
GDB Internals
A guide to the internals of the GNU debugger

John Gilmore
Cygnus Solutions
Second Edition:
Stan Shebs
Cygnus Solutions

Cygnus Solutions
Revision: 1.142

TEXinfo 2000-05-28.15

Copyright c© 1990,1991,1992,1993,1994,1996,1998,1999,2000,2001 Free Software Founda-
tion, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with the Front-Cover Texts being “A
GNU Manual,” and with the Back-Cover Texts as in (a) below.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify this GNU
Manual, like GNU software. Copies published by the Free Software Foundation raise funds
for GNU development.”

i

Table of Contents

Scope of this Document . 1

1 Requirements. 1

2 Overall Structure . 1
2.1 The Symbol Side . 2
2.2 The Target Side . 2
2.3 Configurations . 2

3 Algorithms . 2
3.1 Frames . 3
3.2 Breakpoint Handling . 3
3.3 Single Stepping . 4
3.4 Signal Handling . 4
3.5 Thread Handling . 4
3.6 Inferior Function Calls . 4
3.7 Longjmp Support . 4
3.8 Watchpoints . 4

3.8.1 x86 Watchpoints . 7

4 User Interface . 9
4.1 Command Interpreter . 9
4.2 UI-Independent Output—the ui_out Functions 10

4.2.1 Overview and Terminology . 10
4.2.2 General Conventions . 11
4.2.3 Table, Tuple and List Functions 11
4.2.4 Item Output Functions . 13
4.2.5 Utility Output Functions . 14
4.2.6 Examples of Use of ui_out functions 15

4.3 Console Printing . 19
4.4 TUI . 19

5 libgdb. 19
5.1 libgdb 1.0 . 19
5.2 libgdb 2.0 . 19
5.3 The libgdb Model . 20
5.4 CLI support . 20
5.5 libgdb components . 20

ii

6 Symbol Handling . 21
6.1 Symbol Reading. 21
6.2 Partial Symbol Tables . 22
6.3 Types . 23

Fundamental Types (e.g., FT_VOID, FT_BOOLEAN). 23
Type Codes (e.g., TYPE_CODE_PTR, TYPE_CODE_ARRAY). . . 24
Builtin Types (e.g., builtin_type_void,

builtin_type_char). 24
6.4 Object File Formats . 24

6.4.1 a.out . 24
6.4.2 COFF . 24
6.4.3 ECOFF . 24
6.4.4 XCOFF . 25
6.4.5 PE . 25
6.4.6 ELF . 25
6.4.7 SOM . 25
6.4.8 Other File Formats . 25

6.5 Debugging File Formats . 25
6.5.1 stabs . 25
6.5.2 COFF . 26
6.5.3 Mips debug (Third Eye). 26
6.5.4 DWARF 1 . 26
6.5.5 DWARF 2 . 26
6.5.6 SOM . 26

6.6 Adding a New Symbol Reader to GDB 26

7 Language Support . 27
7.1 Adding a Source Language to GDB . 27

8 Host Definition . 29
8.1 Adding a New Host . 29
8.2 Host Conditionals . 30

9 Target Architecture Definition 33
9.1 Registers and Memory . 33
9.2 Pointers Are Not Always Addresses . 34
9.3 Using Different Register and Memory Data Representations

. 36
9.4 Frame Interpretation . 37
9.5 Inferior Call Setup . 37
9.6 Compiler Characteristics . 38
9.7 Target Conditionals . 38
9.8 Adding a New Target . 51

iii

10 Target Vector Definition 52
10.1 File Targets. 52
10.2 Standard Protocol and Remote Stubs 52
10.3 ROM Monitor Interface . 53
10.4 Custom Protocols . 53
10.5 Transport Layer . 53
10.6 Builtin Simulator . 53

11 Native Debugging . 53
11.1 Native core file Support. 54
11.2 ptrace . 55
11.3 /proc . 55
11.4 win32 . 55
11.5 shared libraries . 55
11.6 Native Conditionals . 55

12 Support Libraries . 58
12.1 BFD . 58
12.2 opcodes . 58
12.3 readline . 58
12.4 mmalloc . 58
12.5 libiberty . 58
12.6 gnu-regex . 59
12.7 include . 59

13 Coding . 59
13.1 Cleanups . 59
13.2 Wrapping Output Lines . 60
13.3 GDB Coding Standards . 60

13.3.1 ISO-C . 60
13.3.2 Memory Management . 60
13.3.3 Compiler Warnings . 61
13.3.4 Formatting . 62
13.3.5 Comments . 62
13.3.6 C Usage . 63
13.3.7 Function Prototypes . 63
13.3.8 Internal Error Recovery . 63
13.3.9 File Names . 64
13.3.10 Include Files . 64
13.3.11 Clean Design and Portable Implementation 64

14 Porting GDB . 66
14.1 Configuring GDB for Release. 67

iv

15 Testsuite . 67
15.1 Using the Testsuite . 68
15.2 Testsuite Organization . 68
15.3 Writing Tests . 69

16 Hints . 70
16.1 Getting Started . 70
16.2 Debugging GDB with itself . 71
16.3 Submitting Patches . 71
16.4 Obsolete Conditionals . 72

Index . 73

Chapter 2: Overall Structure 1

Scope of this Document

This document documents the internals of the GNU debugger, GDB. It includes descrip-
tion of GDB’s key algorithms and operations, as well as the mechanisms that adapt GDB
to specific hosts and targets.

1 Requirements

Before diving into the internals, you should understand the formal requirements and
other expectations for GDB. Although some of these may seem obvious, there have been
proposals for GDB that have run counter to these requirements.

First of all, GDB is a debugger. It’s not designed to be a front panel for embedded
systems. It’s not a text editor. It’s not a shell. It’s not a programming environment.

GDB is an interactive tool. Although a batch mode is available, GDB’s primary role is
to interact with a human programmer.

GDB should be responsive to the user. A programmer hot on the trail of a nasty bug, and
operating under a looming deadline, is going to be very impatient of everything, including
the response time to debugger commands.

GDB should be relatively permissive, such as for expressions. While the compiler should
be picky (or have the option to be made picky), since source code lives for a long time
usually, the programmer doing debugging shouldn’t be spending time figuring out to mollify
the debugger.

GDB will be called upon to deal with really large programs. Executable sizes of 50 to
100 megabytes occur regularly, and we’ve heard reports of programs approaching 1 gigabyte
in size.

GDB should be able to run everywhere. No other debugger is available for even half as
many configurations as GDB supports.

2 Overall Structure

GDB consists of three major subsystems: user interface, symbol handling (the symbol
side), and target system handling (the target side).

The user interface consists of several actual interfaces, plus supporting code.

The symbol side consists of object file readers, debugging info interpreters, symbol table
management, source language expression parsing, type and value printing.

The target side consists of execution control, stack frame analysis, and physical target
manipulation.

The target side/symbol side division is not formal, and there are a number of excep-
tions. For instance, core file support involves symbolic elements (the basic core file reader
is in BFD) and target elements (it supplies the contents of memory and the values of reg-
isters). Instead, this division is useful for understanding how the minor subsystems should
fit together.

Chapter 3: Algorithms 2

2.1 The Symbol Side

The symbolic side of GDB can be thought of as “everything you can do in GDB without
having a live program running”. For instance, you can look at the types of variables, and
evaluate many kinds of expressions.

2.2 The Target Side

The target side of GDB is the “bits and bytes manipulator”. Although it may make
reference to symbolic info here and there, most of the target side will run with only a
stripped executable available—or even no executable at all, in remote debugging cases.

Operations such as disassembly, stack frame crawls, and register display, are able to work
with no symbolic info at all. In some cases, such as disassembly, GDB will use symbolic
info to present addresses relative to symbols rather than as raw numbers, but it will work
either way.

2.3 Configurations

Host refers to attributes of the system where GDB runs. Target refers to the system
where the program being debugged executes. In most cases they are the same machine, in
which case a third type of Native attributes come into play.

Defines and include files needed to build on the host are host support. Examples are tty
support, system defined types, host byte order, host float format.

Defines and information needed to handle the target format are target dependent. Ex-
amples are the stack frame format, instruction set, breakpoint instruction, registers, and
how to set up and tear down the stack to call a function.

Information that is only needed when the host and target are the same, is native depen-
dent. One example is Unix child process support; if the host and target are not the same,
doing a fork to start the target process is a bad idea. The various macros needed for finding
the registers in the upage, running ptrace, and such are all in the native-dependent files.

Another example of native-dependent code is support for features that are really part
of the target environment, but which require #include files that are only available on the
host system. Core file handling and setjmp handling are two common cases.

When you want to make GDB work “native” on a particular machine, you have to
include all three kinds of information.

3 Algorithms

GDB uses a number of debugging-specific algorithms. They are often not very com-
plicated, but get lost in the thicket of special cases and real-world issues. This chapter
describes the basic algorithms and mentions some of the specific target definitions that
they use.

Chapter 3: Algorithms 3

3.1 Frames

A frame is a construct that GDB uses to keep track of calling and called functions.
FRAME_FP in the machine description has no meaning to the machine-independent part

of GDB, except that it is used when setting up a new frame from scratch, as follows:
create_new_frame (read_register (FP_REGNUM), read_pc ()));

Other than that, all the meaning imparted to FP_REGNUM is imparted by the machine-
dependent code. So, FP_REGNUM can have any value that is convenient for the code that
creates new frames. (create_new_frame calls INIT_EXTRA_FRAME_INFO if it is defined; that
is where you should use the FP_REGNUM value, if your frames are nonstandard.)

Given a GDB frame, define FRAME_CHAIN to determine the address of the calling func-
tion’s frame. This will be used to create a new GDB frame struct, and then INIT_EXTRA_
FRAME_INFO and INIT_FRAME_PC will be called for the new frame.

3.2 Breakpoint Handling

In general, a breakpoint is a user-designated location in the program where the user
wants to regain control if program execution ever reaches that location.

There are two main ways to implement breakpoints; either as “hardware” breakpoints
or as “software” breakpoints.

Hardware breakpoints are sometimes available as a builtin debugging features with some
chips. Typically these work by having dedicated register into which the breakpoint address
may be stored. If the PC (shorthand for program counter) ever matches a value in a
breakpoint registers, the CPU raises an exception and reports it to GDB.

Another possibility is when an emulator is in use; many emulators include circuitry that
watches the address lines coming out from the processor, and force it to stop if the address
matches a breakpoint’s address.

A third possibility is that the target already has the ability to do breakpoints somehow;
for instance, a ROM monitor may do its own software breakpoints. So although these are
not literally “hardware breakpoints”, from GDB’s point of view they work the same; GDB
need not do nothing more than set the breakpoint and wait for something to happen.

Since they depend on hardware resources, hardware breakpoints may be limited in num-
ber; when the user asks for more, GDB will start trying to set software breakpoints. (On
some architectures, notably the 32-bit x86 platforms, GDB cannot alsways know whether
there’s enough hardware resources to insert all the hardware breakpoints and watchpoints.
On those platforms, GDB prints an error message only when the program being debugged
is continued.)

Software breakpoints require GDB to do somewhat more work. The basic theory is that
GDB will replace a program instruction with a trap, illegal divide, or some other instruction
that will cause an exception, and then when it’s encountered, GDB will take the exception
and stop the program. When the user says to continue, GDB will restore the original
instruction, single-step, re-insert the trap, and continue on.

Since it literally overwrites the program being tested, the program area must be writable,
so this technique won’t work on programs in ROM. It can also distort the behavior of
programs that examine themselves, although such a situation would be highly unusual.

Chapter 3: Algorithms 4

Also, the software breakpoint instruction should be the smallest size of instruction, so
it doesn’t overwrite an instruction that might be a jump target, and cause disaster when
the program jumps into the middle of the breakpoint instruction. (Strictly speaking, the
breakpoint must be no larger than the smallest interval between instructions that may be
jump targets; perhaps there is an architecture where only even-numbered instructions may
jumped to.) Note that it’s possible for an instruction set not to have any instructions usable
for a software breakpoint, although in practice only the ARC has failed to define such an
instruction.

The basic definition of the software breakpoint is the macro BREAKPOINT.

Basic breakpoint object handling is in ‘breakpoint.c’. However, much of the interesting
breakpoint action is in ‘infrun.c’.

3.3 Single Stepping

3.4 Signal Handling

3.5 Thread Handling

3.6 Inferior Function Calls

3.7 Longjmp Support

GDB has support for figuring out that the target is doing a longjmp and for stopping
at the target of the jump, if we are stepping. This is done with a few specialized internal
breakpoints, which are visible in the output of the ‘maint info breakpoint’ command.

To make this work, you need to define a macro called GET_LONGJMP_TARGET, which will
examine the jmp_buf structure and extract the longjmp target address. Since jmp_buf
is target specific, you will need to define it in the appropriate ‘tm-target.h’ file. Look in
‘tm-sun4os4.h’ and ‘sparc-tdep.c’ for examples of how to do this.

3.8 Watchpoints

Watchpoints are a special kind of breakpoints (see Chapter 3 [Algorithms], page 2) which
break when data is accessed rather than when some instruction is executed. When you have
data which changes without your knowing what code does that, watchpoints are the silver
bullet to hunt down and kill such bugs.

Watchpoints can be either hardware-assisted or not; the latter type is known as “soft-
ware watchpoints.” GDB always uses hardware-assisted watchpoints if they are available,
and falls back on software watchpoints otherwise. Typical situations where GDB will use
software watchpoints are:

Chapter 3: Algorithms 5

• The watched memory region is too large for the underlying hardware watchpoint sup-
port. For example, each x86 debug register can watch up to 4 bytes of memory, so
trying to watch data structures whose size is more than 16 bytes will cause GDB to
use software watchpoints.

• The value of the expression to be watched depends on data held in registers (as opposed
to memory).

• Too many different watchpoints requested. (On some architectures, this situation is
impossible to detect until the debugged program is resumed.) Note that x86 debug
registers are used both for hardware breakpoints and for watchpoints, so setting too
many hardware breakpoints might cause watchpoint insertion to fail.

• No hardware-assisted watchpoints provided by the target implementation.

Software watchpoints are very slow, since GDB needs to single-step the program being
debugged and test the value of the watched expression(s) after each instruction. The rest
of this section is mostly irrelevant for software watchpoints.

GDB uses several macros and primitives to support hardware watchpoints:

TARGET_HAS_HARDWARE_WATCHPOINTS
If defined, the target supports hardware watchpoints.

TARGET_CAN_USE_HARDWARE_WATCHPOINT (type, count, other)
Return the number of hardware watchpoints of type type that are possible to
be set. The value is positive if count watchpoints of this type can be set, zero
if setting watchpoints of this type is not supported, and negative if count is
more than the maximum number of watchpoints of type type that can be set.
other is non-zero if other types of watchpoints are currently enabled (there are
architectures which cannot set watchpoints of different types at the same time).

TARGET_REGION_OK_FOR_HW_WATCHPOINT (addr, len)
Return non-zero if hardware watchpoints can be used to watch a region whose
address is addr and whose length in bytes is len.

TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (size)
Return non-zero if hardware watchpoints can be used to watch a region whose
size is size. GDB only uses this macro as a fall-back, in case TARGET_REGION_
OK_FOR_HW_WATCHPOINT is not defined.

TARGET_DISABLE_HW_WATCHPOINTS (pid)
Disables watchpoints in the process identified by pid. This is used, e.g., on
HP-UX which provides operations to disable and enable the page-level memory
protection that implements hardware watchpoints on that platform.

TARGET_ENABLE_HW_WATCHPOINTS (pid)
Enables watchpoints in the process identified by pid. This is used, e.g., on
HP-UX which provides operations to disable and enable the page-level memory
protection that implements hardware watchpoints on that platform.

TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT (pid,start,len)
Some addresses may not be profitable to use hardware to watch, or may be diffi-
cult to understand when the addressed object is out of scope, and hence should

Chapter 3: Algorithms 6

not be watched with hardware watchpoints. On some targets, this may have se-
vere performance penalties, such that we might as well use regular watchpoints,
and save (possibly precious) hardware watchpoints for other locations.

target_insert_watchpoint (addr, len, type)
target_remove_watchpoint (addr, len, type)

Insert or remove a hardware watchpoint starting at addr, for len bytes. type
is the watchpoint type, one of the possible values of the enumerated data type
target_hw_bp_type, defined by ‘breakpoint.h’ as follows:

enum target_hw_bp_type
{
hw_write = 0, /* Common (write) HW watchpoint */
hw_read = 1, /* Read HW watchpoint */
hw_access = 2, /* Access (read or write) HW watchpoint */
hw_execute = 3 /* Execute HW breakpoint */

};

These two macros should return 0 for success, non-zero for failure.

target_remove_hw_breakpoint (addr, shadow)
target_insert_hw_breakpoint (addr, shadow)

Insert or remove a hardware-assisted breakpoint at address addr. Returns zero
for success, non-zero for failure. shadow is the real contents of the byte where
the breakpoint has been inserted; it is generally not valid when hardware break-
points are used, but since no other code touches these values, the implementa-
tions of the above two macros can use them for their internal purposes.

target_stopped_data_address ()
If the inferior has some watchpoint that triggered, return the address associated
with that watchpoint. Otherwise, return zero.

DECR_PC_AFTER_HW_BREAK
If defined, GDB decrements the program counter by the value of DECR_PC_
AFTER_HW_BREAK after a hardware break-point. This overrides the value of
DECR_PC_AFTER_BREAK when a breakpoint that breaks is a hardware-assisted
breakpoint.

HAVE_STEPPABLE_WATCHPOINT
If defined to a non-zero value, it is not necessary to disable a watchpoint to
step over it.

HAVE_NONSTEPPABLE_WATCHPOINT
If defined to a non-zero value, GDB should disable a watchpoint to step the
inferior over it.

HAVE_CONTINUABLE_WATCHPOINT
If defined to a non-zero value, it is possible to continue the inferior after a
watchpoint has been hit.

CANNOT_STEP_HW_WATCHPOINTS
If this is defined to a non-zero value, GDB will remove all watchpoints before
stepping the inferior.

Chapter 3: Algorithms 7

STOPPED_BY_WATCHPOINT (wait status)
Return non-zero if stopped by a watchpoint. wait status is of the type struct
target_waitstatus, defined by ‘target.h’.

3.8.1 x86 Watchpoints

The 32-bit Intel x86 (a.k.a. ia32) processors feature special debug registers designed to
facilitate debugging. GDB provides a generic library of functions that x86-based ports
can use to implement support for watchpoints and hardware-assisted breakpoints. This
subsection documents the x86 watchpoint facilities in GDB.

To use the generic x86 watchpoint support, a port should do the following:

• Define the macro I386_USE_GENERIC_WATCHPOINTS somewhere in the target-dependent
headers.

• Include the ‘config/i386/nm-i386.h’ header file after defining I386_USE_GENERIC_
WATCHPOINTS.

• Add ‘i386-nat.o’ to the value of the Make variable NATDEPFILES (see Chapter 11 [Na-
tive Debugging], page 53) or TDEPFILES (see Chapter 9 [Target Architecture Definition],
page 33).

• Provide implementations for the I386_DR_LOW_* macros described below. Typically,
each macro should call a target-specific function which does the real work.

The x86 watchpoint support works by maintaining mirror images of the debug registers.
Values are copied between the mirror images and the real debug registers via a set of macros
which each target needs to provide:

I386_DR_LOW_SET_CONTROL (val)
Set the Debug Control (DR7) register to the value val.

I386_DR_LOW_SET_ADDR (idx, addr)
Put the address addr into the debug register number idx.

I386_DR_LOW_RESET_ADDR (idx)
Reset (i.e. zero out) the address stored in the debug register number idx.

I386_DR_LOW_GET_STATUS
Return the value of the Debug Status (DR6) register. This value is used im-
mediately after it is returned by I386_DR_LOW_GET_STATUS, so as to support
per-thread status register values.

For each one of the 4 debug registers (whose indices are from 0 to 3) that store addresses,
a reference count is maintained by GDB, to allow sharing of debug registers by several
watchpoints. This allows users to define several watchpoints that watch the same expression,
but with different conditions and/or commands, without wasting debug registers which are
in short supply. GDB maintains the reference counts internally, targets don’t have to do
anything to use this feature.

The x86 debug registers can each watch a region that is 1, 2, or 4 bytes long. The ia32
architecture requires that each watched region be appropriately aligned: 2-byte region on
2-byte boundary, 4-byte region on 4-byte boundary. However, the x86 watchpoint support

Chapter 3: Algorithms 8

in GDB can watch unaligned regions and regions larger than 4 bytes (up to 16 bytes)
by allocating several debug registers to watch a single region. This allocation of several
registers per a watched region is also done automatically without target code intervention.

