure that a binary file does not contain any
relocations that alter the contents of a code section. Relocations are special
instructions that the program loader uses to alter pieces of a application
when it starts up. Normally these relocations are restricted to altering the
application’s data, but if any of them alter its code then an attacker might
be able to exploit this to change the program.

This problem usually only arises when a binary - or part of it - is built to
execute at a fixed address. Such binaries need text relocations to help them
run at the address chosen. The safest solution therefore is to compile all
parts of the binary to be position independent by using the -fPIC or -fPIE
compiler command line options.

If necessary the test can be disabled via the -—skip-textrel option and
re-enabled via the ——test-textrel option.



Chapter 4: Analysing binary files. 43

4.2.1.38 The threads test

Problem: Programs that do not support exceptions are more vulnerable to attacks
Fix By: Compile with -fexceptions
Waive If: Program size is an important issue

Example: FAIL: threads test because not compiled with -fexceptions

This test checks to make sure that the -fexceptions g++ command line
option was used when building the binary. The test is only triggered if the
binary uses the pthreads library as single threaded applications can cleanly
tidy up after themselves if an exception is generated.

If necessary the test can be disabled via the ——skip-threads option and
re-enabled via the ——test-threads option.

4.2.1.39 The unicode test

Problem: Symbols containing certain unicode characters can conceal their real name
Fix By: Replacing the unicode characters with other characters
Waive If: The unicode names are valid

Example: FAIL: unicode test because dangerous characters were found in a sym-
bol name
This test checks to make sure that symbols in the binary do not contain
control characters or multibyte (aka unicode) characters. Whilst unicode
characters are technically allowed in symbol names, their presence is suspect
since they can be used maliciously.

The test looks for the following characters in symbol names:

Any control character
The space and DEL characters
Any non-unicode multibyte character

In addition if the --test-unicode-all option has been enabled (either
via the command line, or via selecting a RHEL profile with the —--profile
option) then the test will fail is any multibyte character is found.

On the other hand, if the opposite ——test-unicode-suspicious option
has been enabled then the test looks for:

Any character with zero width
Any character that changes the direction of the text

Other suspicious multibyte characters may be added in the future.

If necessary the test can be disabled via the ——skip-unicode option and
re-enabled via the ——test-unicode option.

4.2.1.40 The warnings test

Problem: Compiling without warnings enabled can result in poor code
Fix By: Add -Wall to the compiler command line
Waive If: There are known problems with using -Wall



44 Annobin

Example: FAIL: warnings test because compiled without either -Wall or -
Wformat-security
This test checks to see that a file has been compiled with either or both
of the -Wall and -Wformat-security options specified. Enabling warnings
- and then fixing the problems reported - results in better quality code that
is less likely to contain bugs.

If necessary the test can be disabled via the --skip-warnings option
and re-enabled via the ——test-warnings option.

4.2.1.41 The writable-got test

Problem: An attacker could intercept and redirect shared library func-
tion calls

Fix By: Link with -Wl,--secure-plt

Waive If: No shared libraries are used

Example: FAIL: writable-got test because the GOT/PLT relocs are writable

This test checks that the instructions to set up the GOT and PLT tables
in a dynamic executable cannot be altered by an outside source.

Dynamic executables use two tables to help them connect to shared li-
braries. These tables - the GOT and the PLT - are set up when the program
runs, based upon instructions held in special sections in the file. If these sec-
tions are writable then an attacker could change their contents and thus
cause the program to call the wrong functions in the shared libraries.

Under normal circumstances this test should never fail. If it does
then something unusual is going on. One possible cure is to add the
-Wl,--secure-plt option to the final link command line.

If necessary the test can be disabled via the --skip-writable-got option
and re-enabled via the ——test-writable-got option.

4.2.1.42 The zero-call-used-regs test

Problem: An attacker could extract information or use ROP style attacks if call used
isters are not initialised

Fix By: Add -fzero-call-used-regs=all

Waive If: The overhead of initializing the registers is too high

Example: FAIL: zero-call-used-regs test because -fzero-call-used-regs not used or se

This is a future test. It is not enabled by default. It checks a security
feature that may not be widely available or enforced.

This test checks to make sure that programs have been compiled with the
-fzero-call-used-regs= command line option. This option ensures that
registers used in a function call are set to zero when the function returns. If
this is not done then a potential attacker might be able to access information
in the registers and/or use them in ROP style attacks.

The test can be enabled via the --test-zero-call-used-regs option
and disabled by the --skip-zero-call-used-regs option. It is also enabled



Chapter 4: Analysing binary files. 45

if the ——test-future option is specified and disabled if the skip-future
option is specified.

4.2.2 Command line options specific to the hardened
tool

--skip-test[=funcname]
Disable the test called test. If the optional funcname argument
is supplied then the test is only disabled for the named function
(and by implication it is enabled for other functions). This ex-
tended version of the option can be used multiple times to allow
the test to be skipped for multiple functions.

--skip-all
Disable all tests. Not really useful unless followed by one or
more options to enable specific tests.

