
Dynamic Probes for Linux
A Universal Debugging Mechanism for User and Kernel Space

IBM Linux Technology Centre

Richard J. Moore
richardj_moore@uk.ibm.com

15th January 2002

LinuxWorld Expo 2002
New York

IBM LTC 15/01/02

0. Overview
1. What and Why?
2. DProbes Components
3. Trace Daemon Interface
4. What is a Probepoint?
5. The Probepoint Specification
6. Watchpoint Probes
7. RPN Interpreter
8. RPN Command Categories
9. RPN Invoked External Facilities
10. RPN Program Storage
11. Example RPN Probe Program
12. DProbes Command
13. Successful Employment of DProbes
14. What's Next?
15. Questions

IBM LTC 15/01/02

1. What & Why?
Low-level system debugging facility

Operates in extreme conditions
Live Systems vs. Development
Automated Kernel Debugger (SMP capable)
Dynamically Customisable Trace/Logger
Fine grained Storage Profiling

Proven technology from OS/2
Doesn't compete with existing RAS
offerings
Enabler for other RAS offerings

What is DProbes and why did we choose this project:
it's a low-level debugger that is almost seamless in operation so it appropriate for us in production
environment.
It's fully automated and does not use an interactive user interface.
It's dependence of system facilities is negligible but it has access to the lowest level system resources, which
gives it the characteristic of being an automated kernel debugger. But it's much more than that:
It's impact on system performance is negligible in particular there is no requirement to halt other processors
in an SMP environment - compare this with a typical KDB.
Data about the system is collect by an automated breakpoint mechanism, called probes, which make is also
a tracing capability - which is dynamic because code does not have to be prepared for use by DProbes.
It can also be used for profiling purposes - especially storage profiled by means of the watchpoint facility.

Why we chose this project:
It had a proven track-record in OS/2 as a major tools for dealing with the most elusive production
environment problems that typically became critical situations.
There wasn't anything else that compare with DProbes - Open-source development essentially has to be
non-competitive since it's for free and it co-operative model of development. (Cygnus developed an probing
mechanism with some internal details in common with DProbes, but nothing like as extensive - RH site. There
have also been similar small-scale projects run at some universities.
Most importantly DProbes is an enabler for other Serviceability tools as we shall see.

IBM LTC 15/01/02

K
E
R
N
E
L

K
E
R
N
E
L

H
O
O
K
S

Probe
Mgr

dprobes
cmd

D
P
O

RPN
CI

Logging
Daemons

DPEH

2. DProbes Components

External
Agents

(kernel space) (user space)

readpage

trap 3

trap 1

K

H
O
O
K
S

Call Kmod
user extension

In essence this is what DProbes looks like:

Most of it's function is in kernel space. There are two key components:
1) The probe manager that looks after the installation and track of whether probes are places (probepoint locations).
There's a data object that describes a probe: the Dynamic Probe Object.
The probe mgr essentially hooks the readpage routine to install probepoints whenever a page of code is brought into memory. (it is more
complex than this - but avoid going into details here - wait for questions).

2) The other components is the Dynamic Probe Event Handler, which responds to a breakpoint interrupt.
It hooks the single-step and breakpoint interrupt vectors under IA32 architecture.
Part of the DPO is a probe handler program, written in a Reverse Polish Notation language. This contains the instructions, per probepoint, that
need to be interpreted when a probepoint "fires". Part of the DPEH is the RPN Command Interpreter (RPN CI) which performs this function.
The RPN CI may call external facilities such as logging daemons - for tracing purposes
The RPN CI may transfer control to external agents (no return guaranteed) such as lkcd, kdb, core dump, etc..

Finally, there is a command line interface to control the activation and deactivation of probes.

IBM LTC 15/01/02

3. Trace Daemon Interface

Probe
Manager

Event
Handler

Trace
Dæmon Trace

Buffer

Trace
User
Interface

Probe
User
Interface

Probe
Objects

Traced
Program

Kernel Space

User Space

User/Kernel
 Space

Log
Buffer

Dynamic Probes provides the debugging engine.
It operates in kernel space as a self-contained debugger effectively encapsulated in an interrupt handler
with minimal dependence on system services.