The generic x86 watchpoint support provides the following API for the GDB’s application
code:

i386_region_ok_for_watchpoint (addr, len)
The macro TARGET_REGION_OK_FOR_HW_WATCHPOINT is set to call this function.
It counts the number of debug registers required to watch a given region, and
returns a non-zero value if that number is less than 4, the number of debug
registers available to x86 processors.

i386_stopped_data_address (void)
The macros STOPPED_BY_WATCHPOINT and target_stopped_data_address are
set to call this function. The argument passed to STOPPED_BY_WATCHPOINT is
ignored. This function examines the breakpoint condition bits in the DR6
Debug Status register, as returned by the I386_DR_LOW_GET_STATUS macro,
and returns the address associated with the first bit that is set in DR6.

i386_insert_watchpoint (addr, len, type)
i386_remove_watchpoint (addr, len, type)

Insert or remove a watchpoint. The macros target_insert_watchpoint and
target_remove_watchpoint are set to call these functions. i386_insert_
watchpoint first looks for a debug register which is already set to watch the
same region for the same access types; if found, it just increments the reference
count of that debug register, thus implementing debug register sharing between
watchpoints. If no such register is found, the function looks for a vacant de-
bug register, sets its mirrorred value to addr, sets the mirrorred value of DR7
Debug Control register as appropriate for the len and type parameters, and
then passes the new values of the debug register and DR7 to the inferior by
calling I386_DR_LOW_SET_ADDR and I386_DR_LOW_SET_CONTROL. If more than
one debug register is required to cover the given region, the above process is
repeated for each debug register.
i386_remove_watchpoint does the opposite: it resets the address in the mir-
rorred value of the debug register and its read/write and length bits in the
mirrorred value of DR7, then passes these new values to the inferior via I386_
DR_LOW_RESET_ADDR and I386_DR_LOW_SET_CONTROL. If a register is shared by
several watchpoints, each time a i386_remove_watchpoint is called, it decre-
ments the reference count, and only calls I386_DR_LOW_RESET_ADDR and I386_
DR_LOW_SET_CONTROL when the count goes to zero.

i386_insert_hw_breakpoint (addr, shadow
i386_remove_hw_breakpoint (addr, shadow)

These functions insert and remove hardware-assisted breakpoints. The macros
target_insert_hw_breakpoint and target_remove_hw_breakpoint are set
to call these functions. These functions work like i386_insert_watchpoint
and i386_remove_watchpoint, respectively, except that they set up the debug
registers to watch instruction execution, and each hardware-assisted breakpoint
always requires exactly one debug register.

Chapter 4: User Interface 9

i386_stopped_by_hwbp (void)
This function returns non-zero if the inferior has some watchpoint or hardware
breakpoint that triggered. It works like i386_stopped_data_address, except
that it doesn’t return the address whose watchpoint triggered.

i386_cleanup_dregs (void)
This function clears all the reference counts, addresses, and control bits in the
mirror images of the debug registers. It doesn’t affect the actual debug registers
in the inferior process.

Notes:

1. x86 processors support setting watchpoints on I/O reads or writes. However, since no
target supports this (as of March 2001), and since enum target_hw_bp_type doesn’t
even have an enumeration for I/O watchpoints, this feature is not yet available to GDB
running on x86.

2. x86 processors can enable watchpoints locally, for the current task only, or globally, for
all the tasks. For each debug register, there’s a bit in the DR7 Debug Control register
that determines whether the associated address is watched locally or globally. The
current implementation of x86 watchpoint support in GDB always sets watchpoints to
be locally enabled, since global watchpoints might interfere with the underlying OS
and are probably unavailable in many platforms.

4 User Interface

GDB has several user interfaces. Although the command-line interface is the most
common and most familiar, there are others.

4.1 Command Interpreter

The command interpreter in GDB is fairly simple. It is designed to allow for the set of
commands to be augmented dynamically, and also has a recursive subcommand capability,
where the first argument to a command may itself direct a lookup on a different command
list.

For instance, the ‘set’ command just starts a lookup on the setlist command list,
while ‘set thread’ recurses to the set_thread_cmd_list.

To add commands in general, use add_cmd. add_com adds to the main command list,
and should be used for those commands. The usual place to add commands is in the
_initialize_xyz routines at the ends of most source files.

Before removing commands from the command set it is a good idea to deprecate them
for some time. Use deprecate_cmd on commands or aliases to set the deprecated flag.
deprecate_cmd takes a struct cmd_list_element as it’s first argument. You can use the
return value from add_com or add_cmd to deprecate the command immediately after it is
created.

The first time a command is used the user will be warned and offered a replacement (if
one exists). Note that the replacement string passed to deprecate_cmd should be the full
name of the command, i.e. the entire string the user should type at the command line.

Chapter 4: User Interface 10

4.2 UI-Independent Output—the ui_out Functions

The ui_out functions present an abstraction level for the GDB output code. They hide
the specifics of different user interfaces supported by GDB, and thus free the programmer
from the need to write several versions of the same code, one each for every UI, to produce
output.

4.2.1 Overview and Terminology

In general, execution of each GDB command produces some sort of output, and can even
generate an input request.

Output can be generated for the following purposes:
• to display a result of an operation;
• to convey info or produce side-effects of a requested operation;
• to provide a notification of an asynchronous event (including progress indication of a

prolonged asynchronous operation);
• to display error messages (including warnings);
• to show debug data;
• to query or prompt a user for input (a special case).

This section mainly concentrates on how to build result output, although some of it also
applies to other kinds of output.

Generation of output that displays the results of an operation involves one or more of
the following:
• output of the actual data
• formatting the output as appropriate for console output, to make it easily readable by

humans
• machine oriented formatting–a more terse formatting to allow for easy parsing by pro-

grams which read GDB’s output
• annotation, whose purpose is to help legacy GUIs to identify interesting parts in the

output

The ui_out routines take care of the first three aspects. Annotations are provided by
separate annotation routines. Note that use of annotations for an interface between a GUI
and GDB is deprecated.

Output can be in the form of a single item, which we call a field; a list consisting
of identical fields; a tuple consisting of non-identical fields; or a table, which is a tuple
consisting of a header and a body. In a BNF-like form:

<table> 7→
<header> <body>

<header> 7→
{ <column> }

<column> 7→
<width> <alignment> <title>

<body> 7→ {<row>}

Chapter 4: User Interface 11

4.2.2 General Conventions

Most ui_out routines are of type void, the exceptions are ui_out_stream_new (which
returns a pointer to the newly created object) and the make_cleanup routines.

The first parameter is always the ui_out vector object, a pointer to a struct ui_out.

The format parameter is like in printf family of functions. When it is present, there
must also be a variable list of arguments sufficient used to satisfy the % specifiers in the
supplied format.

When a character string argument is not used in a ui_out function call, a NULL pointer
has to be supplied instead.

4.2.3 Table, Tuple and List Functions

This section introduces ui_out routines for building lists, tuples and tables. The routines
to output the actual data items (fields) are presented in the next section.

To recap: A tuple is a sequence of fields, each field containing information about an
object; a list is a sequence of fields where each field describes an identical object.

Use the table functions when your output consists of a list of rows (tuples) and the
console output should include a heading. Use this even when you are listing just one object
but you still want the header.

Tables can not be nested. Tuples and lists can be nested up to a maximum of five levels.

The overall structure of the table output code is something like this:

ui_out_table_begin
ui_out_table_header
...
ui_out_table_body
ui_out_tuple_begin

ui_out_field_*
...

ui_out_tuple_end
...

ui_out_table_end

Here is the description of table-, tuple- and list-related ui_out functions:

Functionvoid ui out table begin (struct ui_out *uiout, int nbrofcols, int
nr rows, const char *tblid)

The function ui_out_table_begin marks the beginning of the output of a table. It
should always be called before any other ui_out function for a given table. nbrofcols
is the number of columns in the table. nr rows is the number of rows in the table.
tblid is an optional string identifying the table. The string pointed to by tblid is
copied by the implementation of ui_out_table_begin, so the application can free
the string if it was malloced.

The companion function ui_out_table_end, described below, marks the end of the
table’s output.

Chapter 4: User Interface 12

Functionvoid ui out table header (struct ui_out *uiout, int width, enum
ui_align alignment, const char *colhdr)

ui_out_table_header provides the header information for a single table column.
You call this function several times, one each for every column of the table, after
ui_out_table_begin, but before ui_out_table_body.
The value of width gives the column width in characters. The value of alignment is
one of left, center, and right, and it specifies how to align the header: left-justify,
center, or right-justify it. colhdr points to a string that specifies the column header;
the implementation copies that string, so column header strings in malloced storage
can be freed after the call.

Functionvoid ui out table body (struct ui_out *uiout)
This function delimits the table header from the table body.

Functionvoid ui out table end (struct ui_out *uiout)
This function signals the end of a table’s output. It should be called after the table
body has been produced by the list and field output functions.
There should be exactly one call to ui_out_table_end for each call to ui_out_table_
begin, otherwise the ui_out functions will signal an internal error.

The output of the tuples that represent the table rows must follow the call to ui_out_
table_body and precede the call to ui_out_table_end. You build a tuple by calling ui_
out_tuple_begin and ui_out_tuple_end, with suitable calls to functions which actually
output fields between them.

Functionvoid ui out tuple begin (struct ui_out *uiout, const char *id)
This function marks the beginning of a tuple output. id points to an optional string
that identifies the tuple; it is copied by the implementation, and so strings in malloced
storage can be freed after the call.

Functionvoid ui out tuple end (struct ui_out *uiout)
This function signals an end of a tuple output. There should be exactly one call to
ui_out_tuple_end for each call to ui_out_tuple_begin, otherwise an internal GDB
error will be signaled.

Functionstruct cleanup *make_cleanup_ui_out_tuple_begin_end (struct
ui_out *uiout, const char *id)

This function first opens the tuple and then establishes a cleanup (see Chapter 13
[Coding], page 59) to close the tuple. It provides a convenient and correct implemen-
tation of the non-portable1 code sequence:

struct cleanup *old_cleanup;
ui_out_tuple_begin (uiout, "...");
old_cleanup = make_cleanup ((void(*)(void *)) ui_out_tuple_end,

uiout);

1 The function cast is not portable ISO-C.

Chapter 4: User Interface 13

Functionvoid ui out list begin (struct ui_out *uiout, const char *id)
This function marks the beginning of a list output. id points to an optional string
that identifies the list; it is copied by the implementation, and so strings in malloced
storage can be freed after the call.

Functionvoid ui out list end (struct ui_out *uiout)
This function signals an end of a list output. There should be exactly one call to
ui_out_list_end for each call to ui_out_list_begin, otherwise an internal GDB
error will be signaled.

Functionstruct cleanup *make_cleanup_ui_out_list_begin_end (struct
ui_out *uiout, const char *id)

Similar to make_cleanup_ui_out_tuple_begin_end, this function opens a list and
then establishes cleanup (see Chapter 13 [Coding], page 59) that will close the list.list.

4.2.4 Item Output Functions

The functions described below produce output for the actual data items, or fields, which
contain information about the object.

Choose the appropriate function accordingly to your particular needs.

Functionvoid ui out field fmt (struct ui_out *uiout, char *fldname, char
*format, ...)

This is the most general output function. It produces the representation of the data
in the variable-length argument list according to formatting specifications in format,
a printf-like format string. The optional argument fldname supplies the name of the
field. The data items themselves are supplied as additional arguments after format.
This generic function should be used only when it is not possible to use one of the
specialized versions (see below).

Functionvoid ui out field int (struct ui_out *uiout, const char *fldname,
int value)

This function outputs a value of an int variable. It uses the "%d" output conversion
specification. fldname specifies the name of the field.

Functionvoid ui out field core addr (struct ui_out *uiout, const char
*fldname, CORE_ADDR address)

This function outputs an address.

Functionvoid ui out field string (struct ui_out *uiout, const char
*fldname, const char *string)

This function outputs a string using the "%s" conversion specification.

Sometimes, there’s a need to compose your output piece by piece using functions that
operate on a stream, such as value_print or fprintf_symbol_filtered. These functions
accept an argument of the type struct ui_file *, a pointer to a ui_file object used to

Chapter 4: User Interface 14

store the data stream used for the output. When you use one of these functions, you need
a way to pass their results stored in a ui_file object to the ui_out functions. To this
end, you first create a ui_stream object by calling ui_out_stream_new, pass the stream
member of that ui_stream object to value_print and similar functions, and finally call
ui_out_field_stream to output the field you constructed. When the ui_stream object
is no longer needed, you should destroy it and free its memory by calling ui_out_stream_
delete.

Functionstruct ui stream *ui_out_stream_new (struct ui_out *uiout)
This function creates a new ui_stream object which uses the same output methods
as the ui_out object whose pointer is passed in uiout. It returns a pointer to the
newly created ui_stream object.

Functionvoid ui out stream delete (struct ui_stream *streambuf)
This functions destroys a ui_stream object specified by streambuf.

Functionvoid ui out field stream (struct ui_out *uiout, const char
*fieldname, struct ui_stream *streambuf)

This function consumes all the data accumulated in streambuf->stream and out-
puts it like ui_out_field_string does. After a call to ui_out_field_stream, the
accumulated data no longer exists, but the stream is still valid and may be used for
producing more fields.

Important: If there is any chance that your code could bail out before completing output
generation and reaching the point where ui_out_stream_delete is called, it is necessary
to set up a cleanup, to avoid leaking memory and other resources. Here’s a skeleton code
to do that:

struct ui_stream *mybuf = ui_out_stream_new (uiout);
struct cleanup *old = make_cleanup (ui_out_stream_delete, mybuf);
...
do_cleanups (old);

If the function already has the old cleanup chain set (for other kinds of cleanups), you
just have to add your cleanup to it:

mybuf = ui_out_stream_new (uiout);
make_cleanup (ui_out_stream_delete, mybuf);

Note that with cleanups in place, you should not call ui_out_stream_delete directly,
or you would attempt to free the same buffer twice.

4.2.5 Utility Output Functions

Functionvoid ui out field skip (struct ui_out *uiout, const char *fldname)

This function skips a field in a table. Use it if you have to leave an empty field
without disrupting the table alignment. The argument fldname specifies a name for
the (missing) filed.

Chapter 4: User Interface 15

Functionvoid ui out text (struct ui_out *uiout, const char *string)
This function outputs the text in string in a way that makes it easy to be read by
humans. For example, the console implementation of this method filters the text
through a built-in pager, to prevent it from scrolling off the visible portion of the
screen.
Use this function for printing relatively long chunks of text around the actual field
data: the text it produces is not aligned according to the table’s format. Use ui_out_
field_string to output a string field, and use ui_out_message, described below, to
output short messages.

Functionvoid ui out spaces (struct ui_out *uiout, int nspaces)
This function outputs nspaces spaces. It is handy to align the text produced by
ui_out_text with the rest of the table or list.

Functionvoid ui out message (struct ui_out *uiout, int verbosity, const
char *format, ...)

This function produces a formatted message, provided that the current verbosity level
is at least as large as given by verbosity. The current verbosity level is specified by
the user with the ‘set verbositylevel’ command.2

Functionvoid ui out wrap hint (struct ui_out *uiout, char *indent)
This function gives the console output filter (a paging filter) a hint of where to break
lines which are too long. Ignored for all other output consumers. indent, if non-NULL,
is the string to be printed to indent the wrapped text on the next line; it must remain
accessible until the next call to ui_out_wrap_hint, or until an explicit newline is
produced by one of the other functions. If indent is NULL, the wrapped text will not
be indented.

Functionvoid ui out flush (struct ui_out *uiout)
This function flushes whatever output has been accumulated so far, if the UI buffers
output.

4.2.6 Examples of Use of ui_out functions

This section gives some practical examples of using the ui_out functions to generalize
the old console-oriented code in GDB. The examples all come from functions defined on the
‘breakpoints.c’ file.

This example, from the breakpoint_1 function, shows how to produce a table.
The original code was:

if (!found_a_breakpoint++)
{

annotate_breakpoints_headers ();

2 As of this writing (April 2001), setting verbosity level is not yet implemented, and is always returned as
zero. So calling ui_out_message with a verbosity argument more than zero will cause the message to
never be printed.

Chapter 4: User Interface 16

annotate_field (0);
printf_filtered ("Num ");
annotate_field (1);
printf_filtered ("Type ");
annotate_field (2);
printf_filtered ("Disp ");
annotate_field (3);
printf_filtered ("Enb ");
if (addressprint)
{

annotate_field (4);
printf_filtered ("Address ");

}
annotate_field (5);
printf_filtered ("What\n");

annotate_breakpoints_table ();
}

Here’s the new version:
nr_printable_breakpoints = ...;

if (addressprint)
ui_out_table_begin (ui, 6, nr_printable_breakpoints, "BreakpointTable");

else
ui_out_table_begin (ui, 5, nr_printable_breakpoints, "BreakpointTable");

if (nr_printable_breakpoints > 0)
annotate_breakpoints_headers ();

if (nr_printable_breakpoints > 0)
annotate_field (0);

ui_out_table_header (uiout, 3, ui_left, "number", "Num"); /* 1 */
if (nr_printable_breakpoints > 0)

annotate_field (1);
ui_out_table_header (uiout, 14, ui_left, "type", "Type"); /* 2 */
if (nr_printable_breakpoints > 0)

annotate_field (2);
ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
if (nr_printable_breakpoints > 0)

annotate_field (3);
ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
if (addressprint)

{
if (nr_printable_breakpoints > 0)
annotate_field (4);

if (TARGET_ADDR_BIT <= 32)
ui_out_table_header (uiout, 10, ui_left, "addr", "Address");/* 5 */

else
ui_out_table_header (uiout, 18, ui_left, "addr", "Address");/* 5 */

Chapter 4: User Interface 17

}
if (nr_printable_breakpoints > 0)

annotate_field (5);
ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
ui_out_table_body (uiout);
if (nr_printable_breakpoints > 0)

annotate_breakpoints_table ();

This example, from the print_one_breakpoint function, shows how to produce the
actual data for the table whose structure was defined in the above example. The original
code was:

annotate_record ();
annotate_field (0);
printf_filtered ("%-3d ", b->number);
annotate_field (1);
if ((int)b->type > (sizeof(bptypes)/sizeof(bptypes[0]))

|| ((int) b->type != bptypes[(int) b->type].type))
internal_error ("bptypes table does not describe type #%d.",

(int)b->type);
printf_filtered ("%-14s ", bptypes[(int)b->type].description);
annotate_field (2);
printf_filtered ("%-4s ", bpdisps[(int)b->disposition]);
annotate_field (3);
printf_filtered ("%-3c ", bpenables[(int)b->enable]);
...

This is the new version:
annotate_record ();
ui_out_tuple_begin (uiout, "bkpt");
annotate_field (0);
ui_out_field_int (uiout, "number", b->number);
annotate_field (1);
if (((int) b->type > (sizeof (bptypes) / sizeof (bptypes[0])))

|| ((int) b->type != bptypes[(int) b->type].type))
internal_error ("bptypes table does not describe type #%d.",

(int) b->type);
ui_out_field_string (uiout, "type", bptypes[(int)b->type].description);
annotate_field (2);
ui_out_field_string (uiout, "disp", bpdisps[(int)b->disposition]);
annotate_field (3);
ui_out_field_fmt (uiout, "enabled", "%c", bpenables[(int)b->enable]);
...

This example, also from print_one_breakpoint, shows how to produce a complicated
output field using the print_expression functions which requires a stream to be passed.
It also shows how to automate stream destruction with cleanups. The original code was:

annotate_field (5);
print_expression (b->exp, gdb_stdout);

The new version is:
struct ui_stream *stb = ui_out_stream_new (uiout);

Chapter 4: User Interface 18

struct cleanup *old_chain = make_cleanup_ui_out_stream_delete (stb);
...
annotate_field (5);
print_expression (b->exp, stb->stream);
ui_out_field_stream (uiout, "what", local_stream);

This example, also from print_one_breakpoint, shows how to use ui_out_text and
ui_out_field_string. The original code was:

annotate_field (5);
if (b->dll_pathname == NULL)

printf_filtered ("<any library> ");
else

printf_filtered ("library \"%s\" ", b->dll_pathname);

It became:
annotate_field (5);
if (b->dll_pathname == NULL)

{
ui_out_field_string (uiout, "what", "<any library>");
ui_out_spaces (uiout, 1);

}
else

{
ui_out_text (uiout, "library \"");
ui_out_field_string (uiout, "what", b->dll_pathname);
ui_out_text (uiout, "\" ");

}

The following example from print_one_breakpoint shows how to use ui_out_field_
int and ui_out_spaces. The original code was:

annotate_field (5);
if (b->forked_inferior_pid != 0)

printf_filtered ("process %d ", b->forked_inferior_pid);

It became:
annotate_field (5);
if (b->forked_inferior_pid != 0)
{

ui_out_text (uiout, "process ");
ui_out_field_int (uiout, "what", b->forked_inferior_pid);
ui_out_spaces (uiout, 1);

}

Here’s an example of using ui_out_field_string. The original code was:
annotate_field (5);
if (b->exec_pathname != NULL)
printf_filtered ("program \"%s\" ", b->exec_pathname);

It became:
annotate_field (5);
if (b->exec_pathname != NULL)
{

Chapter 5: libgdb 19

ui_out_text (uiout, "program \"");
ui_out_field_string (uiout, "what", b->exec_pathname);
ui_out_text (uiout, "\" ");

}

Finally, here’s an example of printing an address. The original code:

annotate_field (4);
printf_filtered ("%s ",

local_hex_string_custom ((unsigned long) b->address, "08l"));

It became:

annotate_field (4);
ui_out_field_core_addr (uiout, "Address", b->address);

4.3 Console Printing

4.4 TUI

5 libgdb

5.1 libgdb 1.0

libgdb 1.0 was an abortive project of years ago. The theory was to provide an API to
GDB’s functionality.

5.2 libgdb 2.0

libgdb 2.0 is an ongoing effort to update GDB so that is better able to support graphical
and other environments.

Since libgdb development is on-going, its architecture is still evolving. The following
components have so far been identified:

• Observer - ‘gdb-events.h’.

• Builder - ‘ui-out.h’

• Event Loop - ‘event-loop.h’

• Library - ‘gdb.h’

The model that ties these components together is described below.

Chapter 5: libgdb 20

5.3 The libgdb Model

A client of libgdb interacts with the library in two ways.
• As an observer (using ‘gdb-events’) receiving notifications from libgdb of any internal

state changes (break point changes, run state, etc).
• As a client querying libgdb (using the ‘ui-out’ builder) to obtain various status values

from GDB.

Since libgdb could have multiple clients (e.g. a GUI supporting the existing GDB CLI),
those clients must co-operate when controlling libgdb. In particular, a client must ensure
that libgdb is idle (i.e. no other client is using libgdb) before responding to a ‘gdb-event’
by making a query.