Note - using this option also sets the profile to none. If the
enabling of profile specific tests is desired the ——profile option
must appear after the —-skip-all on the command line.

--test—-name
Enable test name.

--test-all
Enable all the tests.

--test-future

--skip-future
Report future fail tests. These are tests for security features
which are not yet implemented or widely adopted, but which
are planned for the future. The --skip-future option can be
used to restore the default behaviour of skipping these tests.

-—-test-unicode-all

--test-unicode-suspicious
The --test-unicode test checks for the presence of multibyte
characters in symbol names, which are unusual and potentially
dangerous. The test has two modes of operation. In one mode,
enabled by --test-unicode-all, any multibyte character is
considered suspicious. This mode is good for code bases where
multibyte characters are not expected to appear at all.

In the other mode, enabled by --test-unicode-suspicious,
only potentially dangerous unicode characters trigger a failure.
See Section 4.2.1.39 [Test unicode], page 43, for more details on
which characters are considered suspicious.

If neither of these options is specified, the default depends upon
the profile selected. If a profile is not selected then the default
is only fail upon the detection of suspicious characters.



46

——profile=el7
--profile=rhel-7
--profile=el8
--profile=rhel-8
--profile=el9
—--profile=rhel-9
--profile=ell0
--profile=rhel-10
—--profile=rawhide
--profile=£f40
--profile=£39
——profile=£38
--profile=£37
--profile=£36
--profile=£35
--profile=rhivos
--profile=default
--profile=none
--profile=auto

Annobin

Rather than enabling and disabling specific tests a selection
can be chosen via a profile option. The --profile=el7
and --profile=rhel-7 options will select the tests suit-
able for RHFEL-7 binaries. Similarly --profile=el8 or
—--profile=rhel-8 configures the tests for RHEL-8 and so on.

The --profile=rawhide option will select tests suitable for Fe-
dora rawhide binaries, whilst ——profile=£38 selects tests suit-
able for Fedora F38, and so on for the other Fedora releases.

Other profiles may be added in the future.

The --profile=rhivos option enables tests mandated for
RHIVOS development.

The --profile=auto option will attempt to determine the pro-
file to use, based upon the input filename. This only works with
rpms, which include the OS as part of their name. This option
is the default. The -—profile=default option is a synonym for
the --profile=auto option.

Using —--profile=none will disable the profiling.

For backwards compatibility the form --profile-<name> can
be used instead of —-profile=<name>.

Currently the profiles enable and disable the following tests:

el9

£35 Disables the Section 4.2.1.3 [Test branch protec-
tion], page 21, and Section 4.2.1.6 [Test dynamic
tags|, page 25, tests and enables their inverse,
ie Section 4.2.1.20 [Test not branch protection],



Chapter 4: Analysing binary files. 47

page 32, and Section 4.2.1.21 [Test not dynamic
tags|, page 33.

Also enables Section 4.2.1.39 [Test unicode],
page 43, and sets the default to fail for any
multibyte character.

el8 Like e19 but also disables the Section 4.2.1.19 [Test
Ito], page 32, test.
el7 Like €18 but also disables the Section 4.2.1.27

[Test pie], page 37, Section 4.2.1.2 [Test bind now],
page 21, Section 4.2.1.11 [Test fortify], page 28, and
Section 4.2.1.34 [Test stack clash], page 41, tests.

el10 Enables the Section 4.2.1.3 [Test branch protec-
tion], page 21, and Section 4.2.1.6 [Test dynamic
tags|, page 25, tests and disables their inverse,
ie Section 4.2.1.20 [Test not branch protection],
page 32, and Section 4.2.1.21 [Test not dynamic
tags|, page 33.

rawhide
£36 Like €110 but also disables the See Section 4.2.1.9
[Test fips|, page 27, test.

In addition the Section 4.2.1.39 [Test unicode], page 43, test is
enabled for all of the RHEL profiles, but disabled for the Fedora
profiles.

—--disable-hardened
Disable the tool.

-—enable-hardened
Enable the tool if it was previously disabled. The option is also
the default.

--ignore-gaps
Do not complain about gaps in the note data.

-—report-gaps
Do complain about gaps in the note data.

--fixed-format-messages
Display messages in a fixed, machine parseable format. The
format is:

Hardened: <result>: test: <test-name> file: <file-—name>

Where <result> is PASS or FAIL and <test-name> is the name
of the test, which is the same as the name used in the --test-
<test-name> option. The <filename> is the name of the input
file, but with any special characters replaced so that it always
fits on one line.



48 Annobin

Here is an example:
Hardened: FAIL: test: pie file: a.out.

-—-disable-colour

-—enable-colour

-—disable-color

-—enable-color
Do not use colour to enhance FAIL, MAYB and WARN mes-
sages. By default annocheck will add colour to these messages
so that they stand out when displayed by a terminal emulator.
This option can be used in order to turn this feature off. The fea-
ture can be re-enabled with --enable-colour. The American
spelling of color is also supported.