It uses a breakpoint mechanism to insert its probes.
There is a Log buffer for staging traced data.

The only requirement of a system tracing mechanism is that its operates on a dæmon principle that provides
an callable interface what can be driven from an interrupt handler.

The Linux Trace Toolkit from Opersys meets these requirements.

IBM LTC 15/01/02

4. What is a Probepoint?
Automated Breakpoint

Trapping Breakpoint (INT3):
Unlimited number in general
Usually generalises across platforms
Module-level Specification
Can miss events under MP

Hardware Watchpoint (DRegs):
No missed events under MP
Limited number in general
Doesn't generalise across platforms
Virtual/Physical Storage Specification

A the heart of DProbes is the Probepoint, which is essentially an automated breakpoint.

There are in general two way to implement breakpoints. Each has it merits:

The trapping breakpoint is implemented using an instruction replacement technique (INT3 under IA32).
There's no limit to the number of concurrently installed breakpoints.
This mechanism generalises across other architectures
We can canonically define probes with reference to a module rather than storage location - discussed next
foil.
However there is a theoretical exposure under MP: because we need unlimited access to system resources,
the DPEH runs in privileged mode, which means we can't generally emulate the original instruction after the
breakpoint fires. We have to single-step it in situ. This means temporarily removing the breakpoint and thus
exposing us to a miss if the same probe was executed on another processor. In practice this is not a
problem, since we tend to be concerned with races in two different pieces of code for the same data, rather
than the same piece of code. However it's really a problem the stop-cpus switch does allow execution on
other processors to be suspended during single-step

The alternative mechanism is to use the inbuilt debugging H/W sometimes called the "watchpoint"
mechanism.
The MP miss problem doesn't occur
However, the number of concurrent watchpoint can be severely limited (4 on IA32).
Also it's very tied to a particular architecture and so doesn't generalise easily.
Finally watchpoints are specified by storage location without reference to context or module which as the
potential to cause unnecessary hits which would have to be filtered.

We choose primarily the trapping breakpoint mechanism for probepoints in code. These are defined relative
to a module.

However a recent extension also exploits the watchpoint for probes on data access. These are defined

IBM LTC 15/01/02

5. Probepoint Specification

Locality User
Specification

Characteristics Internal
Specification

Typical Usage

Per-process virtual address/
module-offset

Privatises shared
pages via COW

GDB, ptrace

Per-module module-offset Global, inserted
using aliased
virtual address.

inode-offset for
non-resident and
user modules.
Virtual address for
resident kernel
modules.

DProbes

Virtual Storage virtual address Limited to
Kernel space or
one process

Debug H/W
kernel debuggers
watchpoints

Physical Storage physical address Limited to
resident modules

Debug H/W
kernel debuggers
watchpoints

Local

Global

We mentioned on the previous foil that the probepoint is defined relative to a module. This slide compares
the merits and employment of various breakpoint tracking strategies.

GDB defines breakpoints per process using ptrace. The placement of a breakpoint causes privatisation of a
page (COW), with a resulting impact to the swap device.

Debuggers using watchpoints - typically KDB place breakpoints in kernel space and have to filter
unnecessary interrupts if the want a per-process view. It is difficult to relate such breakpoints to a user
module since the virtual storage mapping may be different per process.

On some architectures watchpoints may be defined by physical storage location (e.g. S/390) but again this
is difficult to relate to a user's module because the physical mapping may change with paging activity.

DProbes uses a module-relative approach. BPs are inserted using the physical address to avoid COW
proliferation of privatised pages. We track the BP using inode-offset. This gives us a global context to the
probe without the impact to the swap device.