5.4 CLI support

At present GDB’s CLI is very much entangled in with the core of libgdb. Consequently,
a client wishing to include the CLI in their interface needs to carefully co-ordinate its own
and the CLI’s requirements.

It is suggested that the client set libgdb up to be bi-modal (alternate between CLI and
client query modes). The notes below sketch out the theory:
• The client registers itself as an observer of libgdb.
• The client create and install cli-out builder using its own versions of the ui-file

gdb_stderr, gdb_stdtarg and gdb_stdout streams.
• The client creates a separate custom ui-out builder that is only used while making

direct queries to libgdb.

When the client receives input intended for the CLI, it simply passes it along. Since the
cli-out builder is installed by default, all the CLI output in response to that command
is routed (pronounced rooted) through to the client controlled gdb_stdout et. al. streams.
At the same time, the client is kept abreast of internal changes by virtue of being a libgdb
observer.

The only restriction on the client is that it must wait until libgdb becomes idle before
initiating any queries (using the client’s custom builder).

5.5 libgdb components

Observer - ‘gdb-events.h’

‘gdb-events’ provides the client with a very raw mechanism that can be used to im-
plement an observer. At present it only allows for one observer and that observer must,
internally, handle the need to delay the processing of any event notifications until after
libgdb has finished the current command.

Builder - ‘ui-out.h’

‘ui-out’ provides the infrastructure necessary for a client to create a builder. That
builder is then passed down to libgdb when doing any queries.

Chapter 6: Symbol Handling 21

Event Loop - ‘event-loop.h’

‘event-loop’, currently non-re-entrant, provides a simple event loop. A client would
need to either plug its self into this loop or, implement a new event-loop that GDB would
use.

The event-loop will eventually be made re-entrant. This is so that [No value for “GDB”]
can better handle the problem of some commands blocking instead of returning.

Library - ‘gdb.h’

‘libgdb’ is the most obvious component of this system. It provides the query interface.
Each function is parameterized by a ui-out builder. The result of the query is constructed
using that builder before the query function returns.

6 Symbol Handling

Symbols are a key part of GDB’s operation. Symbols include variables, functions, and
types.

6.1 Symbol Reading

GDB reads symbols from symbol files. The usual symbol file is the file containing the
program which GDB is debugging. GDB can be directed to use a different file for symbols
(with the ‘symbol-file’ command), and it can also read more symbols via the ‘add-file’
and ‘load’ commands, or while reading symbols from shared libraries.

Symbol files are initially opened by code in ‘symfile.c’ using the BFD library (see
Chapter 12 [Support Libraries], page 58). BFD identifies the type of the file by examining
its header. find_sym_fns then uses this identification to locate a set of symbol-reading
functions.

Symbol-reading modules identify themselves to GDB by calling add_symtab_fns during
their module initialization. The argument to add_symtab_fns is a struct sym_fns which
contains the name (or name prefix) of the symbol format, the length of the prefix, and
pointers to four functions. These functions are called at various times to process symbol
files whose identification matches the specified prefix.

The functions supplied by each module are:

xyz_symfile_init(struct sym_fns *sf)
Called from symbol_file_add when we are about to read a new symbol file.
This function should clean up any internal state (possibly resulting from half-
read previous files, for example) and prepare to read a new symbol file. Note
that the symbol file which we are reading might be a new “main” symbol file, or
might be a secondary symbol file whose symbols are being added to the existing
symbol table.
The argument to xyz_symfile_init is a newly allocated struct sym_fns
whose bfd field contains the BFD for the new symbol file being read. Its
private field has been zeroed, and can be modified as desired. Typically, a

Chapter 6: Symbol Handling 22

struct of private information will be malloc’d, and a pointer to it will be
placed in the private field.
There is no result from xyz_symfile_init, but it can call error if it detects
an unavoidable problem.

xyz_new_init()
Called from symbol_file_add when discarding existing symbols. This function
needs only handle the symbol-reading module’s internal state; the symbol table
data structures visible to the rest of GDB will be discarded by symbol_file_
add. It has no arguments and no result. It may be called after xyz_symfile_
init, if a new symbol table is being read, or may be called alone if all symbols
are simply being discarded.

xyz_symfile_read(struct sym_fns *sf, CORE_ADDR addr, int mainline)
Called from symbol_file_add to actually read the symbols from a symbol-file
into a set of psymtabs or symtabs.
sf points to the struct sym_fns originally passed to xyz_sym_init for possible
initialization. addr is the offset between the file’s specified start address and its
true address in memory. mainline is 1 if this is the main symbol table being
read, and 0 if a secondary symbol file (e.g. shared library or dynamically loaded
file) is being read.

In addition, if a symbol-reading module creates psymtabs when xyz symfile read is
called, these psymtabs will contain a pointer to a function xyz_psymtab_to_symtab, which
can be called from any point in the GDB symbol-handling code.

xyz_psymtab_to_symtab (struct partial_symtab *pst)
Called from psymtab_to_symtab (or the PSYMTAB_TO_SYMTAB macro) if the
psymtab has not already been read in and had its pst->symtab pointer set.
The argument is the psymtab to be fleshed-out into a symtab. Upon return,
pst->readin should have been set to 1, and pst->symtab should contain a
pointer to the new corresponding symtab, or zero if there were no symbols in
that part of the symbol file.

6.2 Partial Symbol Tables

GDB has three types of symbol tables:

• Full symbol tables (symtabs). These contain the main information about symbols and
addresses.

• Partial symbol tables (psymtabs). These contain enough information to know when to
read the corresponding part of the full symbol table.

• Minimal symbol tables (msymtabs). These contain information gleaned from non-
debugging symbols.

This section describes partial symbol tables.
A psymtab is constructed by doing a very quick pass over an executable file’s debugging

information. Small amounts of information are extracted—enough to identify which parts
of the symbol table will need to be re-read and fully digested later, when the user needs

Chapter 6: Symbol Handling 23

the information. The speed of this pass causes GDB to start up very quickly. Later, as
the detailed rereading occurs, it occurs in small pieces, at various times, and the delay
therefrom is mostly invisible to the user.

The symbols that show up in a file’s psymtab should be, roughly, those visible to the
debugger’s user when the program is not running code from that file. These include external
symbols and types, static symbols and types, and enum values declared at file scope.

The psymtab also contains the range of instruction addresses that the full symbol table
would represent.

The idea is that there are only two ways for the user (or much of the code in the debugger)
to reference a symbol:

• By its address (e.g. execution stops at some address which is inside a function in this
file). The address will be noticed to be in the range of this psymtab, and the full
symtab will be read in. find_pc_function, find_pc_line, and other find_pc_...
functions handle this.

• By its name (e.g. the user asks to print a variable, or set a breakpoint on a function).
Global names and file-scope names will be found in the psymtab, which will cause the
symtab to be pulled in. Local names will have to be qualified by a global name, or a
file-scope name, in which case we will have already read in the symtab as we evaluated
the qualifier. Or, a local symbol can be referenced when we are “in” a local scope, in
which case the first case applies. lookup_symbol does most of the work here.

The only reason that psymtabs exist is to cause a symtab to be read in at the right
moment. Any symbol that can be elided from a psymtab, while still causing that to happen,
should not appear in it. Since psymtabs don’t have the idea of scope, you can’t put local
symbols in them anyway. Psymtabs don’t have the idea of the type of a symbol, either, so
types need not appear, unless they will be referenced by name.

It is a bug for GDB to behave one way when only a psymtab has been read, and another
way if the corresponding symtab has been read in. Such bugs are typically caused by a
psymtab that does not contain all the visible symbols, or which has the wrong instruction
address ranges.

The psymtab for a particular section of a symbol file (objfile) could be thrown away after
the symtab has been read in. The symtab should always be searched before the psymtab,
so the psymtab will never be used (in a bug-free environment). Currently, psymtabs are
allocated on an obstack, and all the psymbols themselves are allocated in a pair of large
arrays on an obstack, so there is little to be gained by trying to free them unless you want
to do a lot more work.

6.3 Types

Fundamental Types (e.g., FT_VOID, FT_BOOLEAN).

These are the fundamental types that GDB uses internally. Fundamental types from
the various debugging formats (stabs, ELF, etc) are mapped into one of these. They are
basically a union of all fundamental types that GDB knows about for all the languages that
GDB knows about.

Chapter 6: Symbol Handling 24

Type Codes (e.g., TYPE_CODE_PTR, TYPE_CODE_ARRAY).

Each time GDB builds an internal type, it marks it with one of these types. The type
may be a fundamental type, such as TYPE_CODE_INT, or a derived type, such as TYPE_
CODE_PTR which is a pointer to another type. Typically, several FT_* types map to one
TYPE_CODE_* type, and are distinguished by other members of the type struct, such as
whether the type is signed or unsigned, and how many bits it uses.

Builtin Types (e.g., builtin_type_void, builtin_type_char).

These are instances of type structs that roughly correspond to fundamental types and
are created as global types for GDB to use for various ugly historical reasons. We even-
tually want to eliminate these. Note for example that builtin_type_int initialized in
‘gdbtypes.c’ is basically the same as a TYPE_CODE_INT type that is initialized in ‘c-lang.c’
for an FT_INTEGER fundamental type. The difference is that the builtin_type is not as-
sociated with any particular objfile, and only one instance exists, while ‘c-lang.c’ builds
as many TYPE_CODE_INT types as needed, with each one associated with some particular
objfile.

6.4 Object File Formats

6.4.1 a.out

The a.out format is the original file format for Unix. It consists of three sections:
text, data, and bss, which are for program code, initialized data, and uninitialized data,
respectively.

The a.out format is so simple that it doesn’t have any reserved place for debugging
information. (Hey, the original Unix hackers used ‘adb’, which is a machine-language de-
bugger!) The only debugging format for a.out is stabs, which is encoded as a set of normal
symbols with distinctive attributes.

The basic a.out reader is in ‘dbxread.c’.

6.4.2 COFF

The COFF format was introduced with System V Release 3 (SVR3) Unix. COFF files
may have multiple sections, each prefixed by a header. The number of sections is limited.

The COFF specification includes support for debugging. Although this was a step for-
ward, the debugging information was woefully limited. For instance, it was not possible to
represent code that came from an included file.

The COFF reader is in ‘coffread.c’.

6.4.3 ECOFF

ECOFF is an extended COFF originally introduced for Mips and Alpha workstations.

The basic ECOFF reader is in ‘mipsread.c’.

Chapter 6: Symbol Handling 25

6.4.4 XCOFF

The IBM RS/6000 running AIX uses an object file format called XCOFF. The COFF
sections, symbols, and line numbers are used, but debugging symbols are dbx-style stabs
whose strings are located in the .debug section (rather than the string table). For more
information, see section “Top” in The Stabs Debugging Format.

The shared library scheme has a clean interface for figuring out what shared libraries
are in use, but the catch is that everything which refers to addresses (symbol tables and
breakpoints at least) needs to be relocated for both shared libraries and the main executable.
At least using the standard mechanism this can only be done once the program has been
run (or the core file has been read).

6.4.5 PE

Windows 95 and NT use the PE (Portable Executable) format for their executables. PE
is basically COFF with additional headers.

While BFD includes special PE support, GDB needs only the basic COFF reader.

6.4.6 ELF

The ELF format came with System V Release 4 (SVR4) Unix. ELF is similar to COFF
in being organized into a number of sections, but it removes many of COFF’s limitations.

The basic ELF reader is in ‘elfread.c’.

6.4.7 SOM

SOM is HP’s object file and debug format (not to be confused with IBM’s SOM, which
is a cross-language ABI).

The SOM reader is in ‘hpread.c’.

6.4.8 Other File Formats

Other file formats that have been supported by GDB include Netware Loadable Modules
(‘nlmread.c’).

6.5 Debugging File Formats

This section describes characteristics of debugging information that are independent of
the object file format.

6.5.1 stabs

stabs started out as special symbols within the a.out format. Since then, it has been
encapsulated into other file formats, such as COFF and ELF.

While ‘dbxread.c’ does some of the basic stab processing, including for encapsulated
versions, ‘stabsread.c’ does the real work.

Chapter 7: Language Support 26

6.5.2 COFF

The basic COFF definition includes debugging information. The level of support is
minimal and non-extensible, and is not often used.

6.5.3 Mips debug (Third Eye)

ECOFF includes a definition of a special debug format.

The file ‘mdebugread.c’ implements reading for this format.

6.5.4 DWARF 1

DWARF 1 is a debugging format that was originally designed to be used with ELF in
SVR4 systems.

The DWARF 1 reader is in ‘dwarfread.c’.

6.5.5 DWARF 2

DWARF 2 is an improved but incompatible version of DWARF 1.

The DWARF 2 reader is in ‘dwarf2read.c’.

6.5.6 SOM

Like COFF, the SOM definition includes debugging information.

6.6 Adding a New Symbol Reader to GDB

If you are using an existing object file format (a.out, COFF, ELF, etc), there is probably
little to be done.

If you need to add a new object file format, you must first add it to BFD. This is beyond
the scope of this document.

You must then arrange for the BFD code to provide access to the debugging symbols.
Generally GDB will have to call swapping routines from BFD and a few other BFD internal
routines to locate the debugging information. As much as possible, GDB should not depend
on the BFD internal data structures.

For some targets (e.g., COFF), there is a special transfer vector used to call swapping
routines, since the external data structures on various platforms have different sizes and
layouts. Specialized routines that will only ever be implemented by one object file format
may be called directly. This interface should be described in a file ‘bfd/libxyz.h’, which
is included by GDB.

Chapter 7: Language Support 27

7 Language Support

GDB’s language support is mainly driven by the symbol reader, although it is possible
for the user to set the source language manually.

GDB chooses the source language by looking at the extension of the file recorded in
the debug info; ‘.c’ means C, ‘.f’ means Fortran, etc. It may also use a special-purpose
language identifier if the debug format supports it, like with DWARF.

7.1 Adding a Source Language to GDB

To add other languages to GDB’s expression parser, follow the following steps:

Create the expression parser.
This should reside in a file ‘lang-exp.y’. Routines for building parsed expres-
sions into a union exp_element list are in ‘parse.c’.
Since we can’t depend upon everyone having Bison, and YACC produces parsers
that define a bunch of global names, the following lines must be included at the
top of the YACC parser, to prevent the various parsers from defining the same
global names:

#define yyparse lang_parse
#define yylex lang_lex
#define yyerror lang_error
#define yylval lang_lval
#define yychar lang_char
#define yydebug lang_debug
#define yypact lang_pact
#define yyr1 lang_r1
#define yyr2 lang_r2
#define yydef lang_def
#define yychk lang_chk
#define yypgo lang_pgo
#define yyact lang_act
#define yyexca lang_exca
#define yyerrflag lang_errflag
#define yynerrs lang_nerrs

At the bottom of your parser, define a struct language_defn and initialize
it with the right values for your language. Define an initialize_lang rou-
tine and have it call ‘add_language(lang_language_defn)’ to tell the rest of
GDB that your language exists. You’ll need some other supporting variables
and functions, which will be used via pointers from your lang_language_defn.
See the declaration of struct language_defn in ‘language.h’, and the other
‘*-exp.y’ files, for more information.

Add any evaluation routines, if necessary
If you need new opcodes (that represent the operations of the language), add
them to the enumerated type in ‘expression.h’. Add support code for these
operations in the evaluate_subexp function defined in the file ‘eval.c’. Add
cases for new opcodes in two functions from ‘parse.c’: prefixify_subexp and

Chapter 8: Host Definition 28

length_of_subexp. These compute the number of exp_elements that a given
operation takes up.

Update some existing code
Add an enumerated identifier for your language to the enumerated type enum
language in ‘defs.h’.

Update the routines in ‘language.c’ so your language is included. These rou-
tines include type predicates and such, which (in some cases) are language
dependent. If your language does not appear in the switch statement, an error
is reported.

Also included in ‘language.c’ is the code that updates the variable current_
language, and the routines that translate the language_lang enumerated iden-
tifier into a printable string.

Update the function _initialize_language to include your language. This
function picks the default language upon startup, so is dependent upon which
languages that GDB is built for.

Update allocate_symtab in ‘symfile.c’ and/or symbol-reading code so that
the language of each symtab (source file) is set properly. This is used to deter-
mine the language to use at each stack frame level. Currently, the language is
set based upon the extension of the source file. If the language can be better
inferred from the symbol information, please set the language of the symtab in
the symbol-reading code.

Add helper code to print_subexp (in ‘expprint.c’) to handle any new ex-
pression opcodes you have added to ‘expression.h’. Also, add the printed
representations of your operators to op_print_tab.

Add a place of call
Add a call to lang_parse() and lang_error in parse_exp_1 (defined in
‘parse.c’).

Use macros to trim code
The user has the option of building GDB for some or all of the languages. If
the user decides to build GDB for the language lang, then every file dependent
on ‘language.h’ will have the macro _LANG_lang defined in it. Use #ifdefs to
leave out large routines that the user won’t need if he or she is not using your
language.

Note that you do not need to do this in your YACC parser, since if GDB is not
build for lang, then ‘lang-exp.tab.o’ (the compiled form of your parser) is not
linked into GDB at all.

See the file ‘configure.in’ for how GDB is configured for different languages.

Edit ‘Makefile.in’
Add dependencies in ‘Makefile.in’. Make sure you update the macro variables
such as HFILES and OBJS, otherwise your code may not get linked in, or, worse
yet, it may not get tarred into the distribution!

Chapter 8: Host Definition 29

8 Host Definition

Maintainer’s note: In theory, new targets no longer need to use the host framework
described below. Instead it should be possible to handle everything using autoconf. Patches
eliminating this framework welcome.

With the advent of Autoconf, it’s rarely necessary to have host definition machinery
anymore.

8.1 Adding a New Host

Most of GDB’s host configuration support happens via Autoconf. New host-specific
definitions should be rarely needed. GDB still uses the host-specific definitions and files
listed below, but these mostly exist for historical reasons, and should eventually disappear.

Several files control GDB’s configuration for host systems:

‘gdb/config/arch/xyz.mh’
Specifies Makefile fragments needed when hosting on machine xyz. In
particular, this lists the required machine-dependent object files, by defining
‘XDEPFILES=...’. Also specifies the header file which describes host xyz,
by defining XM_FILE= xm-xyz.h. You can also define CC, SYSV_DEFINE,
XM_CFLAGS, XM_ADD_FILES, XM_CLIBS, XM_CDEPS, etc.; see ‘Makefile.in’.

‘gdb/config/arch/xm-xyz.h’
(‘xm.h’ is a link to this file, created by configure). Contains C macro def-
initions describing the host system environment, such as byte order, host C
compiler and library.

‘gdb/xyz-xdep.c’
Contains any miscellaneous C code required for this machine as a host. On
most machines it doesn’t exist at all. If it does exist, put ‘xyz-xdep.o’ into the
XDEPFILES line in ‘gdb/config/arch/xyz.mh’.

Generic Host Support Files

There are some “generic” versions of routines that can be used by various systems.
These can be customized in various ways by macros defined in your ‘xm-xyz.h’ file. If these
routines work for the xyz host, you can just include the generic file’s name (with ‘.o’, not
‘.c’) in XDEPFILES.

Otherwise, if your machine needs custom support routines, you will need to write routines
that perform the same functions as the generic file. Put them into xyz-xdep.c, and put
xyz-xdep.o into XDEPFILES.

‘ser-unix.c’
This contains serial line support for Unix systems. This is always included, via
the makefile variable SER_HARDWIRE; override this variable in the ‘.mh’ file to
avoid it.

Chapter 8: Host Definition 30

‘ser-go32.c’
This contains serial line support for 32-bit programs running under DOS, using
the DJGPP (a.k.a. GO32) execution environment.

‘ser-tcp.c’
This contains generic TCP support using sockets.

8.2 Host Conditionals

When GDB is configured and compiled, various macros are defined or left undefined, to
control compilation based on the attributes of the host system. These macros and their
meanings (or if the meaning is not documented here, then one of the source files where they
are used is indicated) are:

GDBINIT_FILENAME
The default name of GDB’s initialization file (normally ‘.gdbinit’).

MEM_FNS_DECLARED
Your host config file defines this if it includes declarations of memcpy and memset.
Define this to avoid conflicts between the native include files and the declara-
tions in ‘defs.h’.

NO_STD_REGS
This macro is deprecated.

NO_SYS_FILE
Define this if your system does not have a <sys/file.h>.

SIGWINCH_HANDLER
If your host defines SIGWINCH, you can define this to be the name of a function
to be called if SIGWINCH is received.

SIGWINCH_HANDLER_BODY
Define this to expand into code that will define the function named by the
expansion of SIGWINCH_HANDLER.

ALIGN_STACK_ON_STARTUP
Define this if your system is of a sort that will crash in tgetent if the stack
happens not to be longword-aligned when main is called. This is a rare situation,
but is known to occur on several different types of systems.

CRLF_SOURCE_FILES
Define this if host files use \r\n rather than \n as a line terminator. This will
cause source file listings to omit \r characters when printing and it will allow
\r\n line endings of files which are “sourced” by gdb. It must be possible to
open files in binary mode using O_BINARY or, for fopen, "rb".

DEFAULT_PROMPT
The default value of the prompt string (normally "(gdb) ").

DEV_TTY The name of the generic TTY device, defaults to "/dev/tty".

Chapter 8: Host Definition 31

FCLOSE_PROVIDED
Define this if the system declares fclose in the headers included in defs.h.
This isn’t needed unless your compiler is unusually anal.

FOPEN_RB Define this if binary files are opened the same way as text files.

GETENV_PROVIDED
Define this if the system declares getenv in its headers included in defs.h.
This isn’t needed unless your compiler is unusually anal.