—-—full-filenames

--base-filenames
Use the full pathname for files. Useful when recursing into di-
rectories. By default this feature is disabled in normal mode and
enabled in verbose mode. This option and its inverse --base-
filenames can be used to set a fixed choice.

—--suppress-version-warnings
Do not issue warning messages about version mismatches be-
tween the version of the compiler used to build the annobin
plugin and the version of the compiler used to run the annobin
plugin.

-—no-urls

--provide-urls
By default when a FAIL or MAYB result is displayed by the
hardened checker and --verbose is enabled, a URL to the on-
line version of the relevant section in this document is also dis-
played. (Unless the --fixed-format-messages option has been
enabled). The --no-urls option disables the display of the
URLs and the --provide-urls re-enables the display (even in
non-verbose mode).

4.2.3 How to waive the results of the hardening tests

[This section is Red Hat specific.]

Now that annocheck is being used by the builders for Fedora and RHEL
packages it is possible that certain tests may need to be waived for certain
packages. This can be done on a per-package basis by editing the contents
of the rpminspect.yaml file and adding an entry like this:

annocheck:
- hardened: --skip-property-note --ignore-unknown --verbose

This example shows how the property note test can be ignored. Beware
however that doing this overrides the default options that are passed to an-



Chapter 4: Analysing binary files. 49

nocheck by the rpminspect framework, which is why the —-ignore-unknown
and --verbose options are also included in the example.

Note - for RHEL the above might not work, as the hardened checker is
referred to by another name. So if that appears to be the case, please try:

annocheck:
- rhel-policy: --skip-property-note --ignore-unknown --verbose
It is also possible to stop annocheck from testing specific files in an rpm
by listing them in the rpminspect.yaml file, like this:

annocheck:
ignore:
- /usr/libexec/installed-tests/glib/mem-overflow
- /usr/libexec/installed-tests/glib/resources
For more information on rpmdiff see:
https: / / docs . engineering . redhat . com / display / HTD /
rpmdiff-elf-binarylibrary
For more information on the use of annobin in RHEL see:
https: / / one . redhat . com / rhel-developer-guide / #
_annocheck_ensuring_comprehensive_elf_distro_flags

To get more help on deciding whether or not a test should be waived
please ask on either of the os-devel-list@Qredhat.com OS Devel or the rhel-
devel@redhat.com RHEL Devel mailing lists.

4.2.4 What to do if annocheck reports that it could
not find compiled code.

The hardening checker will automatically skip some tests if it cannot prove
that the file being checked was created by a known compiler, or if the code
was created from assembler sources, rather than a high level language. This
is because the test being skipped is checking for a specific feature of a specific
compiler.

The checker uses several different methods for determining if an exe-
cutable was compiled:

notes If there are annobin notes present, these include a description of
the compiler used to create the executable.
DWARF If DWARF debug information is available, the compiler can usu-

ally be found in the DW_AT _producer tag.

comment  If there is a .comment section in the file, then this usually con-
tains the name of the compiler.

GO note The presence of a .note.go.buildid section indicates that the file
contains GO compiler code.

GO symbol The presence of a variable called ‘gol.<V>’ in the read-only data
section. Again this indicates the presence of GO compiled code.


https://docs.engineering.redhat.com/display/HTD/rpmdiff-elf-binarylibrary
https://docs.engineering.redhat.com/display/HTD/rpmdiff-elf-binarylibrary
https://one.redhat.com/rhel-developer-guide/#_annocheck_ensuring_comprehensive_elf_distro_flags
https://one.redhat.com/rhel-developer-guide/#_annocheck_ensuring_comprehensive_elf_distro_flags

50 Annobin

executable segments
If the file contains one or more program segments with the ex-
ecutable flag set, then this indicates that it is likely to contain
compiled code.

There are several reasons why annocheck might think that the file does
not originate from compiled source code:

fake assembler
Sometimes when compiling code it is desireable to be able to
build it without certain security options, but also without an-
nocheck complaining about them. This is used by glibc for
example because it does not use stack checking or function for-
tification.

This effect can be achieved with GCC by wusing the
-Wa,--generate-missing-build-notes command line option.
This tells the assembler to generate a fake annobin note
that tells annocheck to treat all of the code as if it has been
produced from assembler sources and to ignore tests specific to
high level languages.

real assembler
The file was created from assembler source code or some other
low level language. In this case futher manual checking is war-
ranted. If the source code has not been written with the partic-
ular security feature in mind, then it may be vulnerable.

If on the other hand it does not need the security feature or it
has been written to support it, then adding an annobin note to
the assembler sources will stop annocheck from complaining.

For example the following will add a note about strong stack
protection:

.pushsection .gnu.build.attributes, "o", ’%note, .text
.balign 4
.dc.1 2f - 1f # Size of the name field.
.dc.1 O # Empty description field.
.dc.1l 0x100 # This is an OPEN note which applies to all the code in the cov
ered region.
1:
.dc.b ’G’, ’A’, # This is a GNU attribute

.dc.b 7%’ # It contains a numeric value

.dc.b 0x2 # For the -fstack-protector option

.dc.b 0x3 # The value is 3, which indicated -fstack-
protector-strong

.dc.b 0 # Since this field is nominally a name, it ends wit

2:
.dc.b 0, 0 # Padding to ensure note ends on a 4 byte boundary.
.popsection



Chapter 4: Analysing binary files. 51

Compiling a simple C program with the -8 -fverbose-asm -
fplugin=annobin <security option> options should provide
an example of how to encode a note about <security option>.