IBM LTC 15/01/02

6. Watchpoint Probes

Fired on specific types of memory accesses
Execute, Write, Read or Write, IO
Specified by virtual address, range
Not limited to any process context

Exploits H/W debug registers (4 on Intel x86)
Debug Register Allocation patch for co-ordinating
with other Debug Facilities

Enables fine-grained storage profiling with LTT
e.g. Monitoring specific kernel data structures

We do however also exploit watchpoints in the watchpoint probes (as opposed to the breakpoint probes).
These probes are virtual-storage based and global without a module or process context.
They permit memory accesses to be probed whether read/write/execute or IO

IA32 limits us to a maximum of 4 WPs. (However we have devise a mechanism for simulating a generalised
extension to this - details cannot be revealed at this stage but essentially it hooked into the paging
mechanism).
Linux does not cater well for multiple users of debugging registers - so we have also provided a DR
allocation patch.

IBM LTC 15/01/02

7. RPN Interpreter

"Top of Stack"

RPN Stack

push

pop

Access to CPU (low-level) resources
"Easy" to generate from a HLL - c.f. Java

The heart of the DPEH is the RPN command interpreter.
Two questions:
 what is RPN
 why use RPN

 languages - such as List, use a stack on which to place operands then execute the operation, which the
operands to be popped off the stack and the result pushed onto the stack. It's "Reverse" because
syntactically one codes operands before operation. It's "Polish" probably because it was invented by a Pole.

RPN interpreters are very easy to implement.
They give easy access to low-level resources while generalising across architectures
They permit high-level languages to be defined which generate RPN code - compare with Java and the JVM
which is an RPN-based virtual machine.

IBM LTC 15/01/02

8. RPN Command Categories
Arithmetical/Logical
Program Flow

Conditional
Subroutine calls

External Triggers
Local and Global Variables
Log Buffer
Exception Handling
System Resources:

Registers, Memory, IO

The RPN command language comprises the following categories of command:

Basic arithmetical and logical instructions
Program flow including conditional logic and subroutine calls.
Mechanisms for invoking external agents and daemon - External Triggers.
Local and Global storage for use by the RPN program#
Exception handling to recover from unexpected environmental conditions such as memory not accessible.
Access to system resources. CPU regs, Memory, Kernel data items, IO ports etc..

IBM LTC 15/01/02

9. RPN Invoked External Facilities

Logging Daemons
Syslog (klogd) - default
COM1 and COM2
Universal Dynamic Trace - LTT (Opersys)
POSIX Event Logging

External Agents
KDB
SGI Kernel Crash Dump
Core Dump

Externally triggered facilities come in two types:

Logging Daemons, to which are passed a log buffer and control is returned to the DPEH. Examples include:
syslog, com ports, LTT, Event Log.

External Agents transfer control to the external facility without expectation of return. Examples of these are
KDB,lkcd, code dump.

These type types are handled slightly differently by the DPEH. Because Logging Daemons tend to want to
record only one event per attempted execution of a code location - we avoid log replications by delaying
logging until the original instruction executes without faulting - think about recoverable page faults and the
effect it would have on a trace if an event were recorded per trial execution. This behaviour btw can be
overridden using the logonfault facility.
With external agents we restore the original instruction and give control to the agent without single-stepping.

IBM LTC 15/01/02

DPO

Hdr

Per-DPO
Local
Variable
Array

Probe
Definitions

Per-Processor
Log
Buffer

P0
P1

P2

Global
Variable
Array

10. RPN Program Storage

There are three types of working storage available to a probe-handler:

The local variable array that allows data to be share among probe handlers for a given module.

The log buffer, which is defined per-processor to avoid unnecessary serialisation. This is used to stage the
logged data which is eventually passed to the Logging Daemon.

The global variable array allows data to be shared among all probe handlers, whatever their module.

IBM LTC 15/01/02

11. Example PRN Probe Program
 name = bzImage
 modtype = kernel
 major = 1
 jmpmax = 32
 logmax = 100
 vars = 1

 offset = kill_proc
 opcode = 0x55
 minor = 1
 pass_count = 0
 max_hits = 1000
 inc lv,0
 push d,16
 push r, esp
 log mrf
 exit

This is an example RPN probe handler definition.