HAVE_MMAP
In some cases, use the system call mmap for reading symbol tables. For some
machines this allows for sharing and quick updates.

HAVE_SIGSETMASK
Define this if the host system has job control, but does not define sigsetmask.
Currently, this is only true of the RS/6000.

HAVE_TERMIO
Define this if the host system has termio.h.

HOST_BYTE_ORDER
The ordering of bytes in the host. This must be defined to be either BIG_ENDIAN
or LITTLE_ENDIAN.

INT_MAX
INT_MIN
LONG_MAX
UINT_MAX
ULONG_MAX

Values for host-side constants.

ISATTY Substitute for isatty, if not available.

LONGEST This is the longest integer type available on the host. If not defined, it will
default to long long or long, depending on CC_HAS_LONG_LONG.

CC_HAS_LONG_LONG
Define this if the host C compiler supports long long. This is set by the
configure script.

PRINTF_HAS_LONG_LONG
Define this if the host can handle printing of long long integers via the printf
format conversion specifier ll. This is set by the configure script.

HAVE_LONG_DOUBLE
Define this if the host C compiler supports long double. This is set by the
configure script.

PRINTF_HAS_LONG_DOUBLE
Define this if the host can handle printing of long double float-point numbers
via the printf format conversion specifier Lg. This is set by the configure
script.

Chapter 8: Host Definition 32

SCANF_HAS_LONG_DOUBLE
Define this if the host can handle the parsing of long double float-point numbers
via the scanf format conversion specifier Lg. This is set by the configure script.

LSEEK_NOT_LINEAR
Define this if lseek (n) does not necessarily move to byte number n in the
file. This is only used when reading source files. It is normally faster to define
CRLF_SOURCE_FILES when possible.

L_SET This macro is used as the argument to lseek (or, most commonly, bfd_seek).
FIXME, should be replaced by SEEK SET instead, which is the POSIX equiv-
alent.

MALLOC_INCOMPATIBLE
Define this if the system’s prototype for malloc differs from the ansi definition.

MMAP_BASE_ADDRESS
When using HAVE MMAP, the first mapping should go at this address.

MMAP_INCREMENT
when using HAVE MMAP, this is the increment between mappings.

NORETURN If defined, this should be one or more tokens, such as volatile, that can be
used in both the declaration and definition of functions to indicate that they
never return. The default is already set correctly if compiling with GCC. This
will almost never need to be defined.

ATTR_NORETURN
If defined, this should be one or more tokens, such as __attribute__
((noreturn)), that can be used in the declarations of functions to indicate
that they never return. The default is already set correctly if compiling with
GCC. This will almost never need to be defined.

USE_GENERIC_DUMMY_FRAMES
Define this to 1 if the target is using the generic inferior function call code. See
blockframe.c for more information.

USE_MMALLOC
GDB will use the mmalloc library for memory allocation for symbol reading if
this symbol is defined. Be careful defining it since there are systems on which
mmalloc does not work for some reason. One example is the DECstation, where
its RPC library can’t cope with our redefinition of malloc to call mmalloc.
When defining USE_MMALLOC, you will also have to set MMALLOC in the Makefile,
to point to the mmalloc library. This define is set when you configure with
‘--with-mmalloc’.

NO_MMCHECK
Define this if you are using mmalloc, but don’t want the overhead of checking
the heap with mmcheck. Note that on some systems, the C runtime makes calls
to malloc prior to calling main, and if free is ever called with these pointers

Chapter 9: Target Architecture Definition 33

after calling mmcheck to enable checking, a memory corruption abort is certain
to occur. These systems can still use mmalloc, but must define NO_MMCHECK.

MMCHECK_FORCE
Define this to 1 if the C runtime allocates memory prior to mmcheck being called,
but that memory is never freed so we don’t have to worry about it triggering
a memory corruption abort. The default is 0, which means that mmcheck will
only install the heap checking functions if there has not yet been any memory
allocation calls, and if it fails to install the functions, GDB will issue a warning.
This is currently defined if you configure using ‘--with-mmalloc’.

NO_SIGINTERRUPT
Define this to indicate that siginterrupt is not available.

R_OK Define if this is not in a system header file (typically, ‘unistd.h’).

SEEK_CUR
SEEK_SET Define these to appropriate value for the system lseek, if not already defined.

STOP_SIGNAL
This is the signal for stopping GDB. Defaults to SIGTSTP. (Only redefined for
the Convex.)

USE_O_NOCTTY
Define this if the interior’s tty should be opened with the O_NOCTTY flag.
(FIXME: This should be a native-only flag, but ‘inflow.c’ is always linked
in.)

USG Means that System V (prior to SVR4) include files are in use. (FIXME: This
symbol is abused in ‘infrun.c’, ‘regex.c’, ‘remote-nindy.c’, and ‘utils.c’
for other things, at the moment.)

lint Define this to help placate lint in some situations.

volatile Define this to override the defaults of __volatile__ or /**/.

9 Target Architecture Definition

GDB’s target architecture defines what sort of machine-language programs GDB can
work with, and how it works with them.

The target architecture object is implemented as the C structure struct gdbarch *.
The structure, and its methods, are generated using the Bourn shell script ‘gdbarch.sh’.

9.1 Registers and Memory

GDB’s model of the target machine is rather simple. GDB assumes the machine includes
a bank of registers and a block of memory. Each register may have a different size.

GDB does not have a magical way to match up with the compiler’s idea of which registers
are which; however, it is critical that they do match up accurately. The only way to make

Chapter 9: Target Architecture Definition 34

this work is to get accurate information about the order that the compiler uses, and to
reflect that in the REGISTER_NAME and related macros.

GDB can handle big-endian, little-endian, and bi-endian architectures.

9.2 Pointers Are Not Always Addresses

On almost all 32-bit architectures, the representation of a pointer is indistinguishable
from the representation of some fixed-length number whose value is the byte address of
the object pointed to. On such machines, the words “pointer” and “address” can be used
interchangeably. However, architectures with smaller word sizes are often cramped for
address space, so they may choose a pointer representation that breaks this identity, and
allows a larger code address space.

For example, the Mitsubishi D10V is a 16-bit VLIW processor whose instructions are
32 bits long3. If the D10V used ordinary byte addresses to refer to code locations, then the
processor would only be able to address 64kb of instructions. However, since instructions
must be aligned on four-byte boundaries, the low two bits of any valid instruction’s byte
address are always zero—byte addresses waste two bits. So instead of byte addresses, the
D10V uses word addresses—byte addresses shifted right two bits—to refer to code. Thus,
the D10V can use 16-bit words to address 256kb of code space.

However, this means that code pointers and data pointers have different forms on the
D10V. The 16-bit word 0xC020 refers to byte address 0xC020 when used as a data address,
but refers to byte address 0x30080 when used as a code address.

(The D10V also uses separate code and data address spaces, which also affects the
correspondence between pointers and addresses, but we’re going to ignore that here; this
example is already too long.)

To cope with architectures like this—the D10V is not the only one!—GDB tries to
distinguish between addresses, which are byte numbers, and pointers, which are the target’s
representation of an address of a particular type of data. In the example above, 0xC020 is
the pointer, which refers to one of the addresses 0xC020 or 0x30080, depending on the type
imposed upon it. GDB provides functions for turning a pointer into an address and vice
versa, in the appropriate way for the current architecture.

Unfortunately, since addresses and pointers are identical on almost all processors, this
distinction tends to bit-rot pretty quickly. Thus, each time you port GDB to an architecture
which does distinguish between pointers and addresses, you’ll probably need to clean up
some architecture-independent code.

Here are functions which convert between pointers and addresses:

FunctionCORE_ADDR extract typed address (void *buf, struct type *type)
Treat the bytes at buf as a pointer or reference of type type, and return the address
it represents, in a manner appropriate for the current architecture. This yields an
address GDB can use to read target memory, disassemble, etc. Note that buf refers
to a buffer in GDB’s memory, not the inferior’s.

3 Some D10V instructions are actually pairs of 16-bit sub-instructions. However, since you can’t jump
into the middle of such a pair, code addresses can only refer to full 32 bit instructions, which is what
matters in this explanation.

Chapter 9: Target Architecture Definition 35

For example, if the current architecture is the Intel x86, this function extracts a little-
endian integer of the appropriate length from buf and returns it. However, if the
current architecture is the D10V, this function will return a 16-bit integer extracted
from buf, multiplied by four if type is a pointer to a function.
If type is not a pointer or reference type, then this function will signal an internal
error.

FunctionCORE_ADDR store typed address (void *buf, struct type *type,
CORE_ADDR addr)

Store the address addr in buf, in the proper format for a pointer of type type in
the current architecture. Note that buf refers to a buffer in GDB’s memory, not the
inferior’s.
For example, if the current architecture is the Intel x86, this function stores addr
unmodified as a little-endian integer of the appropriate length in buf. However, if
the current architecture is the D10V, this function divides addr by four if type is a
pointer to a function, and then stores it in buf.
If type is not a pointer or reference type, then this function will signal an internal
error.

FunctionCORE_ADDR value as pointer (value_ptr val)
Assuming that val is a pointer, return the address it represents, as appropriate for
the current architecture.
This function actually works on integral values, as well as pointers. For pointers,
it performs architecture-specific conversions as described above for extract_typed_
address.

FunctionCORE_ADDR value from pointer (struct type *type, CORE_ADDR
addr)

Create and return a value representing a pointer of type type to the address addr, as
appropriate for the current architecture. This function performs architecture-specific
conversions as described above for store_typed_address.

GDB also provides functions that do the same tasks, but assume that pointers are
simply byte addresses; they aren’t sensitive to the current architecture, beyond knowing
the appropriate endianness.

FunctionCORE_ADDR extract address (void *addr, int len)
Extract a len-byte number from addr in the appropriate endianness for the current
architecture, and return it. Note that addr refers to GDB’s memory, not the inferior’s.
This function should only be used in architecture-specific code; it doesn’t have enough
information to turn bits into a true address in the appropriate way for the current
architecture. If you can, use extract_typed_address instead.

Functionvoid store address (void *addr, int len, LONGEST val)
Store val at addr as a len-byte integer, in the appropriate endianness for the current
architecture. Note that addr refers to a buffer in GDB’s memory, not the inferior’s.

Chapter 9: Target Architecture Definition 36

This function should only be used in architecture-specific code; it doesn’t have enough
information to turn a true address into bits in the appropriate way for the current
architecture. If you can, use store_typed_address instead.

Here are some macros which architectures can define to indicate the relationship between
pointers and addresses. These have default definitions, appropriate for architectures on
which all pointers are simple byte addresses.

Target MacroCORE_ADDR POINTER TO ADDRESS (struct type *type,
char *buf)

Assume that buf holds a pointer of type type, in the appropriate format for the
current architecture. Return the byte address the pointer refers to.
This function may safely assume that type is either a pointer or a C++ reference type.

Target Macrovoid ADDRESS TO POINTER (struct type *type, char
*buf, CORE_ADDR addr)

Store in buf a pointer of type type representing the address addr, in the appropriate
format for the current architecture.
This function may safely assume that type is either a pointer or a C++ reference type.

9.3 Using Different Register and Memory Data
Representations

Maintainer’s note: The way GDB manipulates registers is undergoing significant change.
Many of the macros and functions refered to in the sections below are likely to be made
obsolete. See the file ‘TODO’ for more up-to-date information.

Some architectures use one representation for a value when it lives in a register, but
use a different representation when it lives in memory. In GDB’s terminology, the raw
representation is the one used in the target registers, and the virtual representation is the
one used in memory, and within GDB struct value objects.

For almost all data types on almost all architectures, the virtual and raw representations
are identical, and no special handling is needed. However, they do occasionally differ. For
example:
• The x86 architecture supports an 80-bit long double type. However, when we store

those values in memory, they occupy twelve bytes: the floating-point number occupies
the first ten, and the final two bytes are unused. This keeps the values aligned on four-
byte boundaries, allowing more efficient access. Thus, the x86 80-bit floating-point
type is the raw representation, and the twelve-byte loosely-packed arrangement is the
virtual representation.

• Some 64-bit MIPS targets present 32-bit registers to GDB as 64-bit registers, with
garbage in their upper bits. GDB ignores the top 32 bits. Thus, the 64-bit form,
with garbage in the upper 32 bits, is the raw representation, and the trimmed 32-bit
representation is the virtual representation.

In general, the raw representation is determined by the architecture, or GDB’s interface
to the architecture, while the virtual representation can be chosen for GDB’s convenience.

Chapter 9: Target Architecture Definition 37

GDB’s register file, registers, holds the register contents in raw format, and the GDB
remote protocol transmits register values in raw format.

Your architecture may define the following macros to request conversions between the
raw and virtual format:

Target Macroint REGISTER CONVERTIBLE (int reg)
Return non-zero if register number reg ’s value needs different raw and virtual formats.
You should not use REGISTER_CONVERT_TO_VIRTUAL for a register unless this macro
returns a non-zero value for that register.

Target Macroint REGISTER RAW SIZE (int reg)
The size of register number reg ’s raw value. This is the number of bytes the register
will occupy in registers, or in a GDB remote protocol packet.

Target Macroint REGISTER VIRTUAL SIZE (int reg)
The size of register number reg ’s value, in its virtual format. This is the size a struct
value’s buffer will have, holding that register’s value.

Target Macrostruct type *REGISTER_VIRTUAL_TYPE (int reg)
This is the type of the virtual representation of register number reg. Note that there
is no need for a macro giving a type for the register’s raw form; once the register’s
value has been obtained, GDB always uses the virtual form.

Target Macrovoid REGISTER CONVERT TO VIRTUAL (int reg,
struct type *type, char *from, char *to)

Convert the value of register number reg to type, which should always be REGISTER_
VIRTUAL_TYPE (reg). The buffer at from holds the register’s value in raw format; the
macro should convert the value to virtual format, and place it at to.
Note that REGISTER_CONVERT_TO_VIRTUAL and REGISTER_CONVERT_TO_RAW take
their reg and type arguments in different orders.
You should only use REGISTER_CONVERT_TO_VIRTUAL with registers for which the
REGISTER_CONVERTIBLE macro returns a non-zero value.

Target Macrovoid REGISTER CONVERT TO RAW (struct type
*type, int reg, char *from, char *to)

Convert the value of register number reg to type, which should always be REGISTER_
VIRTUAL_TYPE (reg). The buffer at from holds the register’s value in raw format; the
macro should convert the value to virtual format, and place it at to.
Note that REGISTER CONVERT TO VIRTUAL and REGISTER CONVERT TO RAW
take their reg and type arguments in different orders.

9.4 Frame Interpretation

9.5 Inferior Call Setup

Chapter 9: Target Architecture Definition 38

9.6 Compiler Characteristics

9.7 Target Conditionals

This section describes the macros that you can use to define the target machine.

ADDITIONAL_OPTIONS
ADDITIONAL_OPTION_CASES
ADDITIONAL_OPTION_HANDLER
ADDITIONAL_OPTION_HELP

These are a set of macros that allow the addition of additional command line
options to GDB. They are currently used only for the unsupported i960 Nindy
target, and should not be used in any other configuration.

ADDR_BITS_REMOVE (addr)
If a raw machine instruction address includes any bits that are not really part
of the address, then define this macro to expand into an expression that zeroes
those bits in addr. This is only used for addresses of instructions, and even
then not in all contexts.

For example, the two low-order bits of the PC on the Hewlett-Packard PA
2.0 architecture contain the privilege level of the corresponding instruction.
Since instructions must always be aligned on four-byte boundaries, the pro-
cessor masks out these bits to generate the actual address of the instruction.
ADDR BITS REMOVE should filter out these bits with an expression such as
((addr) & ~3).

ADDRESS_TO_POINTER (type, buf, addr)
Store in buf a pointer of type type representing the address addr, in the ap-
propriate format for the current architecture. This macro may safely assume
that type is either a pointer or a C++ reference type. See Chapter 9 [Pointers
Are Not Always Addresses], page 33.

BEFORE_MAIN_LOOP_HOOK
Define this to expand into any code that you want to execute before the main
loop starts. Although this is not, strictly speaking, a target conditional, that is
how it is currently being used. Note that if a configuration were to define it one
way for a host and a different way for the target, GDB will probably not compile,
let alone run correctly. This macro is currently used only for the unsupported
i960 Nindy target, and should not be used in any other configuration.

BELIEVE_PCC_PROMOTION
Define if the compiler promotes a short or char parameter to an int, but still
reports the parameter as its original type, rather than the promoted type.

BELIEVE_PCC_PROMOTION_TYPE
Define this if GDB should believe the type of a short argument when compiled
by pcc, but look within a full int space to get its value. Only defined for Sun-3
at present.

Chapter 9: Target Architecture Definition 39

BITS_BIG_ENDIAN
Define this if the numbering of bits in the targets does not match the endianness
of the target byte order. A value of 1 means that the bits are numbered in a
big-endian bit order, 0 means little-endian.

BREAKPOINT
This is the character array initializer for the bit pattern to put into memory
where a breakpoint is set. Although it’s common to use a trap instruction for
a breakpoint, it’s not required; for instance, the bit pattern could be an invalid
instruction. The breakpoint must be no longer than the shortest instruction of
the architecture.
BREAKPOINT has been deprecated in favor of BREAKPOINT_FROM_PC.

BIG_BREAKPOINT
LITTLE_BREAKPOINT

Similar to BREAKPOINT, but used for bi-endian targets.
BIG_BREAKPOINT and LITTLE_BREAKPOINT have been deprecated in favor of
BREAKPOINT_FROM_PC.

REMOTE_BREAKPOINT
LITTLE_REMOTE_BREAKPOINT
BIG_REMOTE_BREAKPOINT

Similar to BREAKPOINT, but used for remote targets.
BIG_REMOTE_BREAKPOINT and LITTLE_REMOTE_BREAKPOINT have been depre-
cated in favor of BREAKPOINT_FROM_PC.

BREAKPOINT_FROM_PC (pcptr, lenptr)
Use the program counter to determine the contents and size of a breakpoint
instruction. It returns a pointer to a string of bytes that encode a breakpoint
instruction, stores the length of the string to *lenptr, and adjusts pc (if neces-
sary) to point to the actual memory location where the breakpoint should be
inserted.
Although it is common to use a trap instruction for a breakpoint, it’s not
required; for instance, the bit pattern could be an invalid instruction. The
breakpoint must be no longer than the shortest instruction of the architecture.
Replaces all the other BREAKPOINT macros.

MEMORY_INSERT_BREAKPOINT (addr, contents cache)
MEMORY_REMOVE_BREAKPOINT (addr, contents cache)

Insert or remove memory based breakpoints. Reasonable defaults (default_
memory_insert_breakpoint and default_memory_remove_breakpoint
respectively) have been provided so that it is not necessary to define
these for most architectures. Architectures which may want to define
MEMORY_INSERT_BREAKPOINT and MEMORY_REMOVE_BREAKPOINT will likely have
instructions that are oddly sized or are not stored in a conventional manner.
It may also be desirable (from an efficiency standpoint) to define custom break-
point insertion and removal routines if BREAKPOINT_FROM_PC needs to read the
target’s memory for some reason.

Chapter 9: Target Architecture Definition 40

CALL_DUMMY_P
A C expresson that is non-zero when the target suports inferior function calls.

CALL_DUMMY_WORDS
Pointer to an array of LONGEST words of data containing host-byte-ordered
REGISTER_BYTES sized values that partially specify the sequence of instructions
needed for an inferior function call.
Should be deprecated in favor of a macro that uses target-byte-ordered data.

SIZEOF_CALL_DUMMY_WORDS
The size of CALL_DUMMY_WORDS. When CALL_DUMMY_P this must return a posi-
tive value. See also CALL_DUMMY_LENGTH.

CALL_DUMMY
A static initializer for CALL_DUMMY_WORDS. Deprecated.

CALL_DUMMY_LOCATION
See the file ‘inferior.h’.

CALL_DUMMY_STACK_ADJUST
Stack adjustment needed when performing an inferior function call.
Should be deprecated in favor of something like STACK_ALIGN.

CALL_DUMMY_STACK_ADJUST_P
Predicate for use of CALL_DUMMY_STACK_ADJUST.
Should be deprecated in favor of something like STACK_ALIGN.

CANNOT_FETCH_REGISTER (regno)
A C expression that should be nonzero if regno cannot be fetched from an
inferior process. This is only relevant if FETCH_INFERIOR_REGISTERS is not
defined.

CANNOT_STORE_REGISTER (regno)
A C expression that should be nonzero if regno should not be written to the
target. This is often the case for program counters, status words, and other
special registers. If this is not defined, GDB will assume that all registers may
be written.

DO_DEFERRED_STORES
CLEAR_DEFERRED_STORES

Define this to execute any deferred stores of registers into the inferior, and to
cancel any deferred stores.
Currently only implemented correctly for native Sparc configurations?

COERCE_FLOAT_TO_DOUBLE (formal, actual)
If we are calling a function by hand, and the function was declared (according to
the debug info) without a prototype, should we automatically promote floats
to doubles? This macro must evaluate to non-zero if we should, or zero if we
should leave the value alone.
The argument actual is the type of the value we want to pass to the function.
The argument formal is the type of this argument, as it appears in the function’s

Chapter 9: Target Architecture Definition 41

definition. Note that formal may be zero if we have no debugging information
for the function, or if we’re passing more arguments than are officially declared
(for example, varargs). This macro is never invoked if the function definitely
has a prototype.

The default behavior is to promote only when we have no type information for
the formal parameter. This is different from the obvious behavior, which would
be to promote whenever we have no prototype, just as the compiler does. It’s
annoying, but some older targets rely on this. If you want GDB to follow the
typical compiler behavior—to always promote when there is no prototype in
scope—your gdbarch init function can call set_gdbarch_coerce_float_to_
double and select the standard_coerce_float_to_double function.