Note - in order for annobin notes to work at least one of them
needs to specify the address range that they cover. This is usu-
ally done by a version note, which details the version number
of the tool used to produce the code. For assembler this note
would look like this:

.pushsection .gnu.build.attributes, "o", ’%note, .text
.balign 4
.dc.1 2f - 1f # Size of the name field.
.dc.1 16 # Size of the description field (= 2 * sizeof (address)).
.dc.1l 0x100 # This is an OPEN note which applies to all the code in the cov
ered region.
1:
.dc.b ’G’, ’A’, # This is a GNU Attribute note.

.dc.b ’$’ # It contains a string value.
.dc.b Ox1 # The string is a VERSION string.
.dc.b ’3°, # Version 3 of the Watermark Protocol is be-
ing used.
.dc.b ’a’, # The code has been produced by an ’a’ssembler.
.dc.b ’2’ # The assembler’s major version num-
ber is 2.
.dc.b 0 # Since this field is nominally a name, it ends wit
2:

# Coincidentally, no padding is needed here.
.quad <insert-start-symbol-here>
.quad <insert-end-symbol-here>
.popsection
unsupported source language
The file was created by compiling high-level language source
code, but in a language with which annocheck is unfamiliar. In
this case it may still make sense to skip the test, if it is checking
for a feature that is not supported by the language’s compiler.

annobin annotation not enabled
The file was created by compiling C and/or C++ but without any
annobin notation enabled, and without any debug information
generation. In this case there may be a problem, since the test
being skipped might actually fail if annocheck knew that the file
was compiled.

Fixing this problem involves investigating how the executable
was built and adding the necessary rules to invoke the annobin
plugin and the sought after security hardening options.

stripped of symbols and notes
The file was built normally, but then stripped of most of the use-
ful information, including its symbol table, debug information,
annobin notes and so on.



52 Annobin

Restoring the stripped information should solve this problem.

4.3 The annobin note displayer

annocheck
[—disable-hardened]
—enable-notes
file. ..

The notes tool displays the contents of any annobin notes inside the
specified files. It groups the notes by address range, which can help locate
missing details.

The notes tool is disabled by default, but it can be enabled by the com-
mand line option --enable-notes. Since the hardening checker is enabled
by default it may also be useful to add the --disable-hardened option to
the command line.

4.4 The section size recorder

annocheck
[—disable-hardened]
[-size-sec=name]
[—size-sec-flags=!/WAX]
[-size-seg-flags=!/WRX]
[size-human]
[-size-total]
[-size-missing]
[—disable-size]
file...

The section-size tool records the size of named sections within a list of
files and then reports the accumulated size at the end. Since it is part of the
annocheck framework, it is able to handle directories and rpms files as well
as ordinary binary files.

The --size-sec=name option enables the tool and tells it to record the
size of section name. The option can be repeated multiple times to record
the sizes of multiple sections. It may also be useful to add the --disable-
hardened option to the command line as otherwise the security hardening
will be run at the same time.

Instead of searching for named sections, it is also possible to search for
sections with specific flags. The --size-sec-flags=<flags> option will
search for any section that has all of the specified <flags> set. Currently
only W, A and X are recognised as flags, indicating that the section must
have the Write, Alloc or Execute flags set respectively. If the ! exclamation
mark character is present then it negates the meaning of the following flags.
Thus --section-sec-flags=W option will search for any writable section



Chapter 4: Analysing binary files. 53

whereas the ——size-sec-flags=W!A option will search only for sections that
are writable but not allocated.

Instead of searching for sections by flags it is also possible to search
for segments by flags using the --size-seg-flags=<flags> option. The
flags recognised for segments are W for writable, R for readable and X for
executable. Again the ! character can be used to invert the meaning of the
flags that follow it.

If the —-verbose option is enabled, then the tool will also report the size
of the named section(s) in each file it encounters.

If the --size-human option is enabled then sizes will be rounded down
to the nearest byte, kibibyte, mebibyte or gibibyte, as appropriate.

If the -—size-total option is enabled then the total size of all sections
in all scanned files will also be reported, as well as the ratio of the reported
section sizes to the total section size.

If the —~—size-missing option is enabled then any valid ELF format input
file that does not contain any of the sought sections will be reported.

If previously enabled the tool can be disabled via the --disable-size
command line option.

4.5 How long did the check take 7

annocheck
—enable-timing
file...
[-sec]
[~usec]
[-nsec]

The timing tool reports on the time taken by other tools to scan the
list of files. The tool is disabled by default, but it can be enabled by the
command line option --enable-timing.

By default the tool will report times in microseconds, but you can change
this to reporting in seconds with the --sec or in nanoseconds with the
--nsec. The default can be restored with the -—usec option.