There's a header section that defines the module, number of local variables and other controls.

Then there are a number of probe definition that follow. Each has a header followed by the RPN program.

The probe header gives the location, in this case kill_proc and we also specify the original opcode for sanity
reasons particularly where an address is given instead of a symbol.
The program increments local variable 0, and logs the parameters pointed to by the ESP register on entry to
kill_proc.

IBM LTC 15/01/02

12. DProbes Command

RPN
Command

File

Program
Symbolic

Information

Predefined
Probe

Definition
File

DProbes Cmd
A

PI
gcc pre-processor

The DProbes command takes as input either:

The RPN file and optionally Symbolic program information

Or, a predefined probed definition file. This is essentially a pre-compiled version of the RPN file, in a form
ready to pass to the DProbes API. It permits probes to be defined using symbolic information present only
when the probed program is compiled with debugging options, then to have the debugging information
stripped,

The DProbes command invokes the gcc pre-processor - this allows standard C-like pre-processor
constructs in the RPN file and for symbols to be substituted from the command line.

IBM LTC 15/01/02

13. Successful Employment of
DProbes

Development of DProbes
Kernel Development (SuSE)
Page Manager Bugs
Parcel Bomb Problems
Device Driver/Device Interface Bugs
Prototype System Modification
Profiling
Large-scale (internal) instrumentation

This is where we and others have successfully used DProbes:

We used it to debug itself
SuSE use it to debug the linux kernel - its easier than recompiling in printk statements.
RJM used in to solve a number of OS page manager problems that were impossible to re-create at will and
only occurred in a customer's production environment. Probes were placed in the context switching code
path!!!
The parcel bomb problem is where work request are enqueued asynchronously to some facility. If a problem
occurs when a request is processed, the cause - the enquing process is long since gone. DProbes can be
used to intercept and monitor enquing actions and catch the culprit. An example of this occurred with OS/2
Presentation Manager.
We can trace requests to device drivers
It has been used to prototype system modifications - by intercepting an API and dynamically changing one or
more parameters.
The local and global variables facilitate profiling. However we are enhancing DProbes to specifically for
profiling.
As a tracing mechanism DProbes can be used extensively with minimal system impact - e.g. 400 - 1000
concurrent tracepoints.

IBM LTC 15/01/02

14. What's Next?
HLL probe specification
RPN extensions for HLL
Port to zSeries (S/390)
Port to IA64
Sampler Probe type for Profiling
Integration into a the Consolidated RAS Package
Custom Trace Formatting for Dynamic Trace events
Instrumentation of Kernel and other key modules
Data/Request Trace for selected drivers

We are working on the following new features:

A HLL interface - initially C-like - may be later Java-like
A number of RPN extensions to support the HLL: e.g. exception handling, working storage enhancements.
More RPN commands for manipulating the RPN stack.
We are working with the Poughkeepsie tools team on a port to zSeries (S/390)
The first drop of an IA64 port is almost ready for release.
We are implementing a new probe type for profiling purposes - the sampler probe along with per-processor
instance data variables.
DProbes has been integrated into a consolidated RAS package along with KDB, LKCD, LTT
We are providing a custom trace formatting mechanism for Dynamic Trace = (DProbes + LTT)
We employ dynamic trace to instrument drivers and the kernel.
We will use GKHI to simplify the kernel patch and to provide a user exit to give an open-ended extension to
the RPN language. In addition we will use GKHI to simplify the RAS Package.

IBM LTC 15/01/02

15. Questions?

End of Presentation

Core Team:

Richard Moore (RAS Architect)
S. Vamsikrishna
Subodh Soni
Bharata B. Rao
Suparna Bhattacharya

Contributions From:

Maneesh Soni

Andi Kleen (SuSE)
Andrea Arcangeli (SuSE)
Karim Yaghmour (OperSys)

Mailing List: dprobes@oss.software.ibm.com
Web Page: http://oss.software.ibm.com/developerworks/opensource/linux/projects/dprobes