CPLUS_MARKER
Define this to expand into the character that G++ uses to distinguish compiler-
generated identifiers from programmer-specified identifiers. By default, this
expands into ’$’. Most System V targets should define this to ’.’.

DBX_PARM_SYMBOL_CLASS
Hook for the SYMBOL_CLASS of a parameter when decoding DBX symbol infor-
mation. In the i960, parameters can be stored as locals or as args, depending
on the type of the debug record.

DECR_PC_AFTER_BREAK
Define this to be the amount by which to decrement the PC after the program
encounters a breakpoint. This is often the number of bytes in BREAKPOINT,
though not always. For most targets this value will be 0.

DECR_PC_AFTER_HW_BREAK
Similarly, for hardware breakpoints.

DISABLE_UNSETTABLE_BREAK (addr)
If defined, this should evaluate to 1 if addr is in a shared library in which
breakpoints cannot be set and so should be disabled.

DO_REGISTERS_INFO
If defined, use this to print the value of a register or all registers.

DWARF_REG_TO_REGNUM
Convert DWARF register number into GDB regnum. If not defined, no conver-
sion will be performed.

DWARF2_REG_TO_REGNUM
Convert DWARF2 register number into GDB regnum. If not defined, no con-
version will be performed.

ECOFF_REG_TO_REGNUM
Convert ECOFF register number into GDB regnum. If not defined, no conver-
sion will be performed.

END_OF_TEXT_DEFAULT
This is an expression that should designate the end of the text section.

Chapter 9: Target Architecture Definition 42

EXTRACT_RETURN_VALUE(type, regbuf, valbuf)
Define this to extract a function’s return value of type type from the raw register
state regbuf and copy that, in virtual format, into valbuf.

EXTRACT_STRUCT_VALUE_ADDRESS(regbuf)
When defined, extract from the array regbuf (containing the raw register state)
the CORE_ADDR at which a function should return its structure value.

If not defined, EXTRACT_RETURN_VALUE is used.

EXTRACT_STRUCT_VALUE_ADDRESS_P()
Predicate for EXTRACT_STRUCT_VALUE_ADDRESS.

FLOAT_INFO
If defined, then the ‘info float’ command will print information about the
processor’s floating point unit.

FP_REGNUM
If the virtual frame pointer is kept in a register, then define this macro to be
the number (greater than or equal to zero) of that register.

This should only need to be defined if TARGET_READ_FP and TARGET_WRITE_FP
are not defined.

FRAMELESS_FUNCTION_INVOCATION(fi)
Define this to an expression that returns 1 if the function invocation represented
by fi does not have a stack frame associated with it. Otherwise return 0.

FRAME_ARGS_ADDRESS_CORRECT
See ‘stack.c’.

FRAME_CHAIN(frame)
Given frame, return a pointer to the calling frame.

FRAME_CHAIN_COMBINE(chain, frame)
Define this to take the frame chain pointer and the frame’s nominal address
and produce the nominal address of the caller’s frame. Presently only defined
for HP PA.

FRAME_CHAIN_VALID(chain, thisframe)
Define this to be an expression that returns zero if the given frame is an outer-
most frame, with no caller, and nonzero otherwise. Several common definitions
are available:

• file_frame_chain_valid is nonzero if the chain pointer is nonzero and
given frame’s PC is not inside the startup file (such as ‘crt0.o’).

• func_frame_chain_valid is nonzero if the chain pointer is nonzero and
the given frame’s PC is not in main or a known entry point function (such
as _start).

• generic_file_frame_chain_valid and generic_func_frame_chain_
valid are equivalent implementations for targets using generic dummy
frames.

Chapter 9: Target Architecture Definition 43

FRAME_INIT_SAVED_REGS(frame)
See ‘frame.h’. Determines the address of all registers in the current stack frame
storing each in frame->saved_regs. Space for frame->saved_regs shall be
allocated by FRAME_INIT_SAVED_REGS using either frame_saved_regs_zalloc
or frame_obstack_alloc.
FRAME_FIND_SAVED_REGS and EXTRA_FRAME_INFO are deprecated.

FRAME_NUM_ARGS (fi)
For the frame described by fi return the number of arguments that are being
passed. If the number of arguments is not known, return -1.

FRAME_SAVED_PC(frame)
Given frame, return the pc saved there. This is the return address.

FUNCTION_EPILOGUE_SIZE
For some COFF targets, the x_sym.x_misc.x_fsize field of the function end
symbol is 0. For such targets, you must define FUNCTION_EPILOGUE_SIZE to
expand into the standard size of a function’s epilogue.

FUNCTION_START_OFFSET
An integer, giving the offset in bytes from a function’s address (as used in
the values of symbols, function pointers, etc.), and the function’s first genuine
instruction.
This is zero on almost all machines: the function’s address is usually the address
of its first instruction. However, on the VAX, for example, each function starts
with two bytes containing a bitmask indicating which registers to save upon
entry to the function. The VAX call instructions check this value, and save the
appropriate registers automatically. Thus, since the offset from the function’s
address to its first instruction is two bytes, FUNCTION_START_OFFSET would be
2 on the VAX.

GCC_COMPILED_FLAG_SYMBOL
GCC2_COMPILED_FLAG_SYMBOL

If defined, these are the names of the symbols that GDB will look for to detect
that GCC compiled the file. The default symbols are gcc_compiled. and
gcc2_compiled., respectively. (Currently only defined for the Delta 68.)

GDB_MULTI_ARCH
If defined and non-zero, enables suport for multiple architectures within GDB.
This support can be enabled at two levels. At level one, only definitions for
previously undefined macros are provided; at level two, a multi-arch definition
of all architecture dependant macros will be defined.

GDB_TARGET_IS_HPPA
This determines whether horrible kludge code in ‘dbxread.c’ and
‘partial-stab.h’ is used to mangle multiple-symbol-table files from HPPA’s.
This should all be ripped out, and a scheme like ‘elfread.c’ used instead.

GET_LONGJMP_TARGET
For most machines, this is a target-dependent parameter. On the DECsta-
tion and the Iris, this is a native-dependent parameter, since trhe header file
‘setjmp.h’ is needed to define it.

Chapter 9: Target Architecture Definition 44

This macro determines the target PC address that longjmp will jump to, assum-
ing that we have just stopped at a longjmp breakpoint. It takes a CORE_ADDR *
as argument, and stores the target PC value through this pointer. It examines
the current state of the machine as needed.

GET_SAVED_REGISTER
Define this if you need to supply your own definition for the function get_
saved_register.

HAVE_REGISTER_WINDOWS
Define this if the target has register windows.

REGISTER_IN_WINDOW_P (regnum)
Define this to be an expression that is 1 if the given register is in the window.

IBM6000_TARGET
Shows that we are configured for an IBM RS/6000 target. This conditional
should be eliminated (FIXME) and replaced by feature-specific macros. It was
introduced in a haste and we are repenting at leisure.

I386_USE_GENERIC_WATCHPOINTS
An x86-based target can define this to use the generic x86 watchpoint support;
see Chapter 3 [Algorithms], page 2.

SYMBOLS_CAN_START_WITH_DOLLAR
Some systems have routines whose names start with ‘$’. Giving this macro a
non-zero value tells GDB’s expression parser to check for such routines when
parsing tokens that begin with ‘$’.
On HP-UX, certain system routines (millicode) have names beginning with ‘$’
or ‘$$’. For example, $$dyncall is a millicode routine that handles inter-space
procedure calls on PA-RISC.

IEEE_FLOAT
Define this if the target system uses IEEE-format floating point numbers.

INIT_EXTRA_FRAME_INFO (fromleaf, frame)
If additional information about the frame is required this should be stored in
frame->extra_info. Space for frame->extra_info is allocated using frame_
obstack_alloc.

INIT_FRAME_PC (fromleaf, prev)
This is a C statement that sets the pc of the frame pointed to by prev. [By
default...]

INNER_THAN (lhs, rhs)
Returns non-zero if stack address lhs is inner than (nearer to the stack top) stack
address rhs. Define this as lhs < rhs if the target’s stack grows downward in
memory, or lhs > rsh if the stack grows upward.

IN_SIGTRAMP (pc, name)
Define this to return non-zero if the given pc and/or name indicates that the
current function is a sigtramp.

Chapter 9: Target Architecture Definition 45

SIGTRAMP_START (pc)
SIGTRAMP_END (pc)

Define these to be the start and end address of the sigtramp for the given
pc. On machines where the address is just a compile time constant, the macro
expansion will typically just ignore the supplied pc.

IN_SOLIB_CALL_TRAMPOLINE (pc, name)
Define this to evaluate to nonzero if the program is stopped in the trampoline
that connects to a shared library.

IN_SOLIB_RETURN_TRAMPOLINE (pc, name)
Define this to evaluate to nonzero if the program is stopped in the trampoline
that returns from a shared library.

IN_SOLIB_DYNSYM_RESOLVE_CODE (pc)
Define this to evaluate to nonzero if the program is stopped in the dynamic
linker.

SKIP_SOLIB_RESOLVER (pc)
Define this to evaluate to the (nonzero) address at which execution should
continue to get past the dynamic linker’s symbol resolution function. A zero
value indicates that it is not important or necessary to set a breakpoint to get
through the dynamic linker and that single stepping will suffice.

IS_TRAPPED_INTERNALVAR (name)
This is an ugly hook to allow the specification of special actions that should
occur as a side-effect of setting the value of a variable internal to GDB. Cur-
rently only used by the h8500. Note that this could be either a host or target
conditional.

NEED_TEXT_START_END
Define this if GDB should determine the start and end addresses of the text
section. (Seems dubious.)

NO_HIF_SUPPORT
(Specific to the a29k.)

POINTER_TO_ADDRESS (type, buf)
Assume that buf holds a pointer of type type, in the appropriate format for
the current architecture. Return the byte address the pointer refers to. See
Chapter 9 [Pointers Are Not Always Addresses], page 33.

REGISTER_CONVERTIBLE (reg)
Return non-zero if reg uses different raw and virtual formats. See Chapter 9
[Using Different Register and Memory Data Representations], page 33.

REGISTER_RAW_SIZE (reg)
Return the raw size of reg. See Chapter 9 [Using Different Register and Memory
Data Representations], page 33.

REGISTER_VIRTUAL_SIZE (reg)
Return the virtual size of reg. See Chapter 9 [Using Different Register and
Memory Data Representations], page 33.

Chapter 9: Target Architecture Definition 46

REGISTER_VIRTUAL_TYPE (reg)
Return the virtual type of reg. See Chapter 9 [Using Different Register and
Memory Data Representations], page 33.

REGISTER_CONVERT_TO_VIRTUAL(reg, type, from, to)
Convert the value of register reg from its raw form to its virtual form. See Chap-
ter 9 [Using Different Register and Memory Data Representations], page 33.

REGISTER_CONVERT_TO_RAW(type, reg, from, to)
Convert the value of register reg from its virtual form to its raw form. See Chap-
ter 9 [Using Different Register and Memory Data Representations], page 33.

RETURN_VALUE_ON_STACK(type)
Return non-zero if values of type TYPE are returned on the stack, using the
“struct convention” (i.e., the caller provides a pointer to a buffer in which the
callee should store the return value). This controls how the ‘finish’ command
finds a function’s return value, and whether an inferior function call reserves
space on the stack for the return value.
The full logic GDB uses here is kind of odd.
• If the type being returned by value is not a structure, union, or array, and

RETURN_VALUE_ON_STACK returns zero, then GDB concludes the value is
not returned using the struct convention.

• Otherwise, GDB calls USE_STRUCT_CONVENTION (see below). If that returns
non-zero, GDB assumes the struct convention is in use.

In other words, to indicate that a given type is returned by value using the
struct convention, that type must be either a struct, union, array, or something
RETURN_VALUE_ON_STACK likes, and something that USE_STRUCT_CONVENTION
likes.
Note that, in C and C++, arrays are never returned by value. In those lan-
guages, these predicates will always see a pointer type, never an array type.
All the references above to arrays being returned by value apply only to other
languages.

SOFTWARE_SINGLE_STEP_P()
Define this as 1 if the target does not have a hardware single-step mechanism.
The macro SOFTWARE_SINGLE_STEP must also be defined.

SOFTWARE_SINGLE_STEP(signal, insert breapoints p)
A function that inserts or removes (depending on insert breapoints p) break-
points at each possible destinations of the next instruction. See ‘sparc-tdep.c’
and ‘rs6000-tdep.c’ for examples.

SOFUN_ADDRESS_MAYBE_MISSING
Somebody clever observed that, the more actual addresses you have in the
debug information, the more time the linker has to spend relocating them. So
whenever there’s some other way the debugger could find the address it needs,
you should omit it from the debug info, to make linking faster.
SOFUN_ADDRESS_MAYBE_MISSING indicates that a particular set of hacks of this
sort are in use, affecting N_SO and N_FUN entries in stabs-format debugging in-

Chapter 9: Target Architecture Definition 47

formation. N_SO stabs mark the beginning and ending addresses of compilation
units in the text segment. N_FUN stabs mark the starts and ends of functions.
SOFUN_ADDRESS_MAYBE_MISSING means two things:
• N_FUN stabs have an address of zero. Instead, you should find the addresses

where the function starts by taking the function name from the stab, and
then looking that up in the minsyms (the linker/assembler symbol table).
In other words, the stab has the name, and the linker/assembler symbol
table is the only place that carries the address.

• N_SO stabs have an address of zero, too. You just look at the N_FUN stabs
that appear before and after the N_SO stab, and guess the starting and
ending addresses of the compilation unit from them.

PCC_SOL_BROKEN
(Used only in the Convex target.)

PC_IN_CALL_DUMMY
See ‘inferior.h’.

PC_LOAD_SEGMENT
If defined, print information about the load segment for the program counter.
(Defined only for the RS/6000.)

PC_REGNUM
If the program counter is kept in a register, then define this macro to be the
number (greater than or equal to zero) of that register.
This should only need to be defined if TARGET_READ_PC and TARGET_WRITE_PC
are not defined.

NPC_REGNUM
The number of the “next program counter” register, if defined.

NNPC_REGNUM
The number of the “next next program counter” register, if defined. Currently,
this is only defined for the Motorola 88K.

PARM_BOUNDARY
If non-zero, round arguments to a boundary of this many bits before pushing
them on the stack.

PRINT_REGISTER_HOOK (regno)
If defined, this must be a function that prints the contents of the given register
to standard output.

PRINT_TYPELESS_INTEGER
This is an obscure substitute for print_longest that seems to have been de-
fined for the Convex target.

PROCESS_LINENUMBER_HOOK
A hook defined for XCOFF reading.

PROLOGUE_FIRSTLINE_OVERLAP
(Only used in unsupported Convex configuration.)

Chapter 9: Target Architecture Definition 48

PS_REGNUM
If defined, this is the number of the processor status register. (This definition
is only used in generic code when parsing "$ps".)

POP_FRAME
Used in ‘call_function_by_hand’ to remove an artificial stack frame and in
‘return_command’ to remove a real stack frame.

PUSH_ARGUMENTS (nargs, args, sp, struct return, struct addr)
Define this to push arguments onto the stack for inferior function call. Returns
the updated stack pointer value.

PUSH_DUMMY_FRAME
Used in ‘call_function_by_hand’ to create an artificial stack frame.

REGISTER_BYTES
The total amount of space needed to store GDB’s copy of the machine’s register
state.

REGISTER_NAME(i)
Return the name of register i as a string. May return NULL or NUL to indicate
that register i is not valid.

REGISTER_NAMES
Deprecated in favor of REGISTER_NAME.

REG_STRUCT_HAS_ADDR (gcc p, type)
Define this to return 1 if the given type will be passed by pointer rather than
directly.

SAVE_DUMMY_FRAME_TOS (sp)
Used in ‘call_function_by_hand’ to notify the target dependent code of the
top-of-stack value that will be passed to the the inferior code. This is the value
of the SP after both the dummy frame and space for parameters/results have
been allocated on the stack.

SDB_REG_TO_REGNUM
Define this to convert sdb register numbers into GDB regnums. If not defined,
no conversion will be done.

SHIFT_INST_REGS
(Only used for m88k targets.)

SKIP_PERMANENT_BREAKPOINT
Advance the inferior’s PC past a permanent breakpoint. GDB normally steps
over a breakpoint by removing it, stepping one instruction, and re-inserting the
breakpoint. However, permanent breakpoints are hardwired into the inferior,
and can’t be removed, so this strategy doesn’t work. Calling SKIP_PERMANENT_
BREAKPOINT adjusts the processor’s state so that execution will resume just after
the breakpoint. This macro does the right thing even when the breakpoint is
in the delay slot of a branch or jump.

SKIP_PROLOGUE (pc)
A C expression that returns the address of the “real” code beyond the function
entry prologue found at pc.

Chapter 9: Target Architecture Definition 49

SKIP_PROLOGUE_FRAMELESS_P
A C expression that should behave similarly, but that can stop as soon as the
function is known to have a frame. If not defined, SKIP_PROLOGUE will be used
instead.

SKIP_TRAMPOLINE_CODE (pc)
If the target machine has trampoline code that sits between callers and the
functions being called, then define this macro to return a new PC that is at the
start of the real function.

SP_REGNUM
If the stack-pointer is kept in a register, then define this macro to be the number
(greater than or equal to zero) of that register.
This should only need to be defined if TARGET_WRITE_SP and TARGET_WRITE_SP
are not defined.

STAB_REG_TO_REGNUM
Define this to convert stab register numbers (as gotten from ‘r’ declarations)
into GDB regnums. If not defined, no conversion will be done.

STACK_ALIGN (addr)
Define this to adjust the address to the alignment required for the processor’s
stack.

STEP_SKIPS_DELAY (addr)
Define this to return true if the address is of an instruction with a delay slot.
If a breakpoint has been placed in the instruction’s delay slot, GDB will single-
step over that instruction before resuming normally. Currently only defined for
the Mips.

STORE_RETURN_VALUE (type, valbuf)
A C expression that stores a function return value of type type, where valbuf
is the address of the value to be stored.

SUN_FIXED_LBRAC_BUG
(Used only for Sun-3 and Sun-4 targets.)

SYMBOL_RELOADING_DEFAULT
The default value of the “symbol-reloading” variable. (Never defined in current
sources.)

TARGET_BYTE_ORDER_DEFAULT
The ordering of bytes in the target. This must be either BIG_ENDIAN or LITTLE_
ENDIAN. This macro replaces TARGET_BYTE_ORDER which is deprecated.

TARGET_BYTE_ORDER_SELECTABLE_P
Non-zero if the target has both BIG_ENDIAN and LITTLE_ENDIAN variants. This
macro replaces TARGET_BYTE_ORDER_SELECTABLE which is deprecated.

TARGET_CHAR_BIT
Number of bits in a char; defaults to 8.

TARGET_COMPLEX_BIT
Number of bits in a complex number; defaults to 2 * TARGET_FLOAT_BIT.

Chapter 9: Target Architecture Definition 50

At present this macro is not used.

TARGET_DOUBLE_BIT
Number of bits in a double float; defaults to 8 * TARGET_CHAR_BIT.

TARGET_DOUBLE_COMPLEX_BIT
Number of bits in a double complex; defaults to 2 * TARGET_DOUBLE_BIT.
At present this macro is not used.

TARGET_FLOAT_BIT
Number of bits in a float; defaults to 4 * TARGET_CHAR_BIT.

TARGET_INT_BIT
Number of bits in an integer; defaults to 4 * TARGET_CHAR_BIT.

TARGET_LONG_BIT
Number of bits in a long integer; defaults to 4 * TARGET_CHAR_BIT.

TARGET_LONG_DOUBLE_BIT
Number of bits in a long double float; defaults to 2 * TARGET_DOUBLE_BIT.

TARGET_LONG_LONG_BIT
Number of bits in a long long integer; defaults to 2 * TARGET_LONG_BIT.

TARGET_PTR_BIT
Number of bits in a pointer; defaults to TARGET_INT_BIT.

TARGET_SHORT_BIT
Number of bits in a short integer; defaults to 2 * TARGET_CHAR_BIT.

TARGET_READ_PC
TARGET_WRITE_PC (val, pid)
TARGET_READ_SP
TARGET_WRITE_SP
TARGET_READ_FP
TARGET_WRITE_FP

These change the behavior of read_pc, write_pc, read_sp, write_sp, read_
fp and write_fp. For most targets, these may be left undefined. GDB will call
the read and write register functions with the relevant _REGNUM argument.
These macros are useful when a target keeps one of these registers in a hard to
get at place; for example, part in a segment register and part in an ordinary
register.

TARGET_VIRTUAL_FRAME_POINTER(pc, regp, offsetp)
Returns a (register, offset) pair representing the virtual frame pointer in
use at the code address pc. If virtual frame pointers are not used, a default
definition simply returns FP_REGNUM, with an offset of zero.

TARGET_HAS_HARDWARE_WATCHPOINTS
If non-zero, the target has support for hardware-assisted watchpoints. See
Chapter 3 [Algorithms], page 2, for more details and other related macros.

USE_STRUCT_CONVENTION (gcc p, type)
If defined, this must be an expression that is nonzero if a value of the given type
being returned from a function must have space allocated for it on the stack.

Chapter 9: Target Architecture Definition 51

gcc p is true if the function being considered is known to have been compiled
by GCC; this is helpful for systems where GCC is known to use different calling
convention than other compilers.

VARIABLES_INSIDE_BLOCK (desc, gcc p)
For dbx-style debugging information, if the compiler puts variable declarations
inside LBRAC/RBRAC blocks, this should be defined to be nonzero. desc is
the value of n_desc from the N_RBRAC symbol, and gcc p is true if GDB has no-
ticed the presence of either the GCC_COMPILED_SYMBOL or the GCC2_COMPILED_
SYMBOL. By default, this is 0.