95

5 Allowing other programs to run
security checks

The annocheck program is mostly seen as a security checking tool and in
order to allow third party programs such as rpminspect the ability to access
these checks a library interface is provided.

An example of how to use the libannocheck library can be found in the
annobin testsuite. In particular the tests/use-libannocheck.c file con-
tains code to initialise, run and then close the library. In theory however the
code flow looks like this:

#include <libannocheck.h>
struct libannocheck_internals * handle;
unsigned int num_fails, num_maybs;
handle = libannocheck_init (libannocheck_version, "a.out", NULL);
libannocheck_disable_all_tests (handle);
libannocheck_enable_test (handle, "bind-now");
libannocheck_run_tests (handle, & num_fails, & num_maybs);
libannocheck_finish (handle);
The library consists of a header file (1ibannocheck.h) and a shared ob-
ject file (libannocheck.so). It provides the following functions:

5.1 Initialise the library

struct libannocheck_internals *

libannocheck_init (unsigned int VERSION,
const char * FILEPATH,
const char * DEBUGPATH)

Returns a token used to identify the instantiation in future calls.

VERSION is the expected version of the libannocheck library. This
should normally be ’libannocheck_version’. If the actual version of the li-
brary cannot support VERSION then libannocheck_error_bad_version is re-
turned.

FILEPATH is a path the binary to be tested. It can be absolute or
relative. It may not be NULL.

DEBUGPATH is a path the debug info file associated with FILEPATH.
It can be NULL.

Returns an enum libannocheck_error cast to a struct liban-
nocheck_internals * if something goes wrong.

5.2 Close the library

libannocheck_error
libannocheck_finish (struct libannocheck_internals * HANDLE)
Closes the connection to libannocheck. Closes any files opened by the
library and releases any memory that is may have allocated. After this any
library call using HANDLE should fail.



56 Annobin

Returns libannocheck_error_none upon successful closure, otherwise re-
turns an error code.

5.3 Get the library version

unsigned int
libannocheck_get_version (void)
Returns the actual version number of the libannocheck_library. This
should be >= libannocheck_version as defined in the 1ibannocheck.h header
file.

5.4 Convert an error number into an error
message

const char *
libannocheck_get_error_message
(struct libannocheck_internals * HANDLE,
enum libannocheck_error ERRNUM)
Returns a (read only) string describing libannocheck error number ER-
RNUM. Returns NULL if the error code is not recognised.

Handle can be NULL if one is not available. If provided a more detailed
error message may be returned.

5.5 Get a list of tests supported by the library

libannocheck_error

libannocheck_get_known_tests
(struct libannocheck_internals * HANDLE,
libannocheck_test *x* TESTS_RETURN,
unsigned int * NUM_TESTS_RETURN)

Returns a (read/write) array of tests known to libannocheck in
TESTS_RETURN. Returns the number of elements in the array in
NUM_TESTS_RETURN. Returns libannocheck_error_none if the retrieval
succeeded, or an error result otherwise. The returned array should not be
freed.

The array is used by libannocheck internally, so if fields are changed
this will affect the library’s behaviour. In particular tests can be en-
abled and disabled without needing to call 1ibannocheck_enable_test or
libannocheck_disable_test.

The test_result_reason and test_result_source fields will initially be
NULL. They may have their values changed as a result of a call to
libannocheck_run_tests.

5.6 Enable all tests

libannocheck_error
libannocheck_enable_all_tests (struct libannocheck_internals * HANDLE)



Chapter 5: Allowing other programs to run security checks 57

Enables all the tests supported by libannocheck.

This function may change some of the fields in the data structure returned
by the libannocheck_get_known_tests function.

5.7 Disable all tests

libannocheck_error
libannocheck_disable_all_tests (struct libannocheck_internals * HANDLE)
Disables all of the tests supported by libannocheck. Not normally useful
unless followed by code to enable one or more tests.

This function may change some of the fields in the data structure returned
by the libannocheck_get_known_tests function.

5.8 Enable a specific test

libannocheck_error
libannocheck_enable_test
(struct libannocheck_internals * HANDLE,
const char * TEST_NAME)
Enables a specific test. Returns 1ibannocheck_error_none upon success
or an error code otherwise. If the test is not known then libannocheck_
error_test_not_found is returned.

This function may change some of the fields in the data structure returned
by the libannocheck_get_known_tests function.

5.9 Disable a specific test

libannocheck_error
libannocheck_disable_test
(struct libannocheck_internals * HANDLE,
const char * TEST_NAME)
Disables a specific test. Returns libannocheck_error_none upon suc-
cess or an error code otherwise. If the test is not known then libannocheck_
error_test_not_found is returned.

This function may change some of the fields in the data structure returned
by the libannocheck_get_known_tests function.

5.10 Enable a profile

libannocheck_error
libannocheck_enable_profile
(struct libannocheck_internals * HANDLE,
const char * PROFILE_NAME)
Enables and disables certain tests known to be relevant to a specific
profile.
Returns libannocheck_error_profile_not_known if the profile is not recog-
nised.



58 Annobin

5.11 Get a list of known profiles

libannocheck_error

libannocheck_get_known_profiles
(struct libannocheck_internals * HANDLE,
const char *x** PROFILES_RETURN,
unsigned int * NUM_PROFILES_RETURN)

Retrieves a (read only) array of profile strings known to libannocheck.
The array is returned in PROFILES_RETURN. The number of entries in
the array is returned in NUM_PROFILES. Returns libannocheck_error_none
upons success, or an error code otherwise.

5.12 Run enabled tests

libannocheck_error

libannocheck_run_tests
(struct libannocheck_internals * HANDLE,
unsigned int * NUM_FAIL_RETURN,
unsigned int * NUM_MAYB_RETURN)

Runs all enabled tests.

Returns the number of failed tests in NUM_FAIL_RETURN (if this pa-
rameter is not NULL).

Returns the number of "maybe" results in NUM_MAYB_RETURN (if
this parameter is not NULL).

Retuns libannocheck_error_none if everything went OK.

Updates the STATE, TEST_RESULT_REASON and
TEST_RESULT_SOURCES fields in the entries in the array returned by
libannocheck_get_known_tests for any enabled test.

Can be called multiple times.



59
6 Configuring annobin and annocheck

When building annobin and annocheck from the sources there are a few
configure options available to customise the build:

--with-debuginfod
debuginfod is a web service that indexes ELF/DWARF debug-
ging resources by build-id and serves them over HT'TP.

By default the annocheck program will be built and linked with
the debuginfod client library 1ibdebuginfod if it is present at
build time. The --with-debuginfod configure option can be
used to force the linking against the library even if the run-
time debuginfod program cannot be found. Alternatively the
--without debuginfod can be used to force annobin to be built
without 1ibdebuginfod support, even if it is present on the
build system.

debuginfod is packaged with elfutils, starting with
version 0.178. You can get the latest wversion from
"https://sourceware.org/elfutils/’.

—-—with-gmp=PATH
The --with-gmp=PATH option can be used to specify an alter-
native path to the gmp libraries, if necessary.

--without-1libelf

The annocheck program uses 1ibelf to read ELF binaries. By
default the configure system will detect if the library is installed
and if not, then it will disable the building of annocheck and
the running of the tests. (Since they use annocheck). This
behaviour can be overridden by the —-without-1libelf option
which forces the build to assume that libelf is absent even if it
would normally be detected.

--without-tests
Disable running the testsuite after building the various binaries.

--without-clang-plugin
Disable the building of the annobin plugin for the Clang com-
piler.

--without-1lvm-plugin
Disable the building of the annobin plugin for the LLVM com-
piler backend. The LLVM plugin is separate from the Clang
plugin and can be used with any language that uses LLVM as a
backend compiler.

--without-gcc-plugin
Do not build the gcc plugin.



60 Annobin

—--without-docs
Do not build the documentation.

—--without—-annocheck
Do not build the annocheck tool.

-—-enable-maintainer-mode
This enables the regeneration of the Makefile and configure
files when building the annobin sources.



61

7 How to use the information stored in
the binary.

The annobin package includes some example scripts that demonstrate how
the binary information can be used.

NOTE: These scripts are now redundant, their functionality having been
subsumed into the annocheck program. However they are still useful as
examples of how the annobin data can be consumed, so they are still included
in the annobin sources.

The scripts are:

7.1 The built-by script

built-by
[~help]
[—version]
[~verbose]
[—quiet]
[-silent]
[-ignore]
[-readelf=path]
[-tmpdir=dir]
[-tool=name]
[-nottool=name]
[-before=date]
[-after=date]
[-minver=version]
[-maxver=version]
[-]
file...

The built-by script reports the name and version of the tool used to
build the specified file(s). This script also demonstrates how information
can be extracted from other other locations in the file, not just the binary
annotation notes.

The script can also be used to filter files, only reporting those built by
a specific tool, or a specific version of a tool, or even by a version of a tool
that was built between a range of dates.

The options available are:

‘~=help’
‘~h’ Displays the usage of the script and then exits.

‘——version’
4 bl

-v Displays the version of the script.

‘--verbose’

'k Enables verbose mode, causing the script to detail each action
it takes.



62 Annobin

3 . Y

——quiet

‘~q’ Do not include the name of script in the out generated by the
script.

‘~-silent’

‘-g’ Produce no output. Just return an exit status.

‘-—ignore’
Do not report file types that do not contain any builder infor-
mation.

‘~—tool=name’

Only report binaries built by name. The name is only an ordi-
nary string, not a regular expression.

‘-—nottool=name’
Skip any binary build by name. The name is only an ordinary
string, not a regular expression.

‘~-before=date’
Only report binaries built by a tool that was created before date.
date has the format YYYYMMDD.

‘-—after=date’
Only report binaries built by a tool that was created after date.
When combined with the —-before option can be used to re-
strict output to files which were built by tools created in a spe-
cific date range.