OS9K_VARIABLES_INSIDE_BLOCK (desc, gcc p)
Similarly, for OS/9000. Defaults to 1.

Motorola M68K target conditionals.

BPT_VECTOR
Define this to be the 4-bit location of the breakpoint trap vector. If not defined,
it will default to 0xf.

REMOTE_BPT_VECTOR
Defaults to 1.

9.8 Adding a New Target

The following files add a target to GDB:

‘gdb/config/arch/ttt.mt’
Contains a Makefile fragment specific to this target. Specifies what object files
are needed for target ttt, by defining ‘TDEPFILES=...’ and ‘TDEPLIBS=...’.
Also specifies the header file which describes ttt, by defining ‘TM_FILE=
tm-ttt.h’.
You can also define ‘TM_CFLAGS’, ‘TM_CLIBS’, ‘TM_CDEPS’, but these are now
deprecated, replaced by autoconf, and may go away in future versions of GDB.

‘gdb/ttt-tdep.c’
Contains any miscellaneous code required for this target machine. On some
machines it doesn’t exist at all. Sometimes the macros in ‘tm-ttt.h’ become
very complicated, so they are implemented as functions here instead, and the
macro is simply defined to call the function. This is vastly preferable, since it
is easier to understand and debug.

‘gdb/arch-tdep.c’
‘gdb/arch-tdep.h’

This often exists to describe the basic layout of the target machine’s processor
chip (registers, stack, etc.). If used, it is included by ‘ttt-tdep.h’. It can be
shared among many targets that use the same processor.

‘gdb/config/arch/tm-ttt.h’
(‘tm.h’ is a link to this file, created by configure). Contains macro definitions
about the target machine’s registers, stack frame format and instructions.
New targets do not need this file and should not create it.

Chapter 10: Target Vector Definition 52

‘gdb/config/arch/tm-arch.h’
This often exists to describe the basic layout of the target machine’s processor
chip (registers, stack, etc.). If used, it is included by ‘tm-ttt.h’. It can be
shared among many targets that use the same processor.
New targets do not need this file and should not create it.

If you are adding a new operating system for an existing CPU chip, add a
‘config/tm-os.h’ file that describes the operating system facilities that are unusual (extra
symbol table info; the breakpoint instruction needed; etc.). Then write a ‘arch/tm-os.h’
that just #includes ‘tm-arch.h’ and ‘config/tm-os.h’.

10 Target Vector Definition

The target vector defines the interface between GDB’s abstract handling of target sys-
tems, and the nitty-gritty code that actually exercises control over a process or a serial
port. GDB includes some 30-40 different target vectors; however, each configuration of
GDB includes only a few of them.

10.1 File Targets

Both executables and core files have target vectors.

10.2 Standard Protocol and Remote Stubs

GDB’s file ‘remote.c’ talks a serial protocol to code that runs in the target system.
GDB provides several sample stubs that can be integrated into target programs or operating
systems for this purpose; they are named ‘*-stub.c’.

The GDB user’s manual describes how to put such a stub into your target code. What
follows is a discussion of integrating the SPARC stub into a complicated operating system
(rather than a simple program), by Stu Grossman, the author of this stub.

The trap handling code in the stub assumes the following upon entry to trap_low:
1. %l1 and %l2 contain pc and npc respectively at the time of the trap;
2. traps are disabled;
3. you are in the correct trap window.

As long as your trap handler can guarantee those conditions, then there is no rea-
son why you shouldn’t be able to “share” traps with the stub. The stub has no require-
ment that it be jumped to directly from the hardware trap vector. That is why it calls
exceptionHandler(), which is provided by the external environment. For instance, this
could set up the hardware traps to actually execute code which calls the stub first, and then
transfers to its own trap handler.

For the most point, there probably won’t be much of an issue with “sharing” traps, as
the traps we use are usually not used by the kernel, and often indicate unrecoverable error
conditions. Anyway, this is all controlled by a table, and is trivial to modify. The most
important trap for us is for ta 1. Without that, we can’t single step or do breakpoints.
Everything else is unnecessary for the proper operation of the debugger/stub.

Chapter 11: Native Debugging 53

From reading the stub, it’s probably not obvious how breakpoints work. They are simply
done by deposit/examine operations from GDB.

10.3 ROM Monitor Interface

10.4 Custom Protocols

10.5 Transport Layer

10.6 Builtin Simulator

11 Native Debugging

Several files control GDB’s configuration for native support:

‘gdb/config/arch/xyz.mh’
Specifies Makefile fragments needed when hosting or native on machine
xyz. In particular, this lists the required native-dependent object files, by
defining ‘NATDEPFILES=...’. Also specifies the header file which describes
native support on xyz, by defining ‘NAT_FILE= nm-xyz.h’. You can also
define ‘NAT_CFLAGS’, ‘NAT_ADD_FILES’, ‘NAT_CLIBS’, ‘NAT_CDEPS’, etc.; see
‘Makefile.in’.

‘gdb/config/arch/nm-xyz.h’
(‘nm.h’ is a link to this file, created by configure). Contains C macro defini-
tions describing the native system environment, such as child process control
and core file support.

‘gdb/xyz-nat.c’
Contains any miscellaneous C code required for this native support of this
machine. On some machines it doesn’t exist at all.

There are some “generic” versions of routines that can be used by various systems.
These can be customized in various ways by macros defined in your ‘nm-xyz.h’ file. If these
routines work for the xyz host, you can just include the generic file’s name (with ‘.o’, not
‘.c’) in NATDEPFILES.

Otherwise, if your machine needs custom support routines, you will need to write routines
that perform the same functions as the generic file. Put them into ‘xyz-nat.c’, and put
‘xyz-nat.o’ into NATDEPFILES.

‘inftarg.c’
This contains the target ops vector that supports Unix child processes on sys-
tems which use ptrace and wait to control the child.

Chapter 11: Native Debugging 54

‘procfs.c’
This contains the target ops vector that supports Unix child processes on sys-
tems which use /proc to control the child.

‘fork-child.c’
This does the low-level grunge that uses Unix system calls to do a “fork and
exec” to start up a child process.

‘infptrace.c’
This is the low level interface to inferior processes for systems using the Unix
ptrace call in a vanilla way.

11.1 Native core file Support

‘core-aout.c::fetch_core_registers()’
Support for reading registers out of a core file. This routine calls
register_addr(), see below. Now that BFD is used to read core files,
virtually all machines should use core-aout.c, and should just provide
fetch_core_registers in xyz-nat.c (or REGISTER_U_ADDR in nm-xyz.h).

‘core-aout.c::register_addr()’
If your nm-xyz.h file defines the macro REGISTER_U_ADDR(addr, blockend,
regno), it should be defined to set addr to the offset within the ‘user’ struct of
GDB register number regno. blockend is the offset within the “upage” of u.u_
ar0. If REGISTER_U_ADDR is defined, ‘core-aout.c’ will define the register_
addr() function and use the macro in it. If you do not define REGISTER_U_
ADDR, but you are using the standard fetch_core_registers(), you will need
to define your own version of register_addr(), put it into your xyz-nat.c file,
and be sure xyz-nat.o is in the NATDEPFILES list. If you have your own fetch_
core_registers(), you may not need a separate register_addr(). Many
custom fetch_core_registers() implementations simply locate the registers
themselves.

When making GDB run native on a new operating system, to make it possible to debug
core files, you will need to either write specific code for parsing your OS’s core files, or
customize ‘bfd/trad-core.c’. First, use whatever #include files your machine uses to
define the struct of registers that is accessible (possibly in the u-area) in a core file (rather
than ‘machine/reg.h’), and an include file that defines whatever header exists on a core
file (e.g. the u-area or a struct core). Then modify trad_unix_core_file_p to use
these values to set up the section information for the data segment, stack segment, any
other segments in the core file (perhaps shared library contents or control information),
“registers” segment, and if there are two discontiguous sets of registers (e.g. integer and
float), the “reg2” segment. This section information basically delimits areas in the core file
in a standard way, which the section-reading routines in BFD know how to seek around in.

Then back in GDB, you need a matching routine called fetch_core_registers. If you
can use the generic one, it’s in ‘core-aout.c’; if not, it’s in your ‘xyz-nat.c’ file. It will
be passed a char pointer to the entire “registers” segment, its length, and a zero; or a char
pointer to the entire “regs2” segment, its length, and a 2. The routine should suck out the
supplied register values and install them into GDB’s “registers” array.

Chapter 11: Native Debugging 55

If your system uses ‘/proc’ to control processes, and uses ELF format core files, then
you may be able to use the same routines for reading the registers out of processes and out
of core files.

11.2 ptrace

11.3 /proc

11.4 win32

11.5 shared libraries

11.6 Native Conditionals

When GDB is configured and compiled, various macros are defined or left undefined, to
control compilation when the host and target systems are the same. These macros should
be defined (or left undefined) in ‘nm-system.h’.

ATTACH_DETACH
If defined, then GDB will include support for the attach and detach com-
mands.

CHILD_PREPARE_TO_STORE
If the machine stores all registers at once in the child process, then define this
to ensure that all values are correct. This usually entails a read from the child.
[Note that this is incorrectly defined in ‘xm-system.h’ files currently.]

FETCH_INFERIOR_REGISTERS
Define this if the native-dependent code will provide its own routines fetch_
inferior_registers and store_inferior_registers in ‘host-nat.c’. If this
symbol is not defined, and ‘infptrace.c’ is included in this configuration, the
default routines in ‘infptrace.c’ are used for these functions.

FILES_INFO_HOOK
(Only defined for Convex.)

FP0_REGNUM
This macro is normally defined to be the number of the first floating point
register, if the machine has such registers. As such, it would appear only in
target-specific code. However, ‘/proc’ support uses this to decide whether floats
are in use on this target.

GET_LONGJMP_TARGET
For most machines, this is a target-dependent parameter. On the DECstation
and the Iris, this is a native-dependent parameter, since ‘setjmp.h’ is needed
to define it.

Chapter 11: Native Debugging 56

This macro determines the target PC address that longjmp will jump to, assum-
ing that we have just stopped at a longjmp breakpoint. It takes a CORE_ADDR *
as argument, and stores the target PC value through this pointer. It examines
the current state of the machine as needed.

I386_USE_GENERIC_WATCHPOINTS
An x86-based machine can define this to use the generic x86 watchpoint support;
see Chapter 3 [Algorithms], page 2.

KERNEL_U_ADDR
Define this to the address of the u structure (the “user struct”, also known as
the “u-page”) in kernel virtual memory. GDB needs to know this so that it can
subtract this address from absolute addresses in the upage, that are obtained
via ptrace or from core files. On systems that don’t need this value, set it to
zero.

KERNEL_U_ADDR_BSD
Define this to cause GDB to determine the address of u at runtime, by using
Berkeley-style nlist on the kernel’s image in the root directory.

KERNEL_U_ADDR_HPUX
Define this to cause GDB to determine the address of u at runtime, by using
HP-style nlist on the kernel’s image in the root directory.

ONE_PROCESS_WRITETEXT
Define this to be able to, when a breakpoint insertion fails, warn the user that
another process may be running with the same executable.

PREPARE_TO_PROCEED (select it)
This (ugly) macro allows a native configuration to customize the way the
proceed function in ‘infrun.c’ deals with switching between threads.
In a multi-threaded task we may select another thread and then continue or step.
But if the old thread was stopped at a breakpoint, it will immediately cause
another breakpoint stop without any execution (i.e. it will report a breakpoint
hit incorrectly). So GDB must step over it first.
If defined, PREPARE_TO_PROCEED should check the current thread against the
thread that reported the most recent event. If a step-over is required, it returns
TRUE. If select it is non-zero, it should reselect the old thread.

PROC_NAME_FMT
Defines the format for the name of a ‘/proc’ device. Should be defined in ‘nm.h’
only in order to override the default definition in ‘procfs.c’.

PTRACE_FP_BUG
See ‘mach386-xdep.c’.

PTRACE_ARG3_TYPE
The type of the third argument to the ptrace system call, if it exists and is
different from int.

REGISTER_U_ADDR
Defines the offset of the registers in the “u area”.

Chapter 12: Support Libraries 57

SHELL_COMMAND_CONCAT
If defined, is a string to prefix on the shell command used to start the inferior.

SHELL_FILE
If defined, this is the name of the shell to use to run the inferior. Defaults to
"/bin/sh".

SOLIB_ADD (filename, from tty, targ)
Define this to expand into an expression that will cause the symbols in filename
to be added to GDB’s symbol table.

SOLIB_CREATE_INFERIOR_HOOK
Define this to expand into any shared-library-relocation code that you want to
be run just after the child process has been forked.

START_INFERIOR_TRAPS_EXPECTED
When starting an inferior, GDB normally expects to trap twice; once when
the shell execs, and once when the program itself execs. If the actual number
of traps is something other than 2, then define this macro to expand into the
number expected.

SVR4_SHARED_LIBS
Define this to indicate that SVR4-style shared libraries are in use.

USE_PROC_FS
This determines whether small routines in ‘*-tdep.c’, which translate register
values between GDB’s internal representation and the ‘/proc’ representation,
are compiled.

U_REGS_OFFSET
This is the offset of the registers in the upage. It need only be defined if
the generic ptrace register access routines in ‘infptrace.c’ are being used
(that is, ‘infptrace.c’ is configured in, and FETCH_INFERIOR_REGISTERS is
not defined). If the default value from ‘infptrace.c’ is good enough, leave it
undefined.

The default value means that u.u ar0 points to the location of the registers. I’m
guessing that #define U_REGS_OFFSET 0 means that u.u_ar0 is the location
of the registers.

CLEAR_SOLIB
See ‘objfiles.c’.

DEBUG_PTRACE
Define this to debug ptrace calls.

12 Support Libraries

Chapter 12: Support Libraries 58

12.1 BFD

BFD provides support for GDB in several ways:

identifying executable and core files
BFD will identify a variety of file types, including a.out, coff, and several vari-
ants thereof, as well as several kinds of core files.

access to sections of files
BFD parses the file headers to determine the names, virtual addresses, sizes,
and file locations of all the various named sections in files (such as the text
section or the data section). GDB simply calls BFD to read or write section x
at byte offset y for length z.

specialized core file support
BFD provides routines to determine the failing command name stored in a core
file, the signal with which the program failed, and whether a core file matches
(i.e. could be a core dump of) a particular executable file.

locating the symbol information
GDB uses an internal interface of BFD to determine where to find the symbol
information in an executable file or symbol-file. GDB itself handles the reading
of symbols, since BFD does not “understand” debug symbols, but GDB uses
BFD’s cached information to find the symbols, string table, etc.

12.2 opcodes

The opcodes library provides GDB’s disassembler. (It’s a separate library because it’s
also used in binutils, for ‘objdump’).

12.3 readline

12.4 mmalloc

12.5 libiberty

12.6 gnu-regex

Regex conditionals.

C_ALLOCA

NFAILURES

RE_NREGS

SIGN_EXTEND_CHAR

SWITCH_ENUM_BUG

SYNTAX_TABLE

Chapter 13: Coding 59

Sword

sparc

12.7 include

13 Coding

This chapter covers topics that are lower-level than the major algorithms of GDB.

13.1 Cleanups

Cleanups are a structured way to deal with things that need to be done later. When your
code does something (like malloc some memory, or open a file) that needs to be undone
later (e.g., free the memory or close the file), it can make a cleanup. The cleanup will be
done at some future point: when the command is finished, when an error occurs, or when
your code decides it’s time to do cleanups.

You can also discard cleanups, that is, throw them away without doing what they say.
This is only done if you ask that it be done.

Syntax:

struct cleanup *old chain;
Declare a variable which will hold a cleanup chain handle.

old chain = make_cleanup (function, arg);
Make a cleanup which will cause function to be called with arg (a char *)
later. The result, old chain, is a handle that can be passed to do_cleanups
or discard_cleanups later. Unless you are going to call do_cleanups or
discard_cleanups yourself, you can ignore the result from make_cleanup.

do_cleanups (old chain);
Perform all cleanups done since make_cleanup returned old chain. E.g.:

make_cleanup (a, 0);
old = make_cleanup (b, 0);
do_cleanups (old);

will call b() but will not call a(). The cleanup that calls a() will remain in
the cleanup chain, and will be done later unless otherwise discarded.

discard_cleanups (old chain);
Same as do_cleanups except that it just removes the cleanups from the chain
and does not call the specified functions.

Some functions, e.g. fputs_filtered() or error(), specify that they “should not be
called when cleanups are not in place”. This means that any actions you need to reverse
in the case of an error or interruption must be on the cleanup chain before you call these
functions, since they might never return to your code (they ‘longjmp’ instead).

Chapter 13: Coding 60

13.2 Wrapping Output Lines

Output that goes through printf_filtered or fputs_filtered or fputs_demangled
needs only to have calls to wrap_here added in places that would be good breaking points.
The utility routines will take care of actually wrapping if the line width is exceeded.

The argument to wrap_here is an indentation string which is printed only if the line
breaks there. This argument is saved away and used later. It must remain valid until
the next call to wrap_here or until a newline has been printed through the *_filtered
functions. Don’t pass in a local variable and then return!

It is usually best to call wrap_here after printing a comma or space. If you call it before
printing a space, make sure that your indentation properly accounts for the leading space
that will print if the line wraps there.

Any function or set of functions that produce filtered output must finish by printing a
newline, to flush the wrap buffer, before switching to unfiltered (printf) output. Symbol
reading routines that print warnings are a good example.

13.3 GDB Coding Standards

GDB follows the GNU coding standards, as described in ‘etc/standards.texi’. This
file is also available for anonymous FTP from GNU archive sites. GDB takes a strict
interpretation of the standard; in general, when the GNU standard recommends a practice
but does not require it, GDB requires it.

GDB follows an additional set of coding standards specific to GDB, as described in the
following sections.

13.3.1 ISO-C

GDB assumes an ISO-C compliant compiler.
GDB does not assume an ISO-C or POSIX compliant C library.

13.3.2 Memory Management

GDB does not use the functions malloc, realloc, calloc, free and asprintf.
GDB uses the functions xmalloc, xrealloc and xcalloc when allocating memory. Un-

like malloc et.al. these functions do not return when the memory pool is empty. Instead,
they unwind the stack using cleanups. These functions return NULL when requested to
allocate a chunk of memory of size zero.

Pragmatics: By using these functions, the need to check every memory allocation is
removed. These functions provide portable behavior.

GDB does not use the function free.
GDB uses the function xfree to return memory to the memory pool. Consistent with

ISO-C, this function ignores a request to free a NULL pointer.
Pragmatics: On some systems free fails when passed a NULL pointer.
GDB can use the non-portable function alloca for the allocation of small temporary

values (such as strings).

Chapter 13: Coding 61

Pragmatics: This function is very non-portable. Some systems restrict the memory being
allocated to no more than a few kilobytes.

GDB uses the string function xstrdup and the print function xasprintf.
Pragmatics: asprintf and strdup can fail. Print functions such as sprintf are very

prone to buffer overflow errors.

13.3.3 Compiler Warnings

With few exceptions, developers should include the configuration option
‘--enable-gdb-build-warnings=,-Werror’ when building GDB. The exceptions are
listed in the file ‘gdb/MAINTAINERS’.

This option causes GDB (when built using GCC) to be compiled with a carefully selected
list of compiler warning flags. Any warnings from those flags being treated as errors.

The current list of warning flags includes:

‘-Wimplicit’
Since GDB coding standard requires all functions to be declared using a pro-
totype, the flag has the side effect of ensuring that prototyped functions are
always visible with out resorting to ‘-Wstrict-prototypes’.

‘-Wreturn-type’
Such code often appears to work except on instruction set architectures that
use register windows.

‘-Wcomment’
‘-Wtrigraphs’
‘-Wformat’

Since GDB uses the format printf attribute on all printf like functions
this checks not just printf calls but also calls to functions such as fprintf_
unfiltered.

‘-Wparentheses’
This warning includes uses of the assignment operator within an if statement.

‘-Wpointer-arith’
‘-Wuninitialized’

Pragmatics: Due to the way that GDB is implemented most functions have unused pa-
rameters. Consequently the warning ‘-Wunused-parameter’ is precluded from the list. The
macro ATTRIBUTE_UNUSED is not used as it leads to false negatives — it is not an error
to have ATTRIBUTE_UNUSED on a parameter that is being used. The options ‘-Wall’ and
‘-Wunused’ are also precluded because they both include ‘-Wunused-parameter’.

Pragmatics: GDB has not simply accepted the warnings enabled by ‘-Wall -Werror
-W...’. Instead it is selecting warnings when and where their benefits can be demonstrated.

13.3.4 Formatting

The standard GNU recommendations for formatting must be followed strictly.
A function declaration should not have its name in column zero. A function definition

should have its name in column zero.

Chapter 13: Coding 62

/* Declaration */
static void foo (void);
/* Definition */
void
foo (void)
{
}

Pragmatics: This simplifies scripting. Function definitions can be found using
‘^function-name’.

There must be a space between a function or macro name and the opening parenthesis
of its argument list (except for macro definitions, as required by C). There must not be a
space after an open paren/bracket or before a close paren/bracket.

While additional whitespace is generally helpful for reading, do not use more than one
blank line to separate blocks, and avoid adding whitespace after the end of a program line
(as of 1/99, some 600 lines had whitespace after the semicolon). Excess whitespace causes
difficulties for diff and patch utilities.

Pointers are declared using the traditional K&R C style:
void *foo;

and not:
void * foo;
void* foo;

13.3.5 Comments

The standard GNU requirements on comments must be followed strictly.