‘--minver=version’
Only report binaries built by a tool whose version is version or
higher. The version string should be in the form V.V.V, for
example 6.2.1.

‘--maxver=version’
Only report binaries built by a tool whose version is version or
lower. Can be combined with the -——-minver option to restrict
output to those binaries created by tools within a specific version

range.
‘——tmpdir=dir’
‘-t dir’ Directory to use to store temporary files.

‘--readelf=path’
‘-r=path’ Use the specified program to read the notes from the files.

-’ Stop accumulating command line options. This allows the script
to be run on files whose names starts with a dash.



Chapter 7: How to use the information stored in the binary. 63

7.2 The check-abi script

check-abi
[~help]
[—version]
[-verbose]
[—quiet]
[-silent]
[-inconsistencies]
[-ignore-unknown]
[-ignore-ABI| enum| FORTIFY|stack-prot]
[-readelf=path]
[-tmpdir=dir]
-]
file...

The check-abi script reports any potential ABI conflicts in the files
specified. This includes the use of the -fshort-enums option, the -fstack-
protector option and the -D_FORTIFY_SOURCE option. All of these can
affect passing data between functions and hence should be used uniformly
throughout the binary.

The script accepts the following command line options:

--help

-h Displays the usage of the script and then exits.

--version

-v Displays the version of the script.

--verbose

-V Enables verbose mode, causing the script to detail each action
it takes.

--quiet

-q Do not include the name of script in the out generated by the
script.

--silent

-s Produce no output. Just return an exit status.

--inconsistencies

-i Only report files with potential ABI problems.

--ignore-unknown
Do not report file types that are not supported or recognised.

—-—ignore-ABI|enum| FORTIFY|stack-prot
Disables individual ABI checks. Multiple occurrences of this
option accumulate. Possible option values are:

‘ABT’ Disable checks of the general ABI information.
‘enum’ Disable checks of the ~fshort-enum option.
‘FORTIFY’ Disable checks of the ‘~D_FORTIFY_SOURCE’ option.



64 Annobin

‘stack-prot’
Disable checks of the —-fstack-protect option.
-—tmpdir=dir
-t dir Directory to use to store temporary files.

--readelf=path
-r=path  Use the specified program to read the notes from the files.

-- Stop accumulating command line options. This allows the script
to be run on files whose names starts with a dash.

7.3 The hardened script

hardened
[~help]
[—version]
[-verbose]
[—quiet]
[-ignore-unknown]
[-silent]
[~vulnerable]
[-not-hardened]
[all]
[file-type=auto| 1ib| exec|obj]
[-skip=opt|stack| fort|now|relro|picloperator|clash|cf|cet|realign]
[-readelf=path]
[-tmpdir=4dir]
-]
file...

The hardened script reports on the hardening status of the specified
file(s). In particular it checks that the whole file was compiled with -02
or higher and the -fstack-protector-strong, -D_FORTIFY_SOURCE=2,
-Wl,-z,now, -Wl,-z,relro, -fPIE, -Wp,-D_GLIBCXX_ASSERTIONS,
-fstack-clash-protection -fcf-protection=full and -mcet options.

The script accepts the following command line options:

--help

-h Displays the usage of the script and then exits.

-—version

-v Displays the version of the script.

--verbose

-V Enables verbose mode, causing the script to detail each action
it takes.

--quiet

-q Do not include the name of script in the out generated by the
script.

--ignore-unknown
-i Do not report file types that are not supported or recognised.



Chapter 7: How to use the information stored in the binary. 65

-—tmpdir=dir
-t dir Directory to use to store temporary files.

--silent
-s Produce no output. Just return an exit status.

--vulnerable

-u Only report files that are known to be vulnerable. Ie files that
record all of the necessary information about how they were
built, but which were built with an incorrect set of options.

This option is the default behaviour of the script.

-—-not-hardened

-n Report any file that cannot be proven to be hardened. This is
like the ——vulnerable option, except that it will also report files
that do not record all of the necessary information.

--all
-a Report the hardening status of all of the files examined.

--file-type=autol|liblexec|obj
-f=auto| lib|exec|obj
Specifies the type of file being examined. Possible values are:

‘auto’ Automatically determine the file type from its ex-
tension. This is the default.

‘1iv’ Assume all files are shared libraries. Checks that
the -fPIC option was used.

‘exec’ Assume all files are executables. Checks that the
-fPIE option was used.

i

Assume all files are object files. Skips checks of the
bind now status.

‘obj

--skip=opt|stack|fort|now|relro|picloperator|clash|cf|cet
-k=opt|stack|fort|now|relrolpicloperator|clash|cf]|cet
Disables checks of various different hardening features. This op-
tion can be repeated multiple times, and the values accumulate.
Possible values are:

‘opt’ Disables checks of the optimization level used.
‘stack’ Disables checks of the stack protection level.
‘fort’ Disables checks for -D_FORTIFY_SOURCE.

‘now’ Disables checks for ‘BIND NOW’ status.

‘relro’ Disables checks for ‘relro’ or read-only-relocs.

‘pic’ Disables checks for ~fPIC/-fPIE.



66 Annobin

‘operator’

Disables checks for ‘-D_GLIBCXX_ASSERTIONS’ .
‘clash’ Disables checks for stack clash protection.
‘cf’ Disables checks for control flow protection. Note -

these checks are only run on x86_64 binaries.

4 )

Disables checks for control flow enforcement. Note
- these checks are only run on x86_64 binaries.

cet

‘realign’ Disable checks for stack realignment. Note - these
checks are only run on i686 binaries.

--readelf=path
-r=path  Use the specified program to read the notes from the files.

-- Stop accumulating command line options. This allows the script
to be run on files whose names starts with a dash.

7.4 The run-on-binaries-in script
run-on-binaries-in
[~help]
[—version]
[—verbose]
[—quiet]
[-ignore]
[-prefix="‘text’]
[-tmpdir=4dir]
[files-from=file]
[—skip-list=filel
[-]
program
[program-options]
file...
The run-on-binaries-in script allows other scripts, or programs, to be
run on the executable files contained inside archives. This includes ‘rpm’
files, ‘tar’ and ‘ar’ files and compressed files.

The script does not recurse into directories, but this can be handled by
the find command, like this:
find . -type f -exec run-on-binaries-in <script-to-run> {} \;

The script accepts the following command line options:

--help
-h Displays the usage of the script and then exits.

--version
-v Displays the version of the script.

--verbose
-V Enables verbose mode, causing the script to detail each action
it takes.



--quiet
-q

--ignore
-i

67

If this option is repeated it has the special effect of canceling out
the automatic addition of the -i to recursive invocations of the
script.

Do not include the name of script in the out generated by the
script.

Do not report file types that are not supported or recognised.

This option is automatically enabled when the script is recur-
sively invoked on an archive, unless the -V -V has been enabled.
This is because it is assumed that archives are likely to contain
files that do not need to be scanned.

—-prefix=‘text’

-p ‘text’ Add this text to the output from the script when it runs the
program on a normal executable.

-—tmpdir=dir

-t dir Directory to use to store temporary files.

——files-from=file

-f=file

Specifies a file containing a list of other files to examine, one per
line.

--skip-list=file

-s=file

Specifies a file containing a list of files not to examine, one per
line. Blank lines and comments are ignored. Text after a file’s
name is also ignored. Filenames should start at the beginning
of a line.

Stops processing of command line options. This allows the script
to be run with a program whose name starts with a dash.






69

Appendix A GNU Free Documentation
License

Version 1.3, 3 November 2008

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Founda-
tion, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or


http://fsf.org/

70

Annobin

to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTpX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.



Appendix A: GNU Free Documentation License 71

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.



72

Annobin

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.



Appendix A: GNU Free Documentation License 73

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not



74

Annobin

add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.



Appendix A: GNU Free Documentation License 75

10.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new



76

11.

Annobin

versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site” ) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.


http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Appendix A: GNU Free Documentation License 7

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,

replace the “with. ..Texts.” line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.






	What is Binary Annotation ?
	How to add Binary Annotations to your application.
	How to examine the information stored in the binary.
	Encoding Protocol and Producer Versions
	Encoding Stack Protections
	Encoding Position Independence
	Encoding Optimization and Debugging Levels
	Encoding Control Flow Protection
	Encoding the Size of Enumerations
	Encoding Instrumentation Options
	Encoding Notes in a string format

	Analysing binary files.
	The builder checker.
	The Hardened security checker.
	The Tests Run By Annocheck
	The auto-var-init test
	The bind-now test
	The branch-protection test
	The cf-protection test
	The dynamic-segment test
	The dynamic-tags test
	The entry test
	The -Ofast test
	The FIPS test
	The flex arrays test
	The fortify test
	The gaps test
	The glibcxx-assertions test
	The gnu-relro test
	The gnu-stack test
	The go-revision test
	The implicit values test
	The instrumentation test
	The lto test
	The not-branch-protection test
	The not-dynamic-tags test
	The notes test
	The only-go test
	The openssl-engine test
	The optimization test
	The pic test
	The pie test
	The production test
	The property-note test
	The RHIVOS tests
	The run-path test
	The rwx-seg test
	The short-enums test
	The stack-clash test
	The stack-prot test
	The stack-realign test
	The textrel test
	The threads test
	The unicode test
	The warnings test
	The writable-got test
	The zero-call-used-regs test

	Command line options specific to the hardened tool
	How to waive the results of the hardening tests
	What to do if annocheck reports that it could not find compiled code.

	The annobin note displayer
	The section size recorder
	How long did the check take ?

	Allowing other programs to run security checks
	Initialise the library
	Close the library
	Get the library version
	Convert an error number into an error message
	Get a list of tests supported by the library
	Enable all tests
	Disable all tests
	Enable a specific test
	Disable a specific test
	Enable a profile
	Get a list of known profiles
	Run enabled tests

	Configuring annobin and annocheck
	How to use the information stored in the binary.
	The built-by script
	The check-abi script
	The hardened script
	The run-on-binaries-in script

	GNU Free Documentation License