Block comments must appear in the following form, with no /*- or */-only lines, and no
leading *:

/* Wait for control to return from inferior to debugger. If inferior
gets a signal, we may decide to start it up again instead of
returning. That is why there is a loop in this function. When
this function actually returns it means the inferior should be left
stopped and GDB should read more commands. */

(Note that this format is encouraged by Emacs; tabbing for a multi-line comment works
correctly, and M-q fills the block consistently.)

Put a blank line between the block comments preceding function or variable definitions,
and the definition itself.

In general, put function-body comments on lines by themselves, rather than trying to fit
them into the 20 characters left at the end of a line, since either the comment or the code
will inevitably get longer than will fit, and then somebody will have to move it anyhow.

13.3.6 C Usage

Code must not depend on the sizes of C data types, the format of the host’s floating
point numbers, the alignment of anything, or the order of evaluation of expressions.

Chapter 13: Coding 63

Use functions freely. There are only a handful of compute-bound areas in GDB that
might be affected by the overhead of a function call, mainly in symbol reading. Most of
GDB’s performance is limited by the target interface (whether serial line or system call).

However, use functions with moderation. A thousand one-line functions are just as hard
to understand as a single thousand-line function.

Macros are bad, M’kay. (But if you have to use a macro, make sure that the macro
arguments are protected with parentheses.)

Declarations like ‘struct foo *’ should be used in preference to declarations like
‘typedef struct foo { ... } *foo_ptr’.

13.3.7 Function Prototypes

Prototypes must be used when both declaring and defining a function. Prototypes for
GDB functions must include both the argument type and name, with the name matching
that used in the actual function definition.

All external functions should have a declaration in a header file that callers include,
except for _initialize_* functions, which must be external so that ‘init.c’ construction
works, but shouldn’t be visible to random source files.

Where a source file needs a forward declaration of a static function, that declaration
must appear in a block near the top of the source file.

13.3.8 Internal Error Recovery

During its execution, GDB can encounter two types of errors. User errors and internal
errors. User errors include not only a user entering an incorrect command but also problems
arising from corrupt object files and system errors when interacting with the target. Internal
errors include situtations where GDB has detected, at run time, a corrupt or erroneous
situtation.

When reporting an internal error, GDB uses internal_error and gdb_assert.
GDB must not call abort or assert.
Pragmatics: There is no internal_warning function. Either the code detected a user

error, recovered from it and issued a warning or the code failed to correctly recover from
the user error and issued an internal_error.

13.3.9 File Names

Any file used when building the core of GDB must be in lower case. Any file used when
building the core of GDB must be 8.3 unique. These requirements apply to both source
and generated files.

Pragmatics: The core of GDB must be buildable on many platforms including DJGPP
and MacOS/HFS. Every time an unfriendly file is introduced to the build process both
‘Makefile.in’ and ‘configure.in’ need to be modified accordingly. Compare the convo-
luted conversion process needed to transform ‘COPYING’ into ‘copying.c’ with the conversion
needed to transform ‘version.in’ into ‘version.c’.

Any file non 8.3 compliant file (that is not used when building the core of GDB) must
be added to ‘gdb/config/djgpp/fnchange.lst’.

Chapter 13: Coding 64

Pragmatics: This is clearly a compromise.
When GDB has a local version of a system header file (ex ‘string.h’) the file name

based on the POSIX header prefixed with ‘gdb_’ (‘gdb_string.h’).
For other files ‘-’ is used as the separator.

13.3.10 Include Files

All ‘.c’ files should include ‘defs.h’ first.
All ‘.c’ files should explicitly include the headers for any declarations they refer to. They

should not rely on files being included indirectly.
With the exception of the global definitions supplied by ‘defs.h’, a header file should

explictily include the header declaring any typedefs et.al. it refers to.
extern declarations should never appear in .c files.
All include files should be wrapped in:

#ifndef INCLUDE_FILE_NAME_H
#define INCLUDE_FILE_NAME_H
header body
#endif

13.3.11 Clean Design and Portable Implementation

In addition to getting the syntax right, there’s the little question of semantics. Some
things are done in certain ways in GDB because long experience has shown that the more
obvious ways caused various kinds of trouble.

You can’t assume the byte order of anything that comes from a target (including values,
object files, and instructions). Such things must be byte-swapped using SWAP_TARGET_AND_
HOST in GDB, or one of the swap routines defined in ‘bfd.h’, such as bfd_get_32.

You can’t assume that you know what interface is being used to talk to the target system.
All references to the target must go through the current target_ops vector.

You can’t assume that the host and target machines are the same machine (except in
the “native” support modules). In particular, you can’t assume that the target machine’s
header files will be available on the host machine. Target code must bring along its own
header files – written from scratch or explicitly donated by their owner, to avoid copyright
problems.

Insertion of new #ifdef’s will be frowned upon. It’s much better to write the code
portably than to conditionalize it for various systems.

New #ifdef’s which test for specific compilers or manufacturers or operating systems are
unacceptable. All #ifdef’s should test for features. The information about which configu-
rations contain which features should be segregated into the configuration files. Experience
has proven far too often that a feature unique to one particular system often creeps into
other systems; and that a conditional based on some predefined macro for your current sys-
tem will become worthless over time, as new versions of your system come out that behave
differently with regard to this feature.

Adding code that handles specific architectures, operating systems, target interfaces, or
hosts, is not acceptable in generic code.

Chapter 13: Coding 65

One particularly notorious area where system dependencies tend to creep in is handling
of file names. The mainline GDB code assumes Posix semantics of file names: absolute
file names begin with a forward slash ‘/’, slashes are used to separate leading directories,
case-sensitive file names. These assumptions are not necessarily true on non-Posix systems
such as MS-Windows. To avoid system-dependent code where you need to take apart or
construct a file name, use the following portable macros:

HAVE_DOS_BASED_FILE_SYSTEM
This preprocessing symbol is defined to a non-zero value on hosts whose filesys-
tems belong to the MS-DOS/MS-Windows family. Use this symbol to write
conditional code which should only be compiled for such hosts.

IS_DIR_SEPARATOR (c
Evaluates to a non-zero value if c is a directory separator character. On Unix
and GNU/Linux systems, only a slash ‘/’ is such a character, but on Windows,
both ‘/’ and ‘\’ will pass.

IS_ABSOLUTE_PATH (file)
Evaluates to a non-zero value if file is an absolute file name. For Unix and
GNU/Linux hosts, a name which begins with a slash ‘/’ is absolute. On DOS
and Windows, ‘d:/foo’ and ‘x:\bar’ are also absolute file names.

FILENAME_CMP (f1, f2)
Calls a function which compares file names f1 and f2 as appropriate for the
underlying host filesystem. For Posix systems, this simply calls strcmp; on
case-insensitive filesystems it will call strcasecmp instead.

DIRNAME_SEPARATOR
Evaluates to a character which separates directories in PATH-style lists, typically
held in environment variables. This character is ‘:’ on Unix, ‘;’ on DOS and
Windows.

SLASH_STRING
This evaluates to a constant string you should use to produce an absolute
filename from leading directories and the file’s basename. SLASH_STRING is "/"
on most systems, but might be "\\" for some Windows-based ports.

In addition to using these macros, be sure to use portable library functions whenever
possible. For example, to extract a directory or a basename part from a file name, use the
dirname and basename library functions (available in libiberty for platforms which don’t
provide them), instead of searching for a slash with strrchr.

Another way to generalize GDB along a particular interface is with an attribute struct.
For example, GDB has been generalized to handle multiple kinds of remote interfaces—not
by #ifdefs everywhere, but by defining the target_ops structure and having a current
target (as well as a stack of targets below it, for memory references). Whenever something
needs to be done that depends on which remote interface we are using, a flag in the current
target ops structure is tested (e.g., target_has_stack), or a function is called through a
pointer in the current target ops structure. In this way, when a new remote interface is
added, only one module needs to be touched—the one that actually implements the new
remote interface. Other examples of attribute-structs are BFD access to multiple kinds of
object file formats, or GDB’s access to multiple source languages.

Chapter 14: Porting GDB 66

Please avoid duplicating code. For example, in GDB 3.x all the code interfacing
between ptrace and the rest of GDB was duplicated in ‘*-dep.c’, and so changing
something was very painful. In GDB 4.x, these have all been consolidated into
‘infptrace.c’. ‘infptrace.c’ can deal with variations between systems the same way
any system-independent file would (hooks, #if defined, etc.), and machines which are
radically different don’t need to use ‘infptrace.c’ at all.

All debugging code must be controllable using the ‘set debug module’ command. Do
not use printf to print trace messages. Use fprintf_unfiltered(gdb_stdlog, Do
not use #ifdef DEBUG.

14 Porting GDB

Most of the work in making GDB compile on a new machine is in specifying the config-
uration of the machine. This is done in a dizzying variety of header files and configuration
scripts, which we hope to make more sensible soon. Let’s say your new host is called
an xyz (e.g., ‘sun4’), and its full three-part configuration name is arch-xvend-xos (e.g.,
‘sparc-sun-sunos4’). In particular:
• In the top level directory, edit ‘config.sub’ and add arch, xvend, and xos to the lists

of supported architectures, vendors, and operating systems near the bottom of the file.
Also, add xyz as an alias that maps to arch-xvend-xos. You can test your changes by
running

./config.sub xyz

and
./config.sub arch-xvend-xos

which should both respond with arch-xvend-xos and no error messages.
You need to port BFD, if that hasn’t been done already. Porting BFD is beyond the
scope of this manual.

• To configure GDB itself, edit ‘gdb/configure.host’ to recognize your system and
set gdb_host to xyz, and (unless your desired target is already available) also edit
‘gdb/configure.tgt’, setting gdb_target to something appropriate (for instance,
xyz).

• Finally, you’ll need to specify and define GDB’s host-, native-, and target-dependent
‘.h’ and ‘.c’ files used for your configuration.

14.1 Configuring GDB for Release

From the top level directory (containing ‘gdb’, ‘bfd’, ‘libiberty’, and so on):
make -f Makefile.in gdb.tar.gz

This will properly configure, clean, rebuild any files that are distributed pre-built (e.g.
‘c-exp.tab.c’ or ‘refcard.ps’), and will then make a tarfile. (If the top level directory
has already been configured, you can just do make gdb.tar.gz instead.)

This procedure requires:
• symbolic links;

Chapter 15: Testsuite 67

• makeinfo (texinfo2 level);
• TEX;
• dvips;
• yacc or bison.

. . . and the usual slew of utilities (sed, tar, etc.).

TEMPORARY RELEASE PROCEDURE FOR
DOCUMENTATION

‘gdb.texinfo’ is currently marked up using the texinfo-2 macros, which are not yet a
default for anything (but we have to start using them sometime).

For making paper, the only thing this implies is the right generation of ‘texinfo.tex’
needs to be included in the distribution.

For making info files, however, rather than duplicating the texinfo2 distribution, generate
‘gdb-all.texinfo’ locally, and include the files ‘gdb.info*’ in the distribution. Note the
plural; makeinfo will split the document into one overall file and five or so included files.

15 Testsuite

The testsuite is an important component of the GDB package. While it is always worth-
while to encourage user testing, in practice this is rarely sufficient; users typically use only
a small subset of the available commands, and it has proven all too common for a change
to cause a significant regression that went unnoticed for some time.

The GDB testsuite uses the DejaGNU testing framework. DejaGNU is built using Tcl
and expect. The tests themselves are calls to various Tcl procs; the framework runs all
the procs and summarizes the passes and fails.

15.1 Using the Testsuite

To run the testsuite, simply go to the GDB object directory (or to the testsuite’s objdir)
and type make check. This just sets up some environment variables and invokes DejaGNU’s
runtest script. While the testsuite is running, you’ll get mentions of which test file is in
use, and a mention of any unexpected passes or fails. When the testsuite is finished, you’ll
get a summary that looks like this:

=== gdb Summary ===

of expected passes 6016
of unexpected failures 58
of unexpected successes 5
of expected failures 183
of unresolved testcases 3
of untested testcases 5

The ideal test run consists of expected passes only; however, reality conspires to keep
us from this ideal. Unexpected failures indicate real problems, whether in GDB or in the
testsuite. Expected failures are still failures, but ones which have been decided are too hard

Chapter 15: Testsuite 68

to deal with at the time; for instance, a test case might work everywhere except on AIX,
and there is no prospect of the AIX case being fixed in the near future. Expected failures
should not be added lightly, since you may be masking serious bugs in GDB. Unexpected
successes are expected fails that are passing for some reason, while unresolved and untested
cases often indicate some minor catastrophe, such as the compiler being unable to deal with
a test program.

When making any significant change to GDB, you should run the testsuite before and
after the change, to confirm that there are no regressions. Note that truly complete testing
would require that you run the testsuite with all supported configurations and a variety of
compilers; however this is more than really necessary. In many cases testing with a single
configuration is sufficient. Other useful options are to test one big-endian (Sparc) and one
little-endian (x86) host, a cross config with a builtin simulator (powerpc-eabi, mips-elf), or
a 64-bit host (Alpha).

If you add new functionality to GDB, please consider adding tests for it as well; this
way future GDB hackers can detect and fix their changes that break the functionality you
added. Similarly, if you fix a bug that was not previously reported as a test failure, please
add a test case for it. Some cases are extremely difficult to test, such as code that handles
host OS failures or bugs in particular versions of compilers, and it’s OK not to try to write
tests for all of those.

15.2 Testsuite Organization

The testsuite is entirely contained in ‘gdb/testsuite’. While the testsuite includes
some makefiles and configury, these are very minimal, and used for little besides cleaning
up, since the tests themselves handle the compilation of the programs that GDB will run.
The file ‘testsuite/lib/gdb.exp’ contains common utility procs useful for all GDB tests,
while the directory ‘testsuite/config’ contains configuration-specific files, typically used
for special-purpose definitions of procs like gdb_load and gdb_start.

The tests themselves are to be found in ‘testsuite/gdb.*’ and subdirectories of those.
The names of the test files must always end with ‘.exp’. DejaGNU collects the test files
by wildcarding in the test directories, so both subdirectories and individual files get chosen
and run in alphabetical order.

The following table lists the main types of subdirectories and what they are for. Since
DejaGNU finds test files no matter where they are located, and since each test file sets up
its own compilation and execution environment, this organization is simply for convenience
and intelligibility.

‘gdb.base’
This is the base testsuite. The tests in it should apply to all configurations of
GDB (but generic native-only tests may live here). The test programs should
be in the subset of C that is valid K&R, ANSI/ISO, and C++ (#ifdefs are
allowed if necessary, for instance for prototypes).

‘gdb.lang ’ Language-specific tests for any language lang besides C. Examples are ‘gdb.c++’
and ‘gdb.java’.

Chapter 16: Hints 69

‘gdb.platform’
Non-portable tests. The tests are specific to a specific configuration (host or
target), such as HP-UX or eCos. Example is ‘gdb.hp’, for HP-UX.

‘gdb.compiler’
Tests specific to a particular compiler. As of this writing (June 1999), there
aren’t currently any groups of tests in this category that couldn’t just as sensibly
be made platform-specific, but one could imagine a ‘gdb.gcc’, for tests of GDB’s
handling of GCC extensions.

‘gdb.subsystem’
Tests that exercise a specific GDB subsystem in more depth. For instance,
‘gdb.disasm’ exercises various disassemblers, while ‘gdb.stabs’ tests pathways
through the stabs symbol reader.

15.3 Writing Tests

In many areas, the GDB tests are already quite comprehensive; you should be able to
copy existing tests to handle new cases.

You should try to use gdb_test whenever possible, since it includes cases to handle all
the unexpected errors that might happen. However, it doesn’t cost anything to add new test
procedures; for instance, ‘gdb.base/exprs.exp’ defines a test_expr that calls gdb_test
multiple times.

Only use send_gdb and gdb_expect when absolutely necessary, such as when GDB has
several valid responses to a command.

The source language programs do not need to be in a consistent style. Since GDB is
used to debug programs written in many different styles, it’s worth having a mix of styles
in the testsuite; for instance, some GDB bugs involving the display of source lines would
never manifest themselves if the programs used GNU coding style uniformly.

16 Hints

Check the ‘README’ file, it often has useful information that does not appear anywhere
else in the directory.

16.1 Getting Started

GDB is a large and complicated program, and if you first starting to work on it, it can
be hard to know where to start. Fortunately, if you know how to go about it, there are
ways to figure out what is going on.

This manual, the GDB Internals manual, has information which applies generally to
many parts of GDB.

Information about particular functions or data structures are located in comments with
those functions or data structures. If you run across a function or a global variable which
does not have a comment correctly explaining what is does, this can be thought of as a bug
in GDB; feel free to submit a bug report, with a suggested comment if you can figure out

Chapter 16: Hints 70

what the comment should say. If you find a comment which is actually wrong, be especially
sure to report that.

Comments explaining the function of macros defined in host, target, or native dependent
files can be in several places. Sometimes they are repeated every place the macro is defined.
Sometimes they are where the macro is used. Sometimes there is a header file which supplies
a default definition of the macro, and the comment is there. This manual also documents
all the available macros.

Start with the header files. Once you have some idea of how GDB’s internal symbol
tables are stored (see ‘symtab.h’, ‘gdbtypes.h’), you will find it much easier to understand
the code which uses and creates those symbol tables.

You may wish to process the information you are getting somehow, to enhance your
understanding of it. Summarize it, translate it to another language, add some (perhaps
trivial or non-useful) feature to GDB, use the code to predict what a test case would do
and write the test case and verify your prediction, etc. If you are reading code and your
eyes are starting to glaze over, this is a sign you need to use a more active approach.

Once you have a part of GDB to start with, you can find more specifically the part you
are looking for by stepping through each function with the next command. Do not use step
or you will quickly get distracted; when the function you are stepping through calls another
function try only to get a big-picture understanding (perhaps using the comment at the
beginning of the function being called) of what it does. This way you can identify which of
the functions being called by the function you are stepping through is the one which you
are interested in. You may need to examine the data structures generated at each stage,
with reference to the comments in the header files explaining what the data structures are
supposed to look like.

Of course, this same technique can be used if you are just reading the code, rather than
actually stepping through it. The same general principle applies—when the code you are
looking at calls something else, just try to understand generally what the code being called
does, rather than worrying about all its details.

A good place to start when tracking down some particular area is with a command which
invokes that feature. Suppose you want to know how single-stepping works. As a GDB user,
you know that the step command invokes single-stepping. The command is invoked via
command tables (see ‘command.h’); by convention the function which actually performs
the command is formed by taking the name of the command and adding ‘_command’, or
in the case of an info subcommand, ‘_info’. For example, the step command invokes
the step_command function and the info display command invokes display_info. When
this convention is not followed, you might have to use grep or M-x tags-search in emacs,
or run GDB on itself and set a breakpoint in execute_command.

If all of the above fail, it may be appropriate to ask for information on bug-gdb. But
never post a generic question like “I was wondering if anyone could give me some tips
about understanding GDB”—if we had some magic secret we would put it in this manual.
Suggestions for improving the manual are always welcome, of course.

16.2 Debugging GDB with itself

If GDB is limping on your machine, this is the preferred way to get it fully functional.
Be warned that in some ancient Unix systems, like Ultrix 4.2, a program can’t be running

Chapter 16: Hints 71

in one process while it is being debugged in another. Rather than typing the command
./gdb ./gdb, which works on Suns and such, you can copy ‘gdb’ to ‘gdb2’ and then type
./gdb ./gdb2.

When you run GDB in the GDB source directory, it will read a ‘.gdbinit’ file that sets
up some simple things to make debugging gdb easier. The info command, when executed
without a subcommand in a GDB being debugged by gdb, will pop you back up to the top
level gdb. See ‘.gdbinit’ for details.

If you use emacs, you will probably want to do a make TAGS after you configure your
distribution; this will put the machine dependent routines for your local machine where
they will be accessed first by M-.

Also, make sure that you’ve either compiled GDB with your local cc, or have run
fixincludes if you are compiling with gcc.

16.3 Submitting Patches

Thanks for thinking of offering your changes back to the community of GDB users. In
general we like to get well designed enhancements. Thanks also for checking in advance
about the best way to transfer the changes.

The GDB maintainers will only install “cleanly designed” patches. This manual sum-
marizes what we believe to be clean design for GDB.

If the maintainers don’t have time to put the patch in when it arrives, or if there is any
question about a patch, it goes into a large queue with everyone else’s patches and bug
reports.

The legal issue is that to incorporate substantial changes requires a copyright assign-
ment from you and/or your employer, granting ownership of the changes to the Free Soft-
ware Foundation. You can get the standard documents for doing this by sending mail to
gnu@gnu.org and asking for it. We recommend that people write in "All programs owned
by the Free Software Foundation" as "NAME OF PROGRAM", so that changes in many
programs (not just GDB, but GAS, Emacs, GCC, etc) can be contributed with only one
piece of legalese pushed through the bureaucracy and filed with the FSF. We can’t start
merging changes until this paperwork is received by the FSF (their rules, which we follow
since we maintain it for them).

Technically, the easiest way to receive changes is to receive each feature as a small
context diff or unidiff, suitable for patch. Each message sent to me should include the
changes to C code and header files for a single feature, plus ‘ChangeLog’ entries for each
directory where files were modified, and diffs for any changes needed to the manuals
(‘gdb/doc/gdb.texinfo’ or ‘gdb/doc/gdbint.texinfo’). If there are a lot of changes for
a single feature, they can be split down into multiple messages.

In this way, if we read and like the feature, we can add it to the sources with a single
patch command, do some testing, and check it in. If you leave out the ‘ChangeLog’, we
have to write one. If you leave out the doc, we have to puzzle out what needs documenting.
Etc., etc.

The reason to send each change in a separate message is that we will not install some
of the changes. They’ll be returned to you with questions or comments. If we’re doing our
job correctly, the message back to you will say what you have to fix in order to make the

Index 72

change acceptable. The reason to have separate messages for separate features is so that
the acceptable changes can be installed while one or more changes are being reworked. If
multiple features are sent in a single message, we tend to not put in the effort to sort out
the acceptable changes from the unacceptable, so none of the features get installed until all
are acceptable.

If this sounds painful or authoritarian, well, it is. But we get a lot of bug reports and
a lot of patches, and many of them don’t get installed because we don’t have the time to
finish the job that the bug reporter or the contributor could have done. Patches that arrive
complete, working, and well designed, tend to get installed on the day they arrive. The
others go into a queue and get installed as time permits, which, since the maintainers have
many demands to meet, may not be for quite some time.

Please send patches directly to the GDB maintainers.

16.4 Obsolete Conditionals

Fragments of old code in GDB sometimes reference or set the following configuration
macros. They should not be used by new code, and old uses should be removed as those
parts of the debugger are otherwise touched.

STACK_END_ADDR
This macro used to define where the end of the stack appeared, for use in
interpreting core file formats that don’t record this address in the core file itself.
This information is now configured in BFD, and GDB gets the info portably
from there. The values in GDB’s configuration files should be moved into BFD
configuration files (if needed there), and deleted from all of GDB’s config files.
Any ‘foo-xdep.c’ file that references STACK END ADDR is so old that it has
never been converted to use BFD. Now that’s old!

PYRAMID_CONTROL_FRAME_DEBUGGING
pyr-xdep.c

PYRAMID_CORE
pyr-xdep.c

PYRAMID_PTRACE
pyr-xdep.c

REG_STACK_SEGMENT
exec.c

Index

_initialize_language . 28

A

a.out format . 24

add_cmd . 9

add_com . 9

add_symtab_fns . 21

adding a new host . 29

adding a symbol-reading module 21

mailto:gdb-patches@sourceware.cygnus.com

Index 73

adding a target . 51

adding debugging info reader 26

adding source language . 27

ADDITIONAL_OPTION_CASES 38

ADDITIONAL_OPTION_HANDLER 38

ADDITIONAL_OPTION_HELP . 38

ADDITIONAL_OPTIONS . 38

ADDR_BITS_REMOVE . 38

address representation. 34

address spaces, separate data and code 34

ADDRESS_TO_POINTER . 36, 38

algorithms . 2

Index 74

ALIGN_STACK_ON_STARTUP . 30

allocate_symtab . 28

assumptions about targets . 64

ATTACH_DETACH . 55

ATTR_NORETURN . 32

B
BEFORE_MAIN_LOOP_HOOK . 38
BELIEVE_PCC_PROMOTION . 38
BELIEVE_PCC_PROMOTION_TYPE 38
BFD library . 58
BIG_BREAKPOINT . 39

Index 75

BIG_REMOTE_BREAKPOINT . 39

BITS_BIG_ENDIAN . 39

BPT_VECTOR . 51

BREAKPOINT . 4, 39

BREAKPOINT_FROM_PC . 39

breakpoints . 3

bug-gdb mailing list . 71

byte order . 31

C
C data types . 63

Index 76

call stack frame . 3

CALL_DUMMY . 40

CALL_DUMMY_LOCATION . 40

CALL_DUMMY_P . 40

CALL_DUMMY_STACK_ADJUST 40

CALL_DUMMY_STACK_ADJUST_P 40

CALL_DUMMY_WORDS . 40

call_function_by_hand . 48

CANNOT_FETCH_REGISTER . 40

CANNOT_STEP_HW_WATCHPOINTS 6

CANNOT_STORE_REGISTER . 40

CC_HAS_LONG_LONG . 31

Index 77

CHILD_PREPARE_TO_STORE . 55

cleanup . 12, 13

cleanups . 59

CLEAR_DEFERRED_STORES . 40

CLEAR_SOLIB . 58

CLI . 9

code pointers, word-addressed 34

coding standards . 60

COERCE_FLOAT_TO_DOUBLE . 40

COFF debugging info . 26

COFF format . 24

command implementation . 70

Index 78

command interpreter . 9

comment formatting . 62

compiler warnings . 61

converting between pointers and addresses 34

CPLUS_MARKERz . 41

create_new_frame . 3

CRLF_SOURCE_FILES . 30

current_language . 28

D
D10V addresses . 34

Index 79

data output . 13

DBX_PARM_SYMBOL_CLASS . 41

DEBUG_PTRACE . 58

debugging GDB . 71

DECR_PC_AFTER_BREAK . 41

DECR_PC_AFTER_HW_BREAK 6, 41

DEFAULT_PROMPT . 30

deprecate_cmd . 9

deprecating commands . 9

design . 64

DEV_TTY . 30

DIRNAME_SEPARATOR . 65

Index 80

DISABLE_UNSETTABLE_BREAK 41

discard_cleanups . 59

do_cleanups . 59

DO_DEFERRED_STORES . 40

DO_REGISTERS_INFO . 41

DOS text files . 30

DWARF 1 debugging info . 26

DWARF 2 debugging info . 26

DWARF_REG_TO_REGNUM . 41

DWARF2_REG_TO_REGNUM . 41

Index 81

E
ECOFF debugging info . 26
ECOFF format . 24
ECOFF_REG_TO_REGNUM . 41
ELF format . 25
END_OF_TEXT_DEFAULT . 41

evaluate_subexp . 27

expression evaluation routines 27

expression parser . 27

extract_address . 35

EXTRACT_RETURN_VALUE . 42

EXTRACT_STRUCT_VALUE_ADDRESS 42

Index 82

EXTRACT_STRUCT_VALUE_ADDRESS_P 42

extract_typed_address . 34

F
FCLOSE_PROVIDED . 31

fetch_core_registers . 54

FETCH_INFERIOR_REGISTERS 55

field output functions . 13

file names, portability . 65

FILENAME_CMP . 65

FILES_INFO_HOOK . 56

Index 83

find_pc_function . 23

find_pc_line . 23

find_sym_fns . 21

finding a symbol . 23

FLOAT_INFO . 42

FOPEN_RB . 31

FP_REGNUM . 42

FP0_REGNUM . 56

frame . 3

frame chain . 3

frame pointer register . 3

FRAME_ARGS_ADDRESS_CORRECT 42

Index 84

FRAME_CHAIN . 42

FRAME_CHAIN_COMBINE . 42

FRAME_CHAIN_VALID . 42

FRAME_FP . 3

FRAME_INIT_SAVED_REGS . 43

FRAME_NUM_ARGS . 43

FRAME_SAVED_PC . 43

FRAMELESS_FUNCTION_INVOCATION 42

full symbol table . 22

function prototypes . 63

function usage . 63

FUNCTION_EPILOGUE_SIZE . 43

Index 85

FUNCTION_START_OFFSET . 43

fundamental types . 23

G
GCC_COMPILED_FLAG_SYMBOL 43

GCC2_COMPILED_FLAG_SYMBOL 43

GDB_MULTI_ARCH . 43

GDB_TARGET_IS_HPPA . 43

GDBINIT_FILENAME . 30

generic dummy frames . 32

generic host support . 29

Index 86

GET_LONGJMP_TARGET 4, 43, 56

get_saved_register . 44

GET_SAVED_REGISTER . 44

GETENV_PROVIDED . 31

H
hardware breakpoints . 3
hardware watchpoints . 4
HAVE_CONTINUABLE_WATCHPOINT 6
HAVE_DOS_BASED_FILE_SYSTEM 65
HAVE_LONG_DOUBLE . 31

Index 87

HAVE_MMAP . 31

HAVE_NONSTEPPABLE_WATCHPOINT 6

HAVE_REGISTER_WINDOWS . 44

HAVE_SIGSETMASK . 31

HAVE_STEPPABLE_WATCHPOINT 6

HAVE_TERMIO . 31

host . 2

host, adding . 29

HOST_BYTE_ORDER . 31

I

Index 88

i386_cleanup_dregs . 9

I386_DR_LOW_GET_STATUS . 7

I386_DR_LOW_RESET_ADDR . 7

I386_DR_LOW_SET_ADDR . 7

I386_DR_LOW_SET_CONTROL . 7

i386_insert_hw_breakpoint 8

i386_insert_watchpoint . 8

i386_region_ok_for_watchpoint 8

i386_remove_hw_breakpoint 8

i386_remove_watchpoint . 8

i386_stopped_by_hwbp . 8

i386_stopped_data_address 8

Index 89

I386_USE_GENERIC_WATCHPOINTS 7

IBM6000_TARGET . 44

IEEE_FLOAT . 44

IN_SIGTRAMP . 44

IN_SOLIB_CALL_TRAMPOLINE 45

IN_SOLIB_DYNSYM_RESOLVE_CODE 45

IN_SOLIB_RETURN_TRAMPOLINE 45

INIT_EXTRA_FRAME_INFO . 44

INIT_FRAME_PC . 44

INNER_THAN . 44

insert or remove hardware breakpoint 6

INT_MAX . 31

Index 90

INT_MIN . 31

IS_ABSOLUTE_PATH . 65

IS_DIR_SEPARATOR . 65

IS_TRAPPED_INTERNALVAR . 45

ISATTY . 31

item output functions . 13

K

KERNEL_U_ADDR . 56

KERNEL_U_ADDR_BSD . 56

KERNEL_U_ADDR_HPUX . 56

Index 91

L
L_SET . 32
language parser . 27
language support . 27
legal papers for code contributions 71
length_of_subexp . 27

libgdb . 19

line wrap in output . 60

lint . 33

list output functions . 11

LITTLE_BREAKPOINT . 39

LITTLE_REMOTE_BREAKPOINT 39

Index 92

long long data type . 31

LONG_MAX . 31

LONGEST . 31

longjmp debugging . 4

lookup symbol . 23

LSEEK_NOT_LINEAR . 32

M
make_cleanup . 59
making a distribution tarball 67
MALLOC_INCOMPATIBLE . 32
MEM_FNS_DECLARED . 30
MEMORY_INSERT_BREAKPOINT 39

Index 93

MEMORY_REMOVE_BREAKPOINT 39

minimal symbol table . 22

minsymtabs . 22

mmalloc . 32

mmap . 31

MMAP_BASE_ADDRESS . 32

MMAP_INCREMENT . 32

mmcheck . 32

MMCHECK_FORCE . 33

N

Index 94

NATDEPFILES . 53

native conditionals . 55

native core files . 54

native debugging . 53

NEED_TEXT_START_END . 45

nesting level in ui_out functions 11

Netware Loadable Module format 25

NNPC_REGNUM . 47

NO_HIF_SUPPORT . 45

NO_MMCHECK . 32

NO_SIGINTERRUPT . 33

NO_STD_REGS . 30

Index 95

NO_SYS_FILE . 30

NORETURN . 32

NPC_REGNUM . 47

O

object file formats . 24

obsolete code . 72

ONE_PROCESS_WRITETEXT . 56

op_print_tab . 28

opcodes library . 58

OS9K_VARIABLES_INSIDE_BLOCK 51

Index 96

P
PARM_BOUNDARY . 47
parse_exp_1 . 28
partial symbol table . 22
PC_IN_CALL_DUMMY . 47
PC_LOAD_SEGMENT . 47

PC_REGNUM . 47

PCC_SOL_BROKEN . 47

PE-COFF format . 25

pointer representation . 34

POINTER_TO_ADDRESS . 36, 45

POP_FRAME . 48

Index 97

portability . 65

portable file name handling 65

porting to new machines . 66

prefixify_subexp . 27

PREPARE_TO_PROCEED . 56

preparing a release . 67

PRINT_REGISTER_HOOK . 47

print_subexp . 28

PRINT_TYPELESS_INTEGER . 47

PRINTF_HAS_LONG_DOUBLE . 31

PRINTF_HAS_LONG_LONG . 31

PROC_NAME_FMT . 57

Index 98

PROCESS_LINENUMBER_HOOK 47

program counter . 3

PROLOGUE_FIRSTLINE_OVERLAP 48

promotion to double . 40

prompt . 30

PS_REGNUM . 48

psymtabs . 22

PTRACE_ARG3_TYPE . 57

PTRACE_FP_BUG . 57

PUSH_ARGUMENTS . 48

PUSH_DUMMY_FRAME . 48

Index 99

R
R_OK . 33
raw representation . 36
read_fp . 50
read_pc . 50
read_sp . 50

reading of symbols . 21

REG_STRUCT_HAS_ADDR . 48

register data formats, converting 36

REGISTER_BYTES . 48

REGISTER_CONVERT_TO_RAW 37, 46

REGISTER_CONVERT_TO_VIRTUAL 37, 46

Index 100

REGISTER_CONVERTIBLE 37, 45

REGISTER_IN_WINDOW_P . 44

REGISTER_NAME . 48

REGISTER_NAMES . 48

REGISTER_RAW_SIZE . 37, 45

REGISTER_U_ADDR . 57

REGISTER_VIRTUAL_SIZE 37, 45

REGISTER_VIRTUAL_TYPE . 46

regular expressions library . 59

remote debugging support . 29

REMOTE_BPT_VECTOR . 51

REMOTE_BREAKPOINT . 39

Index 101

representations, raw and virtual 36

requirements for GDB . 1

return_command . 48

RETURN_VALUE_ON_STACK . 46

returning structures by value 46

running the test suite . 68

S
SAVE_DUMMY_FRAME_TOS . 48
SCANF_HAS_LONG_DOUBLE . 32
SDB_REG_TO_REGNUM . 48
secondary symbol file . 21
SEEK_CUR . 33

Index 102

SEEK_SET . 33

separate data and code address spaces 34

serial line support. 29

set_gdbarch_coerce_float_to_double 41

SHELL_COMMAND_CONCAT . 57

SHELL_FILE . 57

SHIFT_INST_REGS . 48

siginterrupt . 33

sigsetmask . 31

SIGTRAMP_END . 45

SIGTRAMP_START . 45

SIGWINCH_HANDLER . 30

Index 103

SIGWINCH_HANDLER_BODY . 30

SIZEOF_CALL_DUMMY_WORDS 40

SKIP_PERMANENT_BREAKPOINT 48

SKIP_PROLOGUE . 49

SKIP_PROLOGUE_FRAMELESS_P 49

SKIP_SOLIB_RESOLVER . 45

SKIP_TRAMPOLINE_CODE . 49

SLASH_STRING . 65

software breakpoints . 3

software watchpoints . 4

SOFTWARE_SINGLE_STEP . 46

SOFTWARE_SINGLE_STEP_P . 46

Index 104

SOFUN_ADDRESS_MAYBE_MISSING 46

SOLIB_ADD . 57

SOLIB_CREATE_INFERIOR_HOOK 57

SOM debugging info . 26

SOM format . 25

source code formatting . 62

SP_REGNUM . 49

spaces, separate data and code address 34

STAB_REG_TO_REGNUM . 49

stabs debugging info . 25

stack alignment . 30

STACK_ALIGN . 49

Index 105

standard_coerce_float_to_double 41

START_INFERIOR_TRAPS_EXPECTED 57

STEP_SKIPS_DELAY . 49

STOP_SIGNAL . 33

STOPPED_BY_WATCHPOINT . 6

store_address . 35

STORE_RETURN_VALUE . 49

store_typed_address . 35

struct value, converting register contents to . . 36

structures, returning by value 46

submitting patches . 71

SUN_FIXED_LBRAC_BUG . 49

Index 106

SVR4_SHARED_LIBS . 57

sym_fns structure . 21

symbol files . 21

symbol lookup . 23

symbol reading . 21

SYMBOL_RELOADING_DEFAULT 49

SYMBOLS_CAN_START_WITH_DOLLAR 44

symtabs . 22

system dependencies . 65

T

Index 107

table output functions . 11

target . 2

target architecture definition 33

target vector . 52

TARGET_BYTE_ORDER_DEFAULT 49

TARGET_BYTE_ORDER_SELECTABLE_P 49

TARGET_CAN_USE_HARDWARE_WATCHPOINT. 5

TARGET_CHAR_BIT . 50

TARGET_COMPLEX_BIT . 50

TARGET_DISABLE_HW_WATCHPOINTS 5

TARGET_DOUBLE_BIT . 50

TARGET_DOUBLE_COMPLEX_BIT 50

Index 108

TARGET_ENABLE_HW_WATCHPOINTS 5

TARGET_FLOAT_BIT . 50

TARGET_HAS_HARDWARE_WATCHPOINTS 5

target_insert_hw_breakpoint 6

target_insert_watchpoint 6

TARGET_INT_BIT . 50

TARGET_LONG_BIT . 50

TARGET_LONG_DOUBLE_BIT . 50

TARGET_LONG_LONG_BIT . 50

TARGET_PTR_BIT . 50

TARGET_RANGE_PROFITABLE_FOR_HW_WATCHPOINT

. 5

Index 109

TARGET_READ_FP . 50

TARGET_READ_PC . 50

TARGET_READ_SP . 50

TARGET_REGION_OK_FOR_HW_WATCHPOINT. 5

TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT . . . 5

target_remove_hw_breakpoint 6

target_remove_watchpoint 6

TARGET_SHORT_BIT . 50

target_stopped_data_address 6

TARGET_VIRTUAL_FRAME_POINTER 50

TARGET_WRITE_FP . 50

TARGET_WRITE_PC . 50

Index 110

TARGET_WRITE_SP . 50

TCP remote support . 30

TDEPFILES . 51

terminal device . 30

test suite . 67

test suite organization . 68

trimming language-dependent code 28

tuple output functions . 11

type . 37

type codes . 24

types . 63

Index 111

U
U_REGS_OFFSET . 57
ui_out functions . 10
ui_out functions, usage examples 15
ui_out_field_core_addr . 13
ui_out_field_fmt . 13

ui_out_field_int . 13

ui_out_field_skip . 14

ui_out_field_stream . 14

ui_out_field_string . 13

ui_out_flush . 15

ui_out_list_begin . 13

Index 112

ui_out_list_end . 13

ui_out_message . 15

ui_out_spaces . 15

ui_out_stream_delete . 14

ui_out_table_begin . 11

ui_out_table_body . 12

ui_out_table_end . 12

ui_out_table_header . 12

ui_out_text . 15

ui_out_tuple_begin . 12

ui_out_tuple_end . 12

ui_out_wrap_hint . 15

Index 113

ui_stream . 14

UINT_MAX . 31

ULONG_MAX . 31

USE_GENERIC_DUMMY_FRAMES 32

USE_MMALLOC . 32

USE_O_NOCTTY . 33

USE_PROC_FS . 57

USE_STRUCT_CONVENTION . 51

USG . 33

using ui_out functions . 15

Index 114

V
value_as_pointer . 35
value_from_pointer . 35
VARIABLES_INSIDE_BLOCK . 51
virtual representation . 36
volatile . 33

W
watchpoints . 4
watchpoints, on x86 . 7
word-addressed machines . 34
wrap_here . 60
write_fp . 50

Index 115

write_pc . 50

write_sp . 50

writing tests . 69

X
x86 debug registers . 7

XCOFF format . 25

XDEPFILES . 29

	Scope of this Document
	Requirements
	Overall Structure
	The Symbol Side
	The Target Side
	Configurations

	Algorithms
	Frames
	Breakpoint Handling
	Single Stepping
	Signal Handling
	Thread Handling
	Inferior Function Calls
	Longjmp Support
	Watchpoints
	x86 Watchpoints

	User Interface
	Command Interpreter
	UI-Independent Output---the ui_out Functions
	Overview and Terminology
	General Conventions
	Table, Tuple and List Functions
	Item Output Functions
	Utility Output Functions
	Examples of Use of ui_out functions

	Console Printing
	TUI

	libgdb
	libgdb 1.0
	libgdb 2.0
	The libgdb Model
	CLI support
	libgdb components

	Symbol Handling
	Symbol Reading
	Partial Symbol Tables
	Types
	Fundamental Types (e.g., FT_VOID, FT_BOOLEAN).
	Type Codes (e.g., TYPE_CODE_PTR, TYPE_CODE_ARRAY).
	Builtin Types (e.g., builtin_type_void, builtin_type_char).

	Object File Formats
	a.out
	COFF
	ECOFF
	XCOFF
	PE
	ELF
	SOM
	Other File Formats

	Debugging File Formats
	stabs
	COFF
	Mips debug (Third Eye)
	DWARF 1
	DWARF 2
	SOM

	Adding a New Symbol Reader to GDB
	Language Support
	Adding a Source Language to GDB

	Host Definition
	Adding a New Host
	Host Conditionals

	Target Architecture Definition
	Registers and Memory
	Pointers Are Not Always Addresses
	Using Different Register and Memory Data Representations
	Frame Interpretation
	Inferior Call Setup
	Compiler Characteristics
	Target Conditionals
	Adding a New Target

	Target Vector Definition
	File Targets
	Standard Protocol and Remote Stubs
	ROM Monitor Interface
	Custom Protocols
	Transport Layer
	Builtin Simulator

	Native Debugging
	Native core file Support
	ptrace
	/proc
	win32
	shared libraries
	Native Conditionals

	Support Libraries
	BFD
	opcodes
	readline
	mmalloc
	libiberty
	gnu-regex
	include

	Coding
	Cleanups
	Wrapping Output Lines
	GDB Coding Standards
	ISO-C
	Memory Management
	Compiler Warnings
	Formatting
	Comments
	C Usage
	Function Prototypes
	Internal Error Recovery
	File Names
	Include Files
	Clean Design and Portable Implementation

	Porting GDB
	Configuring GDB for Release

	Testsuite
	Using the Testsuite
	Testsuite Organization
	Writing Tests

	Hints
	Getting Started
	Debugging GDB with itself
	Submitting Patches
	Obsolete Conditionals

	Index

